Mar. 2016 Vol. 53 No. 2

doi: 103969/j. issn. 0490-6756. 2016. 03. 007

有限交换环上的多项式置换群

潘嘉堃,张起帆

(四川大学数学学院,成都 610064)

关键词: Witt 多项式; 置换多项式; 圈积; 半直积.

中图分类号: O156.2

文献标识码: A

文章编号: 0490-6756(2016)02-0275-05

Groups of polynomial permutations over finite commutative rings

PAN Jia-Kun, ZHANG Qi-Fan

(College of Mathematics, Sichuan University, Chengdu 610064, China)

Abstract: Frisch characterized the structure of the group of polynomial permutations over $\mathbb{Z}/p^2\mathbb{Z}$ in 1999. Zhang found a correspondence between polynomial functions over $\mathbb{Z}/p^2\mathbb{Z}$ and 3-tuples of polynomial functions over $\mathbb{Z}/p\mathbb{Z}$ in 2005. In this paper, we first prove that over any finite commutative ring R, the group of polynomial permutations is isomorphic to the automorphism group of the R-algebra of the polynomial functions. Then we give an easy proof to the characterization of Frisch using the correspondence set proposed by Zhang.

Key words: Witt polynomials; Polynomial Permutations; Wreath product; Semi-direct product. (2010 MSC 11T06)

1 Introduction

Throughout this paper we fix the following notations:

R: An arbitrary finite commutative ring with multiplicative identity,

R[X]: The ring of polynomials with coefficients in R ,

 id_R : The identity map of R.

For prime number p and positive integer n,

 L_n : The ring of the polynomial functions over

$\mathbf{Z}/p^{n}\mathbf{Z}$,

 G_n : The subset of L_n consisting of all its permutations.

Given an R -algebra A ,

 $\operatorname{End}_{\mathbb{R}}(A)$: The endomorphism ring of A,

 $Aut_R(A)$: The automorphism group of A.

For a finite commutative ring R , every polynomial $F \in R[X]$ induces a function \overline{F} from R to R as following:

 $\overline{F}: x \mapsto F(x)$.

We can say the function F(x) or $\overline{F}(x)$ for short.

收稿日期: 2015-4-30

基金项目: 国家自然科学基金(11171150)

作者简介:潘嘉堃,男,硕士,主要研究方向为数论. E-mail:jpan_math_scu@163.com

Clearly, the function \overline{X} induced by X means id_R , the identity function. We can also use x to represent the identity function. A polynomial is said to be a permutation polynomial over R if it induces a permutation over R, meanwhile, the permutation is said to be a polynomial permutation. All polynomial functions over R, in a well-known way, form a commutative R-algebra. Moreover, for every $F \in R[X]$, the induced function $\overline{F} = F(id_R)$. So the ring formed by all polynomial functions over R is $R[id_R] = R[x]$. We will study the endomorphisms and automorphisms of R[x] and obtain:

Theorem 1.1 The automorphism group $\operatorname{Aut}_R(R[x])$ of R[x] (as an R-algebra) is isomorphic to the polynomial permutation group of R.

Recently, Zhang uses the special case $R=F_q$ of this theorem to obtain some interesting results on permutation polynomials over finite fields.

Polynomial functions (especially permutations) over finite fields is a topic full of wonder and applications^[1-10]. However equivalently ideal properties don't belong to the rings $\mathbf{Z}/p^n\mathbf{Z}$ for n>1. Then in order to know as much as possible, one may try to reduce the problem to the case $\mathbf{Z}/p\mathbf{Z}$, in light of which a fundamental conclusion was achieved:

Theorem 1. 2^[6] Let $F \in \mathbf{Z}[X], n > 1$. F(x) is a permutation over $\mathbf{Z}/p^n\mathbf{Z}$ if and only if F(x) permutes $\mathbf{Z}/p\mathbf{Z}$ and F'(x) is zero-free, F'(X) being the formal derivative of F(X).

All that is needed for its proof is a simple application of Hensel's Lemma. Going back to the notations, we find that G_n in fact makes a group, because it's a submonoid of $\mathbf{Z}/p^n\mathbf{Z}$'s permutation group, which is finite, and basic group theory tells us that it must be a subgroup. For instance, when n=1, $\mathbf{Z}/p^n\mathbf{Z}$ is the finite field F_p , over which all functions are in L_1 , hence $G_1\cong S_p$. What does G_n look like when n=2 Frisch^[1] gave an answer (as shown in the remark after Theorem 3. 3 of this paper) in 1999, after which an useful connection between L_2 and L_1 was discovered.

