doi: 103969/j.issn.0490-6756.2016.01.024

# 微纳米卟啉金属有机络合物的合成

杨建东,黄 姗

(陇南师范高等专科学校生物化学系,成县 742500)

摘 要:我们通过一种简单的绿色合成方法,得到微纳米尺度的金属卟啉配合物,并通过选择不同的金属离子,实现了对金属卟啉配合物的可控组装,得到了从零位、一维和二维的金属卟啉配合物.并借助扫描电镜、红外光谱、X射线衍射谱(XRD),X射线光电子能谱(XPS)等对其结构进行了表征,详细考察了其影响纳米结构的影响因素和动力学生长过程.
 关键词:四羧基苯基卟啉;金属离子;微纳米结构;影响因素
 中图分类号: O628 文献标识码: A 文章编号: 0490-6756(2016)01-0145-07

# Synthesis and characterization of micro-and nano-metal-porphyrin coordination polymer

YANG Jian-Dong, HUANG Shan

(Department of biology & chemistry, Longnan Normal College, Chengxian, 742500, China)

**Abstract**: In this paper, we synthesized the nanoscale mertal-porphyrin complexes by using a simple and green method. By choosing the different metal ions, the different nanostructures (0D, 1D, 2D) of metal-porphyrin polymers were obtained by the controlled assemble unit. Its structures were characterized by scanning electron microscopy (SEM), infrared spectroscopy (IR), x-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The impact factors on nanostructures and the dynamic growth of the metal-porphyrin polymers were examined in detail.

Key words: Tetra-carboxyphenyl porphyrin(TCPP); Metal ions; Micro- and nanostructures; Factor

# 1 前 言

金属有机配合物(Metal-Organic Frameworks MOFs)或配位聚合物(Coordination Polymer)由 具有多价态的金属离子或离子的团聚体和多齿的 有机配体桥连而成<sup>[1]</sup>.由于它们组装单元(building blocks)是金属离子和有机配体,其结构存在很大 的化学可裁剪性,因此表现出诸多良好的性能.比 如,多孔状的配位聚合物常常应用于气体存 储<sup>[2-6]</sup>、催化<sup>[7]</sup>、识别<sup>[8]</sup>和分离<sup>[9]</sup>等.普鲁士蓝和蓝 色复合体(蓝藻和绿藻的共生体)是一类经典的配 位聚合物.关于其纳米粒子的合成和表征已经研究 了十多年<sup>[10-13]</sup>.这种纳米粒子表现出许多独特的 尺寸依赖效应,比如超顺磁性<sup>[10]</sup>,光致超顺磁 性<sup>[11]</sup>和玻璃状的旋转行为(spin-glass-like)<sup>[12]</sup>等. 随着纳米技术的发展,在分子水平上将金属离子和 有机配体进行复合就会形成一类新的可裁剪的杂 化材料-纳米尺寸的配位聚合物(NCPs)和金属有 机配合物(NMOFs),这种材料不仅具有纳米尺寸 效应,而且具有可调的组装单元,从而具有功能的 多样性.最近有多个研究小组通过沉淀法<sup>[13-17]</sup>、溶 剂热法<sup>[18,19]</sup>和微乳液法<sup>[20]</sup>等方法得到微纳米尺寸

