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Controlled driven oscillations of graphite-based NEMS
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Abstract: The conditions controlling the stable oscillation of graphite-based nanoelectromechanical sys-
tems (NEMS) are investigated under periodical harmonic driving force with numerical computational
methods. The parameters of the system and control force which allow obtaining the sustained stable os-
cillation at a constant frequency are determined. The operating characteristics of the nano-oscillator are
calculated and analyzed for the equal-length and unequal-length graphite flakes. The calculated results
show that the sustained stable oscillation of the graphite flakes can be realized by properly choosing the
amplitude and the initial phase of the periodical harmonic driving force. The methods reported here are
believed to have important implications in NEMS design.
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plications. For example, graphite has widely been

1 Intr tion
oductio used as durable solid lubricants due to the superlu-

Because of the extraordinary mechanical, electri-
cal and thermal properties as well as biocompatibility
of graphite, the two-dimensional nanostructures are

considered as promising materials for a variety of ap-
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bricity between graphite layers and the extreme high
elastic moduli and interlayer strengths within the lay-
rst . New surprising properties of graphite have

been discovered at times, such as designable electrical
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properties”® ™ and the quantum Hall effect'™*7 which
provide an ample scope for fundamental research and

{01 There were also a few works

new technologies
devoted to the mechanical properties of graphite
which is viewed as an ideal material for the sensing
and detection applications based on nanoelectrome-
chanical systems (NEMS)M?,

tracting motion of graphite, i. e. retraction of graph-

In particular, self-re-

ite flakes back into graphite stacks on their extension,

{13:14] * This phenomenon

was observed experimentally
is similar to telescopic oscillation of carbon nanotubes
walls arising from their van der Waals (vdW) interac-
tion. The ability of free relative sliding and rotation
of carbon nanotube walls and their excellent °wear
proof’ characteristics allowed using carbon nanotube
walls as movable elements in NEMS!'*' | By analogy
with the gigahertz oscillator based on carbon nano-
tubes, a gigahertz oscillator based on the telescopic
oscillation of graphite layers was suggested'".

Some researchers studied the frictional prop-
erties of graphene flake on small contacts with a
friction force microscopy (FEM)[82 " Dienwiebel

(M examined the friction between a graphite

et a
flake attached to sharp FFM tip and an atomically
flat graphite surface, and they also measured the
friction as a function of the misfit angle. Friction
forces ranging from moderate to vanishingly small
depend on the degree of commensurability be-
tween the lattices of the flake and the extended
surface. Although a relatively smooth and low-
frictional sliding can be achieved by choosing an
appropriate misfit angle between two graphite flakes,
friction induced energy dissipation is still inevitable, re-
sulting in damping motion which limits its practical ap-
plication because it brings difficulties for the energy
supplement and signal detection. Thus how to sustain
the graphite oscillatory motion in a precise control
down to the molecular level over long periods of time
remains a crucial issue. Reducing energy dissipation or
applying an external field is two possible approaches.
As we know, for a harmonic oscillator, the
natural frequency has nothing to do with the ini-
tial displacement. However, the natural frequen-

cy of anharmonic oscillator is strongly dependent

on the initial displacement. In this work, we in-
troduce a numerical computational method for
maintaining and controlling the stable motion of
graphite flake with a linear dependence of the fric-
tion force on the relative velocity of the graphite
flake. Periodical harmonic driving force is applied
to the anharmonic nano-oscillator in which the top
and bottom graphite flakes are of different
lengths. We determine the controllable operating
conditions for the stable oscillation by the param-
eters of the oscillators and the driving force, and
investigate the relation of the stable oscillation
with the amplitude and the initial phase of the pe-
riodical driving force. Our aim is to demonstrate
the feasibility of the proposed method for control-
ling the stable motion of the oscillation system.
We wish to explore in detail how we may design
systems that persistent oscillation can be exploi-
ted for building efficient nanomechanical devices.

