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Groups of polynomial permutations over finite commutative rings
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Abstract: Frisch characterized the structure of the group of polynomial permutations over Z/p*Z in 1999.
Zhang found a correspondence between polynomial functions over Z/ p*Z and 3-tuples of polynomial func-
tions over Z/pZ in 2005. In this paper, we first prove that over any finite commutative ring R , the
group of polynomial permutations is isomorphic to the automorphism group of the R -algebra of the poly-
nomial functions. Then we give an easy proof to the characterization of Frisch using the correspondence
set proposed by Zhang.
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1 Introduction Z/p"Z,
G, : The subset of L,consisting of all its per-

Throughout this paper we fix the following nota- .
mutations.

tions; .
Given an R -algebra A ,

R: An arbitrary finite commutative ring with . .
Y g Endg (A): The endomorphism ring of A,
multiplicative identity,

Autg (A): Th t his fA.
R[X]: The ring of polynomials with coeffi- e ¢ automorphism group ©

For a finite commutative ring R , every poly-

nomial F € R[ X ]induces a function F fromR to R

cients in R ,

idg : The identity map of R .

. L as following:
For prime number p and positive integer n,

F:I —F ().

We can say the function F(x) or F(z) for short.

L,: The ring of the polynomial functions over
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Clearly, the function X induced by X means id ,
the identity function. We can also use x to repre-
sent the identity function. A polynomial is said to
be a permutation polynomial over R if it induces a
permutation over R , meanwhile, the permutation
is said to be a polynomial permutation. All poly-
nomial functions over R , in a well-known way.,
form a commutative R -algebra. Moreover, for
every F € R[X] , the induced function F =
F(idy) . So the ring formed by all polynomial
functions over Ris Rl idg ] = R[x]. We will stud-
y the endomorphisms and automorphisms of R[ x]
and obtain:

Theorem 1.1 The automorphism group
Autg (R[x]) of R[] (as an R -algebra) is iso-
morphic to the polynomial permutation group of
R.

Recently, Zhang uses the special case R = F,
of this theorem to obtain some interesting results
on permutation polynomials over finite fields.

Polynomial functions (especially permuta-

tions) over finite fields is a topic full of wonder

1) However equivalently ideal

and applications"
properties don't belong to the rings Z/p"Z for n >
1. Then in order to know as much as possible,
one may try to reduce the problem to the case
7/ pZ , in light of which a fundamental conclusion
was achieved:

Theorem 1.2!) LetF € Z[X].n >1. F(x)
is a permutation over Z/p"Z if and only if F(x)
permutes Z/pZ and F' () is zero-free, F' (X) be-
ing the formal derivative of F(X) .

All that is needed for its proof is a simple ap-
plication of Hensel's Lemma. Going back to the
notations, we find that G,in fact makes a group.,
because it's a submonoid of Z/p"Z 's permutation
group, which is finite, and basic group theory
tells us that it must be a subgroup. For instance,
whenn = 1, Z/p"Z is the finite field F,, over
which all functions are in L, , hence G, = S, .
What does G, look like when n = 2 Frisch'!” gave
an answer (as shown in the remark after Theorem
3. 3 of this paper) in 1999, after which an useful

connection between L, and L; was discovered.

Since every element of Z/p"Z can be repre-
sented as an 7 dimensional Witt vector, i.e., the
Witt polynomial W, naturally gives a one-to-one
correspondence between Z/p"Z and (Z/pZ)" .
Zhang'") accordingly built a mapping ¢ from L to
L,. To be more specific, for any (v,w,u) € L},
p(v,w,u) = F(x) € L,with

F(X) = pV(X) +W(X) -

(X =X +U (X>*,
where V,W,U are any elements in Z[ X | inducing
v,w,u respectively.

On the other hand, for any f € L,induced by
any polynomial F , there are v,w,u € L,such that
f = ¢(v,w,u) , where u happens to be the image
of  under the natural ring homomorphism from
L,to L,, namely F(x) over Z/pZ , and w the im-
age of F'(x) under the same ring homomorphism.
v,w,u being called the V,W and U part of f ,
Nobauer's theorem can be rewritten as:

f € Gy the U part of f € G, and the W
part of f vanishes nowhere.

Following the idea of Ref. [2], we will give a
new proof to Frisch's aforementioned theorem in

Ref. [1].

2 Some basic facts

Let's recall concepts of semi-direct products
and wreath products of groups. For any group G ,
by Aut (G) we mean the automorphism group of
G.