收稿日期: 2015-05-26

**基金项目:**国家自然科学基金(21175108):甘肃省自然科学基金(1308RJZK171);甘肃省高等学校科研项目(2013B-132);和校重点 科研项目(2012LSZK01003);博士科研启动项目.

作者简介:杨建东(1976-),男,甘肃礼县人,副教授,主要从事卟啉纳米材料的合成及其光电性能研究.E-mail-lnszyjd@163.com

的金属有机配合物的粒子<sup>[15-22]</sup>. Mirkin 小组和长 春应化所汪尔康课题组最早通过溶剂化作用形成 化学可裁剪的配位聚合物的纳米粒子<sup>[13-15]</sup>:Masel 小组通过微波辅助的溶剂热方法得到微米尺寸的 立方体的金属有机配合物<sup>[23]</sup>;Lin 等利用油水微乳 液的方法制备了基于金属稼(Gd)和对二苯酚 (BDC)的纳米棒状的配位聚合物<sup>[24-28]</sup>. 卟啉是一 种大环有机化合物,其稳定的平面结构常常作为功 能化的有机配体从而形成金属有机配合物,来研究 其形成的作用机理,配位方式和晶体结构的解 析<sup>[29-34]</sup>. 然而,基于微纳米尺度的金属卟啉配合物 还报道不多,Shelnutt小组利用再沉淀法将四吡啶 基卟啉(TPyP)和氯铂酸(H<sub>2</sub>PtCl<sub>6</sub>)聚合形成纳米 球,并研究其催化性能[35];国内复旦大学钱东金课 题组利用界面组装的方法得到卟啉与金属离子形 成的配位聚合物[36,37].因此,在微纳米尺度上如何 形成不同结构的金属卟啉配合物依旧是一个难点. 在本文中我们通过一种简单的绿色合成方法,得到 微纳米尺度的金属卟啉配合物,并通过选择不同的 金属离子,实现了对金属卟啉配合物的可控组装, 得到了从零位、一维和二维的金属卟啉配合物.

# 2 实验部分

#### 2.1 试 剂

试验中所用四羧基苯基卟啉(TCPP)、高氯 酸锰 Mn(ClO<sub>4</sub>)<sub>2</sub>,高氯酸锌 Zn(ClO<sub>4</sub>)<sub>2</sub>、高氯酸镉 Cd(ClO<sub>4</sub>)<sub>2</sub> 购 置 于 Alfla 公 司,醋 酸 锰 Mn (OAc)<sub>2</sub>、氯化锰 MnCl<sub>2</sub> 购置于北京化学试剂公 司.所用有机溶剂乙醇、N、N 二甲基甲酰胺、吡 啶、四氢呋喃均购置于北京化学试剂公司,除乙 醇外,其余设计使用前利用分子筛或无水氯化钙 除水.高纯水(电阻率=18.2MΩ)是通过 Milii-Q 仪器(Millipore)使用孔为 0.02 $\mu$ m 的无机过滤膜 过滤所得.

#### 2.2 制备方法

首先将四羧基苯基卟啉 TCPP 配置成 0.1mM 的乙醇溶液,分别配置 1mM 的高氯酸锰、高氯酸 锌、高氯酸镉、醋酸锰、氯化锰的水溶液;量取 6ml1mM上述各种盐的水溶液加入到 20ml 的小 玻璃瓶中,搅拌,然后分别加入 10ml0.1mM 卟啉 的乙醇溶液,搅拌 5min 后,静置 24h,即得所需 样品.

#### 2.3 表征技术

(1)扫描电子显微镜(SEM):把不同的样品经

过洗涤处理后,取一滴转移到干净的硅片上,待晾 干后.在场发射扫描电镜(Hitachi S-4800)操作电 压 10KV下进行观察.

(2)X-射线衍射(XRD):收集足够多的样品,
 涂覆在物反射衬底上,在转靶粉末 X-射线衍射仪
 (M18AHF, Japan Mac Scence)上测试, Cu 靶 Ka
 (λ=1.54050A),扫描范围为 30-800.

(3)光电子能谱(XPS):把不同的样品经过洗 涤处理后,取一滴转移到干净的硅片上,待晾干.在 英国 NG 公司 ESCAlab Mark II 上测定,以 Mg Ka 为激发源.

(4) 红外光谱仪(FTIR)和紫外可见光谱仪 (UV-Vis):红外样品通过溴化钾压片制备,在 Alpha Centauri FT-IR 型测试,波长为 400-4000 cm -1;紫外样品的测试在乙醇溶液、乙醇和水的混合液(体积比:乙醇:水=5:3)中进行,仪器为 U-3010 spectrophotometer.