Since every element of $\mathbf{Z}/p^n\mathbf{Z}$ can be represented as an n-dimensional Witt vector, i. e., the Witt polynomial W_n naturally gives a one-to-one correspondence between $\mathbf{Z}/p^n\mathbf{Z}$ and $(\mathbf{Z}/p\mathbf{Z})^n$, \mathbf{Z} hang^[2] accordingly built a mapping φ from L^3_1 to L_2 . To be more specific, for any $(v,w,u) \in L^3_1$, $\varphi(v,w,u) = F(x) \in L_2$ with

$$F(X) = pV(X) + W(X) \cdot (X - X^{p}) + U(X)^{p},$$

where V, W, U are any elements in $\mathbf{Z}[X]$ inducing v, w, u respectively.

On the other hand, for any $f \in L_2$ induced by any polynomial F, there are $v, w, u \in L_1$ such that $f = \varphi(v, w, u)$, where u happens to be the image of f under the natural ring homomorphism from L_2 to L_1 , namely F(x) over $\mathbf{Z}/p\mathbf{Z}$, and w the image of F'(x) under the same ring homomorphism. v, w, u being called the V, W and U part of f, Nöbauer's theorem can be rewritten as:

 $f \in G_2 \Leftrightarrow ext{the } U ext{ part of } f \in G_1$, and the W part of f vanishes nowhere.

Following the idea of Ref. [2], we will give a new proof to Frisch's aforementioned theorem in Ref. [1].

2 Some basic facts

Let's recall concepts of semi-direct products and wreath products of groups. For any group G, by Aut (G) we mean the automorphism group of G.

Let H and K be groups with a group homomorphism $\theta: K \to \operatorname{Aut}(H)$. We can define an action of group K on H by ${}^kh = \theta(k)(h)$, where $h \in H, k \in K$. Then the set $H \times K$ together with the following operation make a group:

$$\forall h_i \in H, k_i \in K, i = 1, 2,$$

 $(h_1, k_1) \circ (h_2, k_2) = (h_1 \cdot {}^{k_1} h_2, k_1 \cdot k_2).$

This group is called the semi-direct product of H and K with respect to θ , and denoted as $\bigcap_{\theta} (H, K)$, or $\bigcap_{\theta} (H, K)$ when θ is clear.

For any group H and set J , the set of all functions from J to H together with the operation:

$$\forall f_1, f_2: J \to H, f_1 \circ f_2(j) = f_1(j) \circ f_2(j), \forall j \in J$$

form a group denoted by H^{J} .

If there is another group K acting on J, then in the natural way K has a group action on H^J which can be seen clearly from the following commutative diagraph:

where $f \in H^J$ and $k \in K$. Then we can construct a new group $C(H^J,K)_{:} = C(H_J,K)$ named the wreath product of H and K (with respect to J and the group action of K on J).

Now look back to L_2 . In the following contents of this paper, for any $a \in \mathbf{Z}/p^2\mathbf{Z}$, its image of the natural ring homomorphism in $\mathbf{Z}/p\mathbf{Z}$ will be written as $[a]_p$. A classical conclusion goes, as can be seen in Ref. [4]:

Lemma 2.1 For any function f over $\mathbf{Z}/p^2\mathbf{Z}$, $f \in L_2 \Leftrightarrow \forall \ t \in \mathbf{Z}/p\mathbf{Z}, \exists$ $w: \mathbf{Z}/p\mathbf{Z} \to \mathbf{Z}/p^2\mathbf{Z}$, s. t. $\forall \ x \in \mathbf{Z}/p^2\mathbf{Z}, f(x+tp) = f(x) + tpw([x]_p)$.

In $\mathbb{Z}/p^2\mathbb{Z}$ there are p elements $1^p, 2^p, \ldots, p^p$ satisfying $X^p = X$, known as the Teichimüer elements of $\mathbb{Z}/p^2\mathbb{Z}$. The function $t:\mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p^2\mathbb{Z}$, $t(x) = x^p$ is called the Teichimüer lifting which " lifts" any element a in $\mathbb{Z}/p\mathbb{Z}$ to a Teichimüer element \tilde{a} in $\mathbb{Z}/p^2\mathbb{Z}$ with $[\tilde{a}]_p = a$, and we set T_2 to be the set of all Teichimüer elements of $\mathbb{Z}/p^2\mathbb{Z}$. For any $f \in L_2$, we call $w \circ [\bullet]_{\rho}$ the derivative of f , where w is the function in the above lemma. It's easy to see that this derivative coincides with the familiar concepts whether we regard them as functions or polynomials, in other words, w \circ $[\bullet]_p = F'(x)$ over $\mathbb{Z}/p\mathbb{Z}$. With the lemma, in order to decide a polynomial function over $\mathbb{Z}/p^2\mathbb{Z}$, we just need to know the values of $w \circ [\cdot]_p$, and the values of f(x) at T_2 .