Let H and K be groups with a group homo-
morphism §: K — Aut(H) . We can define an ac-
tion of group K on H by*h = (k) (h) , whereh €
H,k € K. Then the set H X K together with the
following operation make a group:

V h, € Hyk, € K,i =1,2,

(hysky) o (hysky) = (hy " hy ko ko).

This group is called the semi-direct product
of H and K with respect to § , and denoted as

CO(H, K) , or C(H, K) when 0 is clear.
For any group H and set J , the set of all

functions from J to H together with the opera-

tion:
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Vfisfo:l >H.fi o f2(j) =
[1G) e fLGy).Yyel
form a group denoted by H’.
If there is another group K acting on J , then
in the natural way K has a group action on H’
which can be seen clearly from the following com-

mutative diagraph:

JL)J

N
H
where f € H andk € K. Then we can construct

a new group C(H",K): = C(HJ,K) named

the wreath product of H and K (with respect to J
and the group action of K on J ).
Now look back to L,.

tents of this paper, for anya € Z/p*Z , its image

In the following con-

of the natural ring homomorphism in Z/ pZ will be
written as [a],. A classical conclusion goes, as
can be seen in Ref. [4];
Lemma 2.1 For any function f over Z/p°Z ,
feL,syY tel/pl, 3
w: /) pl — 1) p* L, s.t.
YV € Z/p*Z.f(x+1tp) =
S +pw([2],).

In Z/ p*Z there are p elements 17,2°,...,p"
satisfying X” = X , known as the Teichimiier ele-
ments of Z/p*Z . The function ¢t:Z/pZ — 1./ p"Z,
t(x) = x*is called the Teichimiier lifting which "
lifts" any element a in Z/pZ to a Teichimiier ele-
ment a in Z/p*Z with [a], = a , and we set T, to
be the set of all Teichimiier elements of Z/p*Z.
For any f € L,, we call w « [+ ],the derivative of
f » where w is the function in the above lemma.
It's easy to see that this derivative coincides with
the familiar concepts whether we regard them as
functions or polynomials, in other words, w -
[+], = F (2) over Z/pZ . With the lemma, in or-
der to decide a polynomial function over Z/p*Z,
we just need to know the values of w < [+],, and
the values of f(x) at T,.

For a field £ of characteristic p , there exist a

series of Witt rings W, (k) , n = 1,2,+- . They

are defined by Witt polynomials in a suitable way
(see Ref. [10]). In particular, W,(F,) = Z/p*Z
because the Witt polynomial W, = X{ + pX,in-
duces a natural bijection from (Z/pZ)*to 1/ p*Z.
With Witt polynomials Zhang([2]) found that:

Vf e L,,3u.v:2Z/pl —

7/ pZ., s.t. the following map commutes:

7/ 0721 721’7

IT WZT
2/p7-N > (7197

With these two lemmas, Zhang showed:
Theorem 2. 3"

Lemma 2. 2

There exists a bijection ¢
between Liand L,.

To be more concrete, let

e(v,w,u) = pViz) +W(x) »

(X=X +U ()7,

whereU,V,W are polynomials with integer coeffi-
cients inducing u,v,w over Z/ pZ respectively, and
Ref. [2] says that ¢ is invertible. As pointed out
in the introduction, f = ¢(v,w,u) € L,is a per-
mutation if and only ifu € S,and w € L, . where
L, stands for all polynomial functions over Z/pZ
that don't equal to zero anywhere. So if we re-
strict @ within L; X L, x S,and denote the restric-
tion with the same symbol ¢ , Nébauer's theorem
tells us that ¢ makes a bijection from L, XL, X S,
to G».

3 Proof of the main results

Proof to Theorem 1.1 We first characterize
the endomorphisms of R[x] . An endomorphism
of R[x] means a map ¢ (from R[ x] to R[x] ) satis-
fying:
G(feg) = fo¢g(g) @b
where f,g € R[x].
Of course, ¢ is decided by ¢(idg) , and con-
cretely,
G = fe¢lidy) (2
Now we claim for any « € R[x] , there exist u-
nique endomorphism ¢ of R[x ] such that
glidg) = a 3
Clearly, (2) implies the uniqueness. On the other
hand, if we can definea” :R[ x| — R[x] by
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a" (f) = fea D
It is easy to check that ¢" is such an endomor-
phism ¢ satisfying (3). So (4) gives all endomor-
phisms of R[x]. Namely, we give a natural bi-
jection from R[ x| to End [ x|
aba” 5
Furthermore, we have
ae " =6 ca”
This property easily yields
ao B = idpSB o a’ = idy..
So
a is isomorphic&e " is isomorphic.
Now we get an anti-isomorphism from the poly-
nomial permutation group to the automorphism
group of R[ x] by(5). At last,define a. : R[ 2] —
R[x] by
a. (f) = feoal,
we get the group isomorphism we need.