# 3 讨论与结果

#### 3.1 不同形貌的金属一卟啉配合物的形貌表征



- 图1 金属卟啉复合物纳米结构的扫描电镜图.A,D) 锌卟啉;B,E)锰卟啉;C,F)镉卟啉
- Fig. 1 SEM images of the metal porphyrin complexs nanostructures. A, D) Zn – TCPP; B, E)Mn–TCPP;C,F) Cd–TCPP

我们得到了如图 1 所示不同微纳米结构的金属卟啉配合物.图 1A,D 是 Zn(ClO4)<sub>2</sub> 与卟啉 TCPP 形成纳米金属有机配合物(Nano Metalorganic Frameworks NMOF)纳米粒子的 SEM

147

图,其中 D 图是放大的 SEM 图. 形成的纳米粒子 的尺寸大小为 300-500nm, 大部分呈非球状的六 面体结构.从放大图看,形成的纳米粒子分散性不 好,有一定的团聚.如果金属盐选用 Mn(ClO<sub>4</sub>)<sub>2</sub>、  $Co(ClO_4)_2$ 时,则与卟啉 TCPP 形成的是一维结构 的 NMOF. 图 1C, E 是 Mn(ClO<sub>4</sub>)<sub>2</sub> 与 TCPP 形成 一维结构的 SEM 图,其中 E 为 B 放大的 SEM 照 片.从图 B 可以看出, Mn<sup>2+</sup>与 TCPP 形成一维结 构的 NMOF 长度达到几十个微米,宽度约为 400 -600nm 左右,如果改用界面组装的话,其长度可 达到毫米级.从放大图 E 可以看出,该一维结构的 NMOF 的表面光滑,缺陷少,微纳米线有部分的交 叉,单分散性不;另外,该一维结构的结晶度不好; 从该放大图的断口处也可以看出,该一维结构可能 存在层状结构.如果是选用 Cd(ClO<sub>4</sub>)<sub>2</sub> 的话,则会 形成二维的片状结构.图 1C,F 是 Cd<sup>2+</sup> 与卟啉 TCPP 形成二维片状的 NMOF 结构,其尺寸大小 为1-1.2µm,厚度约为40-60nm 左右,片状结构 的 NMOF 表面光滑,部分片层的顶角有部分缺陷. 从以上 SEM 图可以说明,不同的金属盐与卟啉 TCPP 可以形成不同结构的纳米级的金属有机配 合物(NMOF). 这说明金属离子的尺寸大小、种类 都会影响其形成的结构.

#### 3.2 金属卟啉配合物的 XPS 表征

为了进一步证实我们所得到的上述结构是金属有机配位形成的金属--有机配合物,我们进一步利用 XPS、红外谱对其结构进行表征.图2是不同



- 图 2 金属卟啉复合物纳米结构的 XPS 表征, 锌卟 啉, 锰卟啉, 镉卟啉.
- Fig. 2 XPS spectra of the metal porphyrin polymers,  $Zn(ClO_4)_2$ ,  $Mn(ClO_4)_2$ ,  $Cd(ClO_4)_2$

金属盐与卟啉 TCPP 形成 NMOF 的 XPS 图. 高氯 酸锌与卟啉形成的 NMOF 中,在 1021. 8ev、1044. 8ev 处的峰对应于 Zn 的 2p1,2p3 的能级<sup>[47]</sup>,说明 该结构中锌与卟啉 TCPP 中的羧基(COO<sup>-</sup>)发生 配位,从而形成金属锌一卟啉的配合物. 同样,在高 氯酸锰、高氯酸隔与卟啉形成的 NMOF 中,能级图 中 404. 8ev,411. 6ev 处分别对应于 Cd<sup>2+</sup>的 3d<sub>5/2</sub>, 3d<sub>3/2</sub>,645. 0ev 对应的峰为锰的 2p 能级,说明金属 隔、锰也会于卟啉发生配位. 但由于锰自身的配位 能力低,所以锰的 XPS 的信号太低<sup>[38]</sup>. 为了进一 步证实是否形成金属与卟啉的配位作用,我们借助 红外谱来对其进行表征确认.