The rest of the paper is organized in the fol-
lowing way. The model of bilayer graphite flakes
and the numerical computational methods in Sec-
tion 2 are described briefly. In Section 3, we give
the calculated results and demonstrate the possi-
bility of controlling the stable oscillation of

graphite flakes. Section 4 is left for conclusions.
2  Model and method

In this work, we perform numerical simulations
of the controlled operation of two rectangular graphite
flakes to investigate the possibility of realizing the
stable oscillation. The distance between two graphite
flakes is ~3.4 A, which is the balance displacement
between adjacent flakes of graphite. Since covalent
bonds are much stiffer than vdW interaction, the
graphite flakes can be modeled as a system of two rig-
id flakes moving parallelly, as shown in Fig. 1. The
interaction energy U(x) of two perfectly rigid graphite
flakes can be written as

Ulzx) =

0 | x | <L,

1 1 ‘
iﬁdx\fLQZ+%de\fst

L, <| x| <xo

Uo-l-al(‘z"*Lo) | = | >z, (@)
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in the expressions,

L, =(,—L,)/2, (2)
o 2a

e S 3
o 2a

T (G — Lt “

Uy ==l (o, = L) + LB, —

L) + (o — L)' (5)

where / is the width of the graphite flakes, L, is
the length of the top flake, L, is the length of the
bottom flake, « is the binding energy per unit are-
a, and x is the displacement of the top graphite
flake. The potential as a function of translational
displacement and the concrete relations between
the natural frequency and the initial displacement
for different sizes of the top graphite flake are
shown in Fig. 1(a) and (b), respectively. The
natural frequency of the oscillator is defined as
the frequency of free oscillation without damping.
Fig. 1(b) indicates that the natural frequency of
anharmonic oscillator is strongly dependent on the
initial displacement, which is quite different from
that of a harmonic oscillator. As is known to all,
the natural frequency of harmonic oscillator has
nothing to do with the initial displacement. Con-
sequently the dynamics of an anharmonic oscilla-

tor is quite different from that of a harmonic os-

cillator.
a
2.5 |x|x||||(|)
Ly
20k | —
’ |
F—L,—
150\ L=(L,L)2
Siol
05F
0.0
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Fig. 1 (a) Potential as a function of translational
displacement x » and (b) natural frequency
as a function of initial displacement x(0) for
different lengths L, of top rectangular
graphite flake.

In order to study the dynamics of the nano-
device, we consider linearly damped oscillators
with numerical computations. The dissipation of
the oscillation energy results in the decrease of
the oscillation amplitude with time. Consequent-
ly, to sustain the stable oscillation of the graphite
oscillator, it is necessary to supply the energy to
the oscillator. We assume that the dissipated en-
ergy is compensated by an external applied peri-
odical harmonic force. If neglecting the Langevin
stochastic force and vibrations in the graphite
flakes, the oscillator dynamics may be roughly
described as

z = v, (6)

aU(.r) —yo +F,sin(at +¢), (D)

dx
where 4 is the mass of the movable top graphite
flake, x is the displacement with respect to the
fixed bottom graphite flake, v is the relative ve-
locity, F,, is the amplitude of driving force applied
to the top graphite flake with angular frequency w
and initial phase ¢ . 7 is the friction coefficient
with an imposed constant values 0. 01. We sup-
pose the initial velocity is always equal to zero.
To obtain stable oscillation, the states of the os-
cillator and the driving force must return to the o-
riginal states after one period T'. So the angular
frequency w of the driving force has to be equal to
the integral multiple of the natural angular fre-
quency 0,

w = nl). €))
Although these frequencies are only a small
subset of total possible frequencies, the condi-
tions are absolutely necessary. Limiting the solu-
tions to this subset is not artificial. Outside this
subset, the oscillatory system can not always full-
y restore in one period. Nevertheless this limita-
tion is not essential for a harmonic potential be-
cause the natural frequency ) is not dependent on
the initial displacement.
For the purpose of ensuring the complete res-
toration of the anharmonic oscillator and the ex-
ternal force in one period, the displacement, ve-

locity and energy have strict periodicity. Once the
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external force is given, its period can’t change.
Thus the oscillator must adjust its parameters,
such as displacement and phase, to make the os-
cillatory frequency and the driving frequency
match. If the initial conditions are proper, the en-
ergy that the periodical driving force afford is e-
qual to the dissipation of oscillation energy due to
the frictional force in a period, then we have
JOT {F,,sin(nQt + ¢) —yo(t) jolt)dt = 0.
D)
The displacement at time ¢ is dependent on
many parameters, including the shape of the po-
tential, the initial displacement, the friction coef-
ficient, and the frequency, initial phase and am-
plitude of the driving force, namely x[¢;U(x),
2(0),7sws¢,F,]. In order to sustain the stable
oscillation, the displacement and the velocity

