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Stochastic resonance in a special type of asymmetric
nonlinear system driven by correlated noise
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Abstract; We have analyzed the phenomenon of stochastic resonance in an asymmetric bistable system
driven by multiplicative non-Gaussian noise and additive Gaussian noise. Using a path-integral approach,
together with the unified colored noise approximation and two-state model theory, we have obtained a
consistent Markovian approximation, which enables us to get the analytical expressions for the stationa-
ry probability distribution and the signal-to-noise ratio. Under the influence of non-Gaussian noise devia-
tion parameter, noise correlation time, asymmetric coefficient and mutual correlation strength, there are
stochastic resonance on signal-to-noise ratio as non-Gaussian noise intensity and Gaussian noise intensi-
ty. Besides, the influence of different parameters on signal-to-noise ratio is discussed respectively, inclu-
ding non-Gaussian noise deviation parameter, correlation times of the non-Gaussian noise, cross-correla-
tion strengths, amplitudes of periodic signal, and asymmetric coefficient.
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1 Introduction

The original work on stochastic resonance by
Benzi et al." in 1981, in which the term was
coined, was in the context of modeling the switc-
hing of the Earth’s climate between ice ages and
periods of relative warmth with a period of about
100 000 years. From 1983 to 1989, Pesquera et
al. ' analyzed this type of non-Markovian
processes in terms of a path integral formulation
is rare up to recent times. In 1989, Presilla ez

‘) came up with the famous adiabatic approxi-

al.
mation theory successively. From 1989 to 1991,
adiabatic perturbation theory was put forward by

Jung and Hanggi®*

, that provides a necessary
theoretical basis for the study of stochastic reso-
nance. At the present stage, the study of sto-
chastic resonance under complex system and com-
plex noises is helpful to feature extraction and de-
tecting weak signal of high-precision machinery at
low SNR situation'”®,

Up to now, there are many theoretical stud-
ies on resonance stochastic. Moreover, there are
many studies on symmetric bistable potential

1) But it turns out that asym-

function systems
metric systems can be used in many physical con-
texts/" for the past few years, just as the me-
chanical model of the harmonic oscillators™'?', the
external magnetic field the energy acquisition sys-
tem of a cantilever beam'*), the superconducting
quantum interference devices to detect weak sig-

LT ere, Besides, there are many researches

nals
on stochastic resonance in asymmetric systems.
Zhou et al. " studied stochastic resonance in an
asymmetric bistable system driven by trichoto-
mous noises, Jiao et al. ' studied stochastic reso-
nance of asymmetric bistable system with alpha
stable noise.

On the other hand, in almost cases, the noi-
ses are assumed to be Gaussian. However, some
experimental results in sensory systems, the
noise source in some systems could be non Gauss-

[18-19]

lan Therefore, some scholars have studied

the stochastic resonance of the non-gaussian

[2021] 221 yse an effective

case Fuentes er al.
Markovian approximation, path integral approach
method, to simplify non-Gaussian noise. Guo
et al. "' %) investigated symmetry bistable system
and FitzHugh - Nagumo neural system driven by
non-Gaussian noise. Shi et al.™™ investigated
stochastic resonance in a special kind of asymmet-
ric system.

The summary of contents and main results of
this paper are as follows. We study the stochastic
resonance phenomenon in an asymmetric nonlin-
ear system driven by the non-Gaussian noise. In
Section 2, using a path-integral approach, the u-
nified colored noise approximation and the two-
state model theory, we obtain the Fokker-Planck
equation of the asymmetric bistable system and
the analytical expressions for steady-state proba-
bility density function. In Section 3, the analyti-
cal expression of signal-to-noise ratio of asymmet-
ric bistable systems with weak periodic signals is
derived. And the influence of different parameters
on SNR is discussed, including non-Gaussian
noise deviation parameter, correlation times of the
non-Gaussian noise, cross-correlation strengths, am-
plitudes of periodic signal, asymmetric coefficient,
and both Gaussian and non-Gaussian noise inten-
sities. And the conclusions drawn are summarized

in Section 4.

2 PDF of a special type of asymmet-
ric bistable system

We consider a special type of asymmetric bi-
stable SR system driven by correlated additive and
multiplicative non-Gaussian noise and its Lange-

vin equation has been obtained as below:

dr_ _dULD | A coscn a0 &)

(L
where Acos(Qt) is a periodic signal, A and Q are
the amplitude and frequency of the periodic sig-
nal. U (x) is the asymmetric bistable potential
function based on Refs. [ 24-25], and it can be
written as below:

b 4

UGo) = —Gat +5a + e (2)
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in which, a and & are the potential parameters,
and r denotes the asymmetry of the potential.
When »=0, the potential function U(x) reduces
to that of a symmetric bistable system.