#### 3.3 金属卟啉配合物的红外表征

图 3 是不同金属盐(Zn、Mn、Cd、Co)与卟啉 TCPP 形成金属有机配合物的红外谱. 卟啉粉末谱 中,1700cm<sup>-1</sup>对应于 COOH 中 C=O 的对称伸缩 振动峰.与卟啉粉末谱相比,当与金属形成配位后,  $1700 \text{ cm}^{-1}$  处 C=O 的强度不同程度的减弱,而大约  $1400 \text{ cm}^{-1}$  处出现一强的伸缩振动峰,对应于 COOH中COO<sup>-</sup>的对称伸缩振动峰<sup>[39]</sup>,由于金属 离子的配位能力不同,其伸缩振动的强度变化也不 一样.这说明金属离子与卟啉中的 COOH 发生配 位,形成 M-COO 配位键,从而生成金属卟啉配合 物.通过上述结构表明,我们所得到不同形貌的金 属卟啉 NMOF 的结构是由金属与卟啉配位而得 到.在相同实验条件下,为什么不同的金属盐会得 到不同结构的 NMOF,可能的原因是由于不同金 属离子的配位能力的强弱不同, $Zn^{2+}$ , $Co^{2+}$ , $Cd^{2+}$ , Mn<sup>2+</sup>分别是四配位和六配位.另外我们也可以通 过 XRD 谱的表征来说明.



#### 3.4 金属卟啉配合物的 XRD 表征

图 4 是不同金属与卟啉形成的 XRD 谱. 与卟 啉粉末谱相比,不同金属卟啉配合物的衍射峰明显 不同,说明有新的相出现.比如金属离子 Co<sup>2+</sup>、 Mn<sup>2+</sup>与卟啉形成的一维纳米结构中,出现类似的 衍射峰,说明其结构具有相似性,从 SEM 图也可 以看出,它们形成了一维的微纳米结构;在小角3 -10o 范围处,出现强的衍射峰,说明该一维结构 中存在层状结构,这一点通过 SEM 图也得到证 实.在Cd<sup>2+</sup>形成的二维片状结构中,小角处也出现 中强的衍射峰,且角度比锌和锰的间距小;金属离 子 Zn<sup>2+</sup> 形成的纳米离子中,小角处没有衍射峰出 现,对应于与粉末谱相似的地方出现强的衍射峰. 以上说明不同的金属与卟啉形成的配合物由于金 属离子的自身特点,从而形成不同结构的金属卟啉 的微纳米结构.然而,目前我们没有得到上述材料 的单晶衍射谱,所以对其形成过程更多是一种假设 和推测,为了更好的理解其生长过程和不同的作用 机理,我们只能选择其他条件的变化来给以佐证.





Fig. 4 XRD spectrums of the different metal-porphyrin complexs.

#### 3.5 影响因素

#### (1)对离子的影响

我们以金属锰为例,考察不同的锰盐对其结构 的影响.从图 5-5 中 SEM 照片可以看出,不同的 对离子对其结构没有明显的影响,由于对离子与金 属锰的配位能力不同,所以在形成 NMOF 过程中 其结晶速度不同,从而形成结晶度不同的金属卟啉 配合物,另外从红外谱也可以看出,它们得到类似 的配位过程.这说明形成的卟啉-锰一维结构的骨 架中,主要是金属锰与卟啉形成的配位键,从而形 成一维的锰卟啉金属有机配合物.