For convenience in what follows we let H =
C (Z/pZl., 1/ pZ*) and ] = Z/pZ . Here H is a

group while J will just be treated as a set.

The discussion in the last section gives us ¢ ,
a bijective L, X L} X S, — Gy correspondence. We
want to know whether we can build a new group
whose underlying set is L; X L] X S,with smaller
groups. If yes, and if the group is also isomorphic
to G, , then we at least have represented G, s
structure in a simpler manner.

It's obvious that there is a canonical corre-

spondence between L, X L," and H', i.e. ,

(v.w)e || (vl@) . wla)).

a€Z/pL
Since S, can naturally give J a group action, we

can define an operation for L, X L X S,to make it
a group which is isomorphic to C (H'.S, ). the
canonical correspondence between the sets being
the isomorphism between the groups. Let's denote
this new group as N . Then we're able to com-
pute, for (v;,w;su;) € Nandi = 1,2 :

Lemma 3. 1

(o swy sy ) o (ogswysuy) =

(vp ouy + Cwy oup) o ves(wy © up) o wWystty © Uy).

With the correspondence, we just need to

compute the product of the counterpart of (v,

w; su;) and (v, ,w, »u,) 1n C (H’,S,), then
trace back the result of operation in L, X L} X S,.
Let's go back to Zhang's L} — L, correspon-
dence in Ref. [2].
If fiand f,are inG, . and the V,W and U parts
of f;are v;, w;and u, respectively for i = 1,2 ,
what's the three parts of f; o f,. Take any F,,
U,,V, and W,each of which induces f;, u;, v;and
w, respectively. It's easy to see that F; o F,induces
Sie e
On the other hand, since F;(x) = pV,;(x) +
W.(x) « (x —2*) +U; (2)?, we have
F (F, () = pV (Fy(2)) + W, (F,(x)) »
(Fy(x) —Fi(x)) +U, (Fy(x)?,
which means
Fi(F,(x)) =pVi (U, ()*) + W, (U, (2)?) »
(pVo(x) + Wy (x) » (x — ")) +
U, (U, ()" =
p(Vi (U, (x)) + W, (U, (x)) « V,(2)) +
W, WU, (x)) « Wy(x) » (x —x") +
U, (U,(x))".
Because V,(U,(x)) + W, (U,(x)) + V,(x2),
W, U, (x)) « W,(x) and U, (U, (x)) induce v, ° u,
+ (wy o uy) o vy (wy o uy) » wyover Z/p* 7 and u,
o u, respectively, according to Theorem 2.3
there is:
Lemma 3.2 TheV,W , andU part of f, - f,are
ooy + (w0 wy) e vy s (w0 uy) o wrand uy o us.
With such preparation we can give a new
proof to the following
Theorem 3. 3
G, = (JH.S)
Proof As we find in the last section, con-
sider Zhang's correspondence
o: N —> G,
(vsw,uw) HpV(e) +W(x) « (x —xf) +U (2)”.
As is constructed, (] (H',S,) = N, so we just

need to show that ¢ is an isomorphism from G, to N.
Since Zhang' s correspondence is bijective,
proving that ¢ is a group homomorphism suffices.
For any (v, ,w;,u;) and (v, ,w;,u,) in N
with (v, ywysu;) = f;5i=1,2, Lemma 3. 1 cal-
culatesg ' (f1) e @ '(f,) » which equals to ¢ ' (f;
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° f2) » as shown in Lemma 3. 1. Then ¢ 'is a ho-
momorphism, and so is ¢. The proof is end.

Remark In Frisch's origin work'’, she man-
aged to prove the theorem in a general case,
where R is isomorphic to the second Witt ring
W, (F,) of any finite field F,(here ¢ = p”for some
m € 7Z..).In this case she proved that

G, = (J(F, xF;.S).
where G; represents the group of polynomial per-
mutations over R and J is the underlying set of F,.

Literally we have only proven the case when
m=1.

Actually, the same method can be applied to
the proof in her case analogously, so it's safe to
say that we have proved Frisch’s group structure
theorem of G,in another way.

We limit our discussion to the R = Z/ p*Z just

for convenience.
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