Fig. 1 shows the potential function as a func-
tion of x with different asymmetric parameters r.
It is observed that as r is increased, the depth of

the left potential well also gradually increases.

5

Fig. 1 The asymmetric bistable potential for
different parameters » when a=1 and
b=1

According to Eq. (2), we can obtain two

stable states xy , a2 and an unstable state x,, by

solving dU (x) /dx=0.
)

s 2b
V7 Fhab
T2 = o7
' 2b
Iun:O (3)

The multiplicative noise term 5(z) in system (1)

has a non-Gaussian distribution? 22237,
D —%%vqmy) L 1
in which,
__ D (¢g—Dy*
2 r(q*l)ln[lJr D 2 J
(p(1)) =0
2D 5
: Jﬂssq)"ﬁ( ©5)
(" () = -

By changing a single parameter ¢, we can control
the departure from the Gaussian behavior of the
noise 7(¢). t is the correlation time of non-Gauss-

ian noise. The noise terms ¢(z) and the addictive

noise term £(t¢) are Gaussian white noises with
the following statistical properties:

(e()) =<&)) =0

(e(e)) =2Ds(t—1")

(E(DEU)) =2Q6(t —1")

(D)) =(&e()y =22 VDQS(t —1")

(6)
where D and Q are the noise intensities of the
Gaussian noises e(¢) and £(¢), and the parameter
A€ (—1,1) is the cross-correlation strength be-
tween e(2) and &(2).

When |¢g—1| <1 (both for ¢>>1 and ¢<<1),
the non-Gaussian noise will only slightly depart
from the Gaussian behavior, but will show some
of the main trends of the g #1 region. Thus we

can obtain the limit of 5(z) being a Gaussian col-

ored noise:
1d (G Ol S I
rdVVq(v) r[1+ D 2] -
n gD &HHT 1
s = @
with effective noise correlation time
Teff :Zézﬂ;lf (8
The distribution of 5(¢) can be written as:
dp(oy _ 1 1
o Te”n(t) +Te[f€ € €))

where ¢’ (¢) is Gaussian white noise with

() =0

(D' (")) =2D st —1") (10)

D, represents effective noise intensity, given by
22— 77

Deff*[ 5—3¢ ] D an

We assume ¢ (1) and £(¢') satisfy the following
statistical properties:

("(De)) =& ()) =

24 VD Qo (t—1") (12)
Applying the UCNA theory"**) two-dimen-
sional Markovian processes (1) and (9), we can
obtain the following one-dimensional Markovian
approximation-*" ;

dr _ h(x) 4 1

dt  c(regx)  c(rega)
g () EWD)] (13

in which

[g1 (e’ () +
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h(a) =~ 4 coscan U = (o) = Dy| ST g,
dx g° ()
g1(x) =x (22)
g () =1 (14) When the external signal is included, the
Thus generalized potential function U (x) has the fol-
, N , a1/ (@) lowing expression (see Appendix B) :
c(rersa) =1 Z‘cff[h (x) — 2 (x )h( )} U =, () —
I { [ _d[(]j(l’) +Acos(Ql)]/ B DeHJ (U () *Acos(Qt)]c(f(ff,I)d
x g (1)

%[ —% +Acos(Qt)i| } =

Acos(Qt)]
X

1 +feﬂ[m+2bx2 + (15)

The stochastic process (13) can be written as
Stratonorich SDE
dr = h(x) + 1

& et ey 8T (16)
with
g(x) =Dz’ +24/DiQx +Q)” an

in which I'(¢#) is a Gaussian white noise. To sim-
plify (16), let
dx

dft' =h(x) +g(@) Q@) (18
e oy h(x) ooy g
with h(x) ) and g(x) )’ Then

the Fokker-Planck (FPK) equation corresponding
to Eq. (13)~(18) can be read as

% - —%A () P(x,0) +
%Bmpu,z) a9
with
A =h() +8(0 g ()
B(x) =g*(2) =

According to the FPK equation (19), the steady-
state probability density function P, (x) can be

obtained as follows:

P Nl A0
¥ el )

in which N is a normalization constant.