- 图5 金属卟啉复合物纳米结构的扫描电镜图和红 外谱.
- Fig. 5 SEM images and FTIR spectrums of the metal-porphyrin complexs.

#### (2)溶液的 pH 值

如果改变溶液的 pH 值,由于卟啉 TCPP 中羧 酸中的解离常数不同,从而影响其与金属离子的配 位程度;其次,当溶液的 pH 过低时,不能使羧酸根 发生解离,则就会降低金属与其的配位能力,甚至 不发生配位作用而卟啉会以氢键的方式自身聚集, 再次,如果溶液的 pH 过高,则金属离子易发生水 解,从而会形成金属盐的氧化物,所以考察溶液 pH 的影响对其结构的改变是有意义的,起到很关 键的作用.图 6 是不同 pH 值下形成的卟啉与锰离 子形成的 NMOF 结构的 SEM 照片,当溶液的 pH



- 图 6 不同 pH 下金属卟啉复合物纳米结构的扫描电 镜图.
- Fig. 6 SEM images of the metal porphyrin complexs fabricated with the different values of pH

149

值低于 3 左右时, 卟啉 TCPP 不发生解离, 而以氢 键的形式自身结合形成卟啉的聚集体(如图, pH= 3.08, pH=2.69), 当溶液的 pH 过高时, 溶液中解 离的羧酸根过多, 容易与金属离子配位, 从而导致 形成金属卟啉配合物发生团聚, 结晶度差, 容易形 成凝胶状. 但由于这类分子刚性太强, 形成的凝胶 易发生断裂, 所以选择合适的溶液的 pH 值, 是形 成单分散、结晶度高的金属卟啉 TCPP 纳米结构 的关键因素.

#### 3.6 动力学生长过程

由于我们没有得到金属卟啉 TCPP 的单晶 谱,从 XRD 粉末谱也没有给出其清晰的晶体结 构.所以,我们利用其生长过程中吸收变化来观察 其形成不同微纳米结构的金属卟啉配合物的动力 学生长过程,来推测其形成的结晶速度.图7反应 了不同金属离子与卟啉 TCPP 作用的吸收曲线变 化.从7A图中,经过1h后,卟啉的吸收峰已经降 低了很多;同时,卟啉的吸收峰变宽,说明溶液中有 金属锌与卟啉配合物的悬浮物生成,说明金属锌与 卟啉 TCPP 的配位作用较强;同样对于金属锰而 言,经过1h后卟啉的吸收并没有降低多少,经过 25h其吸收强度也变化不大,这说明卟啉与金属锰 之间的配位作用较弱,其形成的一维微纳米结构 中,可能也存在卟啉分子间氢键的作用;但对于金 属镉而言,其吸收变化与金属锌类似,很容易和卟 啉发生配位作用,但由于其配位能力与金属锌不 同,金属镉易形成六配位,所以形成金属镉卟啉的 二维结构.





# 4 结 论

本文通过一种简单、绿色的合成方法,得到系 列金属卟啉配合物的微纳米结构,金属锌与卟啉 TCPP 易形成 NMOF 的纳米粒子;金属钴、锰易形 成 NMOF 的一维结构;金属镉易形成 NMOF 的二 维纳米结构.并通过 SEM、XPS、红外谱、XRD 等 对其结构、作用机理进行了分析表征,通过对其形 成动力学过程中卟啉吸收的变化考察了其不同金 属离子间的配位差异、结晶速度等.最后通过对金 属离子中对离子和溶液 pH 值等影响因素的考察, 优化出形成单分散性、结晶度高的金属卟啉配合物 的形成条件.通过选择不同的金属离子,就可以实 现不同形貌的金属卟啉微纳米结构,是一种制备金 属卟啉配合物的简便方法.这些微纳米结构的不同 可能产生不同的性能,比如一维的纳米线可以作为 器件单元应用在微纳电子线路中,二维的结构可以 作为有机模板原位生长贵金属纳米粒子,从而形成 具有高催化性能的有机无机复合材料等.这些具有 微纳米结构的金属卟啉配合物有望作为气体吸附、 气体传感和有机光电器件,应用到不同的领域中.

