基于多模板模糊竞争的涉案财物关系抽取方法
CSTR:
作者:
作者单位:

四川大学计算机学院

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家重点研发计划 (2018YFC0832300, 2018YFC0832303)


Relation extraction method for property involved based on multiple templates and fuzzy competition
Author:
Affiliation:

College of Computer Science,Sichuan University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    从法律法规中自动抽取涉案财物处置关系并构建知识库,对司法实践中涉案财物的智能管理有着重要意义.但该场景下训练语料少且单一、抽取准确率要求高,机器学习的关系抽取方法不适用.针对这个问题,基于模板匹配的关系抽取思想,结合模糊逻辑机制,研究了一种适用于涉案财物关系抽取的方法.该方法考虑了涉案财物知识库的实际需求,在传统三元组关系的基础上增加了二元属性,扩充为五元组关系模式,从不同维度设计了三个抽取模板,并借助模糊逻辑对抽取的结果进行评判,竞争出效果较优的五元组关系,为涉案财物知识库的构建提供了支持.

    Abstract:

    Extracting the relation of the property involved from laws and regulations to build a knowledge base is of great significance to the intelligent management of the property involved in the judicial practice. However, in this scenario, the training corpus is small and single, while high extraction accuracy required, so the relation extraction method of machine learning is not applicable. Aiming at addressing this problem, we propose a new relation extraction approach that extracts relations by template matching with fuzzy logic mechanism. In this approach, in order to cater to the actual needs of the knowledge base for property involved, two attributes are added to the traditional threetuple relation to obtain the five-tuple relation model. Three extraction templates were designed from different dimensions, and the extraction results were judged with the help of fuzzy logic to compete for a better five-tuple relation, which provided support for the construction of the knowledge base for property involved.

    参考文献
    相似文献
    引证文献
引用本文

引用本文格式: 李攀锋,林锋,蒋宗神. 基于多模板模糊竞争的涉案财物关系抽取方法[J]. 四川大学学报: 自然科学版, 2021, 58: 042002.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-10-29
  • 最后修改日期:2020-12-05
  • 录用日期:2020-12-22
  • 在线发布日期: 2021-07-13
  • 出版日期:
文章二维码
通知
自2024年3月6日起,《四川大学学报(自然科学版)》官网已迁移至新网站:https://science.scu.edu.cn/,此网站数据不再更新。请勿在此网站提交新稿件。
关闭