2D

When the external signal is not included, the
generalized potential function U (x) has the fol-

lowing expression:

(23)
3 SNR of the asymmetric bistable

system and the influence of model
parameters

Under the adiabatic approximation condition,
the corresponding inverse transition rate W, can
be denoted as

‘ U (Iun)U (Isl
W = 2

e
[U(lf‘sl ) 7U(lvun ) ]
Def[

‘U (run)U (IQ) ‘
2w

exp[f](xsz )DT“U(Iun ) ]

According to Eq. (24), the transition rate can be

7

exp

24

expanded by using Taylor series under small pa-
rameter conditions as

jW+ =w, —w, * Acos(Qt) +o(A?)

AW =wy —w, ~ * Acos(Qt) +o(A?)

The analytical expression for the signal-to-

25)

noise ratio (SNR) of the output signal can be ob-
tained by both solving the FPK equation (19) and

calculating the correlation function™® #1, which is
given by
A’n (wo *wi tw *w)?
SNR=—+ — . - —
4wo * Wy Wy +w0
(26)
where
o+ =W | Acoscan—o s ’wl+ =
B dw
d[Acos(Q) | awscan—o
w(T :W, ‘ACUS(QI)70 ’ w; -
B dwW_
d[Acos(Q) | awscan—o
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Fig. 2 The theoretical results of SNR are plotted

as a function of the noise intensity when ¢
varies: (a) characteristics of SNR versus
D at Q=3. 3; (b) characteristics of SNR
versus Q at D=3. 3

According to the expression of SNR, the in-
fluences of different parameters on the SR are dis-
cussed in Fig. 2~7.

Fig. 2 shows a curve of the SNR as a function
of the non-Gaussian noise intensity D and Gaussi-
an noise intensity Q, respectively, for different
parameters of the non-Gaussian noise deviation
parameter q. In Fig. 2 (a), the SNR curve also
produces a one-peak structure when noise intensi-
ty D is increased, which indicates that stochastic
The height of

the peak is increased and the location of the peak

resonance phenomenon appears.

is shifted to small value of D as deviation parame-
ter g is increased. In Fig. 2(b), with the increase
of Q, there are two peaks in the curves, and the
right peak is always larger than the left peak.
Firstly, from the figure, it is seen that there ap-
pears a weak peak in the SNR curve as Q is in-
creased. Then the SNR curve is decreased, which

is suppressed to a degree. As Q is continue in-

creased, there appears a pretty peak. It indicates
that stochastic resonance phenomenon appears a-
gain. The height of the left peak is decreased
while the right peak is increased, and the loca-
tions of both peaks are shifted to large value of Q
as deviation parameter ¢ is increased. It shows
that as we choose variable values of ¢, the opti-
mal value of noise intensity required is different

when stochastic resonance phenomenon appears.

0.15 02 025 03 035

251

04 05 06 07 08 05 1 11 12 13 14
Fig. 3 The theoretical results of SNR are plotted

as a function of the noise intensity

whenrvaries: (a) characteristics of SNR
versusD at Q=3. 3; (b) characteristics of
SNR versus Q at D=3. 3

Fig. 3 shows a curve of the SNR as a function
of the non-Gaussian noise intensity D and the
Gaussian noise intensity Q, respectively, for dif-
ferent correlation times of the non-Gaussian noise
7. In Fig. 3(a), the SNR curve produces a one-
peak structure when noise intensity D is in-
creased, which indicates that conventional sto-
chastic resonance phenomenon appears. The
peaks of curves increase as the correlation times

of the non-Gaussian noise r increases. However,

the position of the peak does not shift significant-
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ly for different z. In Fig. 3(b), with the increase
of Q, there are two peaks in the curves, and the
right peak is always larger than the left peak.
The height of the left peak is decreased while the
right peak is increased, and the location of both
peaks are shifted to small value of Q as correlation
times of the non-Gaussian noise r is increased. It
shows that as we choose variable values of ¢, the
optimal value of noise intensity required is differ-
ent when stochastic resonance phenomenon ap-

pears.