#### 参考文献:

- [1] Rowsell J, Spencer E, Eckert J, et al. Gas adsorption sites in a large-pore metal-organic framework
  [J]. Science, 2005, 309: 1350.
- [2] Matsuda R, Kitaura R, Kitagawa S, et al. Highly controlled acetylene accommodation in a metal-organic microporous material [J]. Nature, 2005, 436:238.
- [3] Yaghi O M, Keeffe M O, Ockwig N W, et al. J. Kim, Reticular synthesis and the design of new materials[J]. Nature, 2003, 423: 705.
- [4] Zhao X B, Fletcher A J, Thomas K M, et al. Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks[J]. Science, 2004, 306: 1012.

第 53 卷

- [5] Maji T K, Matsuda R, Kitagawa S. A flexible interpenetrating coordination framework with a bimodal porous functionality[J]. Nat. Mater. 2007, 6:142.
- [6] Cui Y J, Zou W F, Song R J, et al. A ratiometric and colorimetric luminescent thermometer over a wide temperature range based on a lanthanide coordination polymer [J]. Chem Commun, 2014, 50: 719.
- [7] Horcajada P, Chalati T, Serre C, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging[J]. Nature Materials, 2010, 9: 172.
- [8] He C B, Lu K D, Lin W B. Nanoscale metal organic frameworks for real-time intracellular pH sensing in live cells [J]. J Am Chem Soc, 2014, 136: 12253.
- [9] William R E, Gregory S G. High-temperature molecular magnets based on cyanovanadate building blocks: spontaneous magnetization at 230K[J]. Science, 1995, 268: 397.
- [10] Vaucher S, Li M, Mann S. Synthesis of prussian blue nanoparticles and nanoparticles superlattices in reverse microemulsions [J]. Angew Chem Int Ed, 2000, 39: 1793.
- [11] Vaucher S, Fielden J, Li M, et al. Molecule-based magnetic nanoparticles: synthesis of cobalt hexacyanoferrate, cobalt pentacyanonitrosylferrate, and chromium hexacyanochromate coordination polymers in water-in-oil microemulsions [J]. Nano Lett. 2002, 2: 225.
- [12] Makiura R, Motoyama S, Kitagawa H, et al. Surface nano-architecture of a metal-organic framework
  [J]. Nature Materials, 2010, 9: 565.
- [13] Uemura T, Kitagawa S. Prussian blue nanoparticles protected by poly (vinylpyrrolidone) [J]. J Am Chem Soc, 2003,125: 7814.
- [14] Taguchi M, Yamada K, Suzuki K, et al. Photoswitchable magnetic nanoparticles of prussian blue with amphiphilic azobenzene [J]. Chem Mater, 2005, 17:4554.
- [15] Uemura T, Kitagawa S. Nanocrystals of coordination polymers[J]. Chem Lett, 2005, 34: 132.
- [16] Fiorito P A, Gonçales V R, Ponzio E A, et al. Synthesis, characterization and immobilization of prussian blue nanoparticles. A potential tool for biosensing devices[J]. Chem Commun, 2005, 366.
- [17] Oh M, Mirkin C A. Chemically tailorable colloidal

particles from infinite coordination polymers [J]. Nature, 2005, 438: 651.