must return to the initial values after one period

T. It follows that

x[t = T;U(.T),,I(O),y,w,go,F,,,] = x(0),
10)

o[t = T;U(I),I(O),}’,w,go,F,,,] = v(0).
an

It is very difficult to determine the conditions
concerning multiple parameters operation for sus-
tained oscillator. If the driving frequency satisfies
Eq. (8), then the conditions of the stable oscilla-
tion are determined by the initial phase and the
amplitude of the controlled force. Each equation
of the combination gives a curve in the ¢ — F,
plane. From this, we can obtain the solutions for
the combination of Egs. (10) and (11). Here the
Verlet velocity algorithm and steepest descent

method were used to solve them.

3 Results and discussion

3.1 Equal-length L, and L,

The frequency of free oscillation of the sys-
tem depends on the initial extrusion of the top
graphite flake for the anharmonic oscillator., We
find that, for the initial displacement x(0) = 1
and x(0) = 2of L, = L, = 4, the frequencies of

the oscillator in the case with the absence of the

driving force and frictional force are Q=1. 11048
and Q=0. 78536, respectively.

As demonstrate above, to sustain stable os-
cillation, the driving frequency must be equal to
the integral multiple of the oscillatory frequency
once the top graphite flake is released from an ini-
tial displacement. We take the driving frequencies
as w=20 and w = 30 for L,
satisfying Egs. (10) and (11) are shown in Fig.

=L, =4 . The curves

2, where case 1, case 2 and case 3 correspond to
x(0) =1, case 4 corresponds to x(0) = 2. There
are many solutions that satisfy Eq. (10) or (11),
and one initial phase ¢ corresponds to several am-
plitudes F,, , same if vice versa. However, there
is only several solutions within the range —2x ~
2 mfor the initial phase ¢ . The cross points of the
curves in the ¢ — F,, plane are (¢,F,) = (— 1.
05135,2.06287), and (@,F,) = (— 1.03147,2.
16222), (¢, F,) = (—0.05882,0.10546) , and (g,
F,) = (—0.08333,0.14922) for case 1, case 2,
case 3 and case 4, respectively. As increasing the
driving frequency, the amplitude F,, of the driving
force needed to sustain the stable oscillation de-

creases for the initial displacement x(0) = 1.

0.6 — L

0.5}

0.4

€ :-
Lo3t P
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Fig. 2 Sustainable oscillation amplitude and initial

phase of equal length graphite flakes for (a) w
=2Q and (b) w=3Q. The solid and dotted
lines correspond to Eq. (10) and Eq. (11).
respectively.

The analysis has been performed with refer-
ence to the phase space, examples of which are
shown in Fig. 3 corresponding to cases of Fig. 2.
We consider that the trajectories of interest are

those that form a closed loop in one oscillation cy-
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cle, as these will show the desirable aspect for
any driven oscillator system. It is found that ev-
ery solution for the combination of Egs. (10) and
(11) corresponds to a closed loop. The simulation
results indicate that the phase diagram of each os-
cillator is not a standard ellipse, but a smooth
loop. Consequently the oscillator is anharmonic
vibration periodically. Interestingly, the oscilla-
tion amplitude is unequal for the frequency w=2Q
and equal for the frequency w=3Q. Furthermore,

So the

choice of the driving frequency has great influence

the phase trajectories are asymmetric.

on the behavior of the considered oscillator.

2.5 T T T
——case 1

20F---- case2

15[~ —case 3
crenns CASE 4

10F
05} .
00f |
05 °
10} N\
20[ R 1
25

velocity

-20 -15 -1.0 -05 0.0 05 1.0 15 20
displacement

Fig. 3 The resulting phase space trajectories cor-

responding to cases of Fig. 2.