— /=19
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Fig. 4 The theoretical results of SNR are plotted
as a function of the noise intensity when A
varies: (a) characteristics of SNR versus
D at Q=3. 3; (b) characteristics of SNR
versus Q at D=3. 3

Fig. 4 shows a curve of the SNR as a function
of the non-Gaussian noise intensity D and the
Gaussian noise intensity Q, respectively, for dif-
ferent cross-correlation strength A. In Fig. 4(a),
the SNR curve produces a one-peak structure
when noise intensity D is increased., This is sto-
chastic resonance. The peaks of curves increase as
the cross-correlation strength A increases. How-

ever, the location of the peak is shifted to small

value of D as parameter 2 is increased. In Fig. 4
(b), there are two peaks in the curves with the
increase of Q. The right peak is always larger
than the left peak. The height of the left peak is
increased while the right peak is decreased, and
the locations of both peaks are shifted to small
value of Q as cross-correlation strength A is in-
creased. It shows that as we choose variable val-
ues of A, the optimal value of noise intensity re-
quired is different when stochastic resonance phe-
nomenon appears. And we can find that there are
different influences between Gaussian and non-

Gaussian noise under cross-correlation strength A.
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The theoretical results of SNR are plotted as a
function of the noise intensity when A varies: (a)
characteristics of SNR versus D at Q=3. 3; (b)
characteristics of SNR versus Q at D=3. 3

Fig. 5 shows a curve of the SNR as a function
of the non-Gaussian noise intensity D and the
Gaussian noise intensity Q, respectively, for dif-
ferent amplitudes A of periodic signal. In Fig. 5
(a), obviously, the SNR curve produces a one-
peak structure when noise intensity D is in-

creased, which indicates that conventional sto-
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chastic resonance phenomenon appears. The
height of the peak is increased as amplitudes A is
increased. And the position of the peak does not
shift significantly for different A which is reason-
able in physical science. In Fig. 5(b), there are
also two peaks in the curves with the increase of
Q and the peaks of curves increase as A increases.
Same as before, the position of the peak does not
shift significantly for different A. It shows the

system SNR is increased as amplitudes A is in-

creased.
r=0.3
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Fig. 6 The theoretical results of SNR are plotted
as a function of the noise intensity
whenrvaries: (a) characteristics of SNR
versus D at Q=3. 3; (b) characteristics of
SNR versus Q at D=3. 3

Fig. 6 shows a curve of the SNR as a function
of the non-Gaussian noise intensity D and the
Gaussian noise intensity Q, respectively, for dif-
ferent asymmetric coefficient ». In Fig. 6(a), the
SNR curve also produces an obvious one-peak
structure when noise intensity D is increased.
This is conventional stochastic resonance. The
peaks of curves increase as the asymmetric coeffi-

cient r increases. In Fig. 6(b), with the increase

of Q, there are two peaks in the curves, and the
right peak is always larger than the left peak.
The height of the left peak is decreased and the
location of the left peak is shifted to large value of
Q as asymmetric coefficient r is increased while
the height of the right peak is increased and the
location of the right peak is shifted to small value
of Q as r is increased, which is different from the

previous situation,
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Fig. 7 The theoretical results of SNR are plotted as a

function of the noise intensity D when Q varies

The SNR as a function of the non-Gaussian
noise intensity D for different Gaussian noise in-
tensities Q is described in Fig., 7. The SNR curve
also produces an obvious one-peak structure when
noise intensity D is increased. This is convention-
al stochastic resonance. The peaks of curves de-
crease as the Gaussian noise intensities Q increa-
ses. We can see that there is interaction between

Gaussian and non-Gaussian noise.
4 Conclusions

In this paper, we studied the problem of sto-
chastic resonance in an asymmetric nonlinear sys-
tem driven by periodic signal and correlated noises
for a multiplicative non-Gaussian noise and an ad-
ditive Gaussian white noise in the case. The influ-
ence of different parameters on SNR is discussed,
including non-Gaussian noise deviation parame-
ter, correlation times of the non-Gaussian noise,
cross-correlation strengths, amplitudes of period-
and both

Gaussian and non-Gaussian noise intensities.

ic signal, asymmetric coefficient,

From the simulation result, there is a differ-
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ent result when the SNR is a function of the non-
Gaussian noise intensity. Firstly, there appears a
single peak in the SNR curves as a function of the
non-Gaussian noise intensity while there are two
peaks in the SNR curves with the increase of Q.
Besides, as different parameters change, there are
variation tendency of SNR. Especially, non-
Gaussian noise deviation parameter ¢ has different
effect of the non-Gaussian noise on the location of
the SNR peak from that of the Gaussian noise,
and the cross-correlation strenth A has different

effect of the non-Gaussian noise on the height of
the SNR peak from that of the Gaussian noise.
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