- [18] Oh M, Mirkin C A. Ion exchange as a way of controlling the chemical compositions of nano- and microparticles made from infinite coordination polymers[J]. Angew Chem Int Ed, 2006, 45: 5492.
- [19] Sun X, Dong S, Wang E. Coordination-induced formation of submicrometer-scale, monodisperse, spherical colloids of organic inorganic hybrid materials at room temperature[J]. J Am Chem Soc, 2005, 127: 13102.
- [20] Park K H, Jang K, Son S U, et al. Self-supported organometallic rhodium quinonoid nanocatalysts for stereoselective polymerization of phenylacetylene
  [J]. J Am Chem Soc, 2006, 128: 8740.
- [21] Wei H, Dong S J, Wang E K. Nucleobase metal hybrid materials: preparation of submicrometerscale, spherical colloidal particles of adenine-gold (III) via supramolecular hierarchical self-assembly approach[J]. Chem Mater, 2007, 19: 2987.
- [22] Oh J M. Monitoring Shape Transformation from nanowires to nanocubes and size-controlled formation of coordination polymer particles [J]. Angew Chem Int Ed, 2008, 47: 2049.
- [23] Ni Z, Masel R I, Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis[J]. J Am Chem Soc, 2006, 128: 12394.
- [24] Rieter W J, Taylor K M L, Lin W B, et al. Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents [J]. J Am Chem Soc, 2006, 128: 9024.
- [25] Kim J S, W. Rieter J, Lin W B, et al. Self-assembled hybrid nanoparticles for cancer-specific multimodal imaging [J]. J Am Chem Soc, 2007, 129: 8962.
- [26] Rieter W J, Taylor K M L, Lin W B. Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing [J]. J Am Chem Soc, 2007, 129: 9852.
- [27] Taylor K M L, Kim J S, Lin W B. Mesoporous silica nanospheres as highly efficient MRI contrast agents[J]. J Am Chem Soc, 2008, 130: 2154.
- [28] Rieter W J, Pott K M, Lin W B et al. Nanoscale coordination polymers for platinum-based anticancer drug delivery [J]. J Am Chem Soc, 2008, 130: 11584.
- [29] Spokoyny A M, Kim D, Mirkin C A. Infinite coor-

dination polymer nano- and microparticle structures [J]. Chem Soc Rev, 2009, 38: 1218.

- [30] Lin W B, Rieter W J, Taylor K M L, Modular synthesis of functional nanoscale coordination polymers
  [J]. Angew Chem Int Ed, 2009, 48, 650.
- [31] Wang X S, McHale R. Metal-containing polymers: building blocks for functional (nano) materials[J]. Macromol Rapid Commun, 2010, 31: 331.
- [32] DeVries L D, Choe W. Classification of structural motifs in porphyrinic coordination polymers assembled from porphyrin building units, 5,10,15,20tetrapyridylporphyrin and its derivatives[J]. J Chem Crystallogr, 2009, 39; 229.
- [33] Lipstman S, Goldberg I. 2D and 3D coordination networks of tetra (carboxyphenyl)-porphyrins with cerium and thulium ions[J]. Journal of Molecular Structure, 2008, 890: 101.
- [34] Goldberg I. Crystal engineering of nanoporous architectures and chiral porphyrin assemblies [J].

Cryst Eng Comm, 2008, 10: 637.

- [35] Wang Z, Lybarger L E, Shelnutt J A, et al. Monodisperse porphyrin nanospheres synthesized by coordination polymerization[J]. Nanotechnology, 2008, 19: 395604.
- [36] Liu B, Chen M, Qian D J. Coordination polymer nanocombs self-assembled at the water-chloroform interface[J]. New J Chem 2007, 31: 1007.
- [37] Qian D J, Nakamura C, Miyake J. Layer-by-layer assembly of metal-mediated multiporphyrin arrays[J]. Chem Commun, 2001, 2312.
- [38] 刘芬,赵志娟,邱丽美等. XPS 光电子峰和俄歇电 子峰峰位表[J]. 分析测试技术与仪器,2009, 15:1.
- [39] Zhang C F, Chen M, Qian D J, Electrochemically driven generation of manganese(IV, V)-oxo multiporphyrin arrays and their redox properties with manganese(III) species in langmuir-blodgett films [J]. Langmuir, 2008, 24: 13490.