In order to understand the forces that con-
tribute significantly to the oscillatory behavior, a
typical result is shown in Fig. 4 for case 3. It is
indicates that the driving frequency is three times
that of net force, velocity and displacement. Fur-
thermore, we found similar results in the cases of
both small and large initial displacement. As are
explicitly plotted in Fig. 3. the choice of the ini-
tial displacement has little influence on the behav-
ior of the considered oscillator. Accordingly only
if the driving frequency is equal to the integral
multiple of the oscillatory frequency and the ini-
tial phase and amplitude of the controlled force
satisfy certain conditions which are determined by
the combination of Egs. (10) and (11), we can
conveniently choose different initial displacements
to sustain stable oscillation.

The driving force applied on the graphite

flake is periodical, the net forces are not exactly
zero after a driving period T, . as shown in Fig.
4. With regard to the same initial displacement
and different driving forces, the displacement may
be positive or negative and the oscillator may even
move backward at¢ = T, . This state is the initial
condition of next driving period, which has great
effect on the following movement. Furthermore,
probably the maximums of the positive and nega-
tive displacement are also unequal. Consequently
the conditions to sustain the stable oscillation of

graphite flakes are very rigorous.

0.1
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a
0
©
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>
© 0.96
(=
e 0.93 : 1 L il 1 =
or, 7 10 20 30 40
time
Fig. 4 (a) driving force, (b) total force, (c) veloc-

ity, (d) displacement, and (e) total energy
of the moving graphite flake as a function of
time for case 3. T and T, are oscillation peri-

od and driving period, respectively.

3.2 Unequal—length L, and L,

For the initial displacement x(0) = 2 nm of
L, =2and L, =4 , the frequency of the oscillator
in the case with the absence of the driving force
and frictional force is Q=0. 73618. The curves sat-
isfy Eq. (10) and Eq. (11), corresponding to the

solid lines and the dotted lines, respectively, are
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shown in Fig. 5. For case 8, the cross point of
the curves in the ¢ — F,, plane is (¢, F,) = (— 1.
58486,0.88493), which gives the solution that
the graphite oscillator can oscillate under stable
conditions. An enlarged view of case 10 is shown
in (¢) to emphasize the possibility of obtaining
more choices to sustain persistent oscillation. In
the ¢ — F,, plane, we can measure the deviation
that the displacement and velocity relative to the
initial value after one time period with A =[2(T)
—2(0) " +[v(T) —v(0) J*. Those points drop in-
to the region of A << 107!, corresponding to the
shaded parts, can be treat as stable oscillation ap-
proximately. So we can conveniently choose dif-
ferent initial phases and amplitudes of driving

force to sustain stable oscillation.

(a)

1.7

0325 -0.300 -0275 -0250

@ (rad)

-0.350

-0.375

Fig. 5 Sustainable oscillation amplitude and initial
phase of unequal length graphite flakes for
() w=2Q and (b) @ =30Q. An enlarged
view of case 10 is shown in (¢) to emphasize
the possibility of obtaining more choices to
sustain persistent oscillation.

The calculation results of the controlled sta-
ble oscillations are presented in Fig. 6 for unequal
length graphite oscillators. Comparing with the
cases of equal length, we observed similar phe-
nomena. Although the oscillation behaviors are

more complicated, we can realize sustained oscil-

lation with more choices.

(a) (b)
T T ] T T T T T T T
g|——case5 ----case7| gl ——cased J
—-—-case6 ---case8
2 L - i -
27 I ]
©
° J
cof -
At i
L | i L | -3 L | i i 1

2

-1 0 1 10 1
displacement displacement

Fig. 6 The resulting phase space trajectories

corresponding to cases of Fig. 5.

4 Conclusions

In this paper, we investigate the controlled
conditions under which the graphite-based NEMS
can realize sustained stable oscillation driven by
periodical harmonic force. Our numerical calcula-
tion indicates that the use of proper driving force
can be an effective and convenient approach to
control and tune graphite-based oscillators. We
have determined the parameters and characteris-
tics corresponding to the controllable operating
conditions for the stable oscillators. Further-
more, we find that, if we choose the amplitude
and the initial phase of the periodical harmonic
driving force satisfied the conditions of the combi-
nation of Eqs. (10) and (11), we can realize the

stable oscillation of the graphite-based oscillator.
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