基于多尺度宽激活残差注意力网络的图像去块效应
CSTR:
作者:
作者单位:

1.中国石油新疆油田分公司勘探事业部;2.四川大学电子信息学院

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金,省自然科学基金,市自然科学基金


Image deblocking based on multi-scale wide-activated residual attention network
Author:
Affiliation:

1.Exploration Division, Xinjiang Oilfield Company, Petro China;2.College of Electronics and Information Engineering, Sichuan University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了节约传输带宽和存储资源,成像设备和系统一般对图像和视频进行了有损压缩. 由于分块量化编码,JPEG图像往往存在明显的块效应. 去除图像的块效应不仅能够改善使用者的视觉体验,还有利于其他计算机视觉任务的开展. 为此,本文提出了一种基于多尺度宽激活残差注意力网络(MWRAN)的图像去块效应方法. MWRAN主要由多尺度宽激活残差注意力模块(MWRAB)构建而成. 提出的MWRAB不仅能够激活更多的非线性特征以促进信息在网络中的流动,还能够捕获丰富的图像多尺度特征. 此外,通过提出的轻量的差异感知通道注意力(LCCA),MWRAB能够对学习到的特征进行自适应地调整以关注更重要的信息. 消融实验验证了MWRAB的有效性. 在常用的基准数据集上,MWRAN取得了比几种先进的图像去块效应方法更高的客观评价指标和更接近原图的主观视觉效果.

    Abstract:

    To save transmission bandwidth and storage resources, imaging devices and systems generally perform lossy compression on images and videos. JPEG images usually suffer from obvious blocking effect due to block quantization coding. Removing the blocking effect of the image can not only improve the visual experience of users, but also facilitate other computer vision tasks. Therefore, an image deblocking method based on multi-scale wide-activated residual attention network (MWRAN) is proposed. The MWRAN is mainly constructed by the multi-scale wide-activated residual attention block (MWRAB). The MWRAB can not only activate more non-linear features to promote the flow of information in the network, but also capture rich image multi-scale features. In addition, the MWRAB can adaptively adjust the learned features to focus on more important information via the proposed lightweight contrast-aware channel attention (LCCA). The ablation experiment is conducted to verify the effectiveness of the proposed MWRAB. The MWRAN achieves higher objective evaluation indices and produces subjective perceptual effects closer to the original image than several state-of-the-art image deblocking methods on common benchmark datasets.

    参考文献
    相似文献
    引证文献
引用本文

引用本文格式: 柯贤贵,陈正鑫,张越迁,何小海,张翔,刘巍. 基于多尺度宽激活残差注意力网络的图像去块效应[J]. 四川大学学报: 自然科学版, 2022, 59: 063002.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-08-15
  • 最后修改日期:2022-06-13
  • 录用日期:2022-06-20
  • 在线发布日期: 2022-11-30
  • 出版日期:
文章二维码
通知
自2024年3月6日起,《四川大学学报(自然科学版)》官网已迁移至新网站:https://science.scu.edu.cn/,此网站数据不再更新。请勿在此网站提交新稿件。
关闭