For a field k of characteristic p, there exist a series of Witt rings $W_n(k)$, $n=1,2,\cdots$. They

are defined by Witt polynomials in a suitable way (see Ref. [10]). In particular, $W_2(F_p) = \mathbf{Z}/p^2\mathbf{Z}$ because the Witt polynomial $W_2 = X_1^p + pX_2$ induces a natural bijection from $(\mathbf{Z}/p\mathbf{Z})^2$ to $\mathbf{Z}/p^2\mathbf{Z}$. With Witt polynomials Zhang([2]) found that:

Lemma 2. 2 $\forall f \in L_2, \exists u, v: \mathbb{Z}/p\mathbb{Z} \rightarrow \mathbb{Z}/p\mathbb{Z}$, s. t. the following map commutes:

With these two lemmas, Zhang showed:

Theorem 2.3^[2] There exists a bijection φ between L_1^3 and L_2 .

To be more concrete, let $\varphi(v,w,u) = pV(x) + W(x) \cdot (X - X^p) + U(x)^p,$

where U,V,W are polynomials with integer coefficients inducing u,v,w over $\mathbb{Z}/p\mathbb{Z}$ respectively, and Ref. [2] says that φ is invertible. As pointed out in the introduction, $f=\varphi(v,w,u)\in L_2$ is a permutation if and only if $u\in S_p$ and $w\in L_1$, where L_1 stands for all polynomial functions over $\mathbb{Z}/p\mathbb{Z}$ that don't equal to zero anywhere. So if we restrict φ within $L_1\times L_1\times S_p$ and denote the restriction with the same symbol φ , Nöbauer's theorem tells us that φ makes a bijection from $L_1\times L_1\times S_p$ to G_2 .

3 Proof of the main results

Proof to Theorem 1.1 We first characterize the endomorphisms of R[x]. An endomorphism of R[x] means a map ψ (from R[x] to R[x]) satisfying:

$$\psi(f \circ g) = f \circ \psi(g) \tag{1}$$

where $f, g \in R[x]$.

Of course, ψ is decided by $\psi(id_R)$, and concretely,

$$\psi(f) = f \circ \psi(id_R) \tag{2}$$

Now we claim for any $\alpha \in R[x]$, there exist unique endomorphism ψ of R[x] such that

$$\psi(id_R) = \alpha \tag{3}$$

Clearly, (2) implies the uniqueness. On the other hand, if we can define $\alpha^*: R[x] \longrightarrow R[x]$ by

$$\alpha^* (f) = f \circ \alpha \tag{4}$$

It is easy to check that α^* is such an endomorphism ψ satisfying (3). So (4) gives all endomorphisms of R[x]. Namely, we give a natural bijection from R[x] to End R[x]

$$\alpha \mapsto \alpha^*$$
 (5)

Furthermore, we have

$$(\alpha \circ \beta)^* = \beta^* \circ \alpha^*.$$

This property easily yields

$$\alpha \circ \beta = id_R \Leftrightarrow \beta^* \circ \alpha^* = id_{R[x]}.$$

So

 α is isomorphic $\Leftrightarrow \alpha^*$ is isomorphic.

Now we get an anti-isomorphism from the polynomial permutation group to the automorphism group of R[x] by (5). At last, define $\alpha_*: R[x] \rightarrow R[x]$ by

$$\alpha_*(f) = f \circ \alpha^{-1},$$

we get the group isomorphism we need.

For convenience in what follows we let $H = C(\mathbf{Z}/p\mathbf{Z}, \mathbf{Z}/p\mathbf{Z}^{\times})$ and $J = \mathbf{Z}/p\mathbf{Z}$. Here H is a group while J will just be treated as a set.

The discussion in the last section gives us φ , a bijective $L_1 \times L_1' \times S_p - G_2$ correspondence. We want to know whether we can build a new group whose underlying set is $L_1 \times L_1' \times S_p$ with smaller groups. If yes, and if the group is also isomorphic to G_2 , then we at least have represented G_2 's structure in a simpler manner.

It's obvious that there is a canonical correspondence between $L_1 \times L_1{}'$ and H^J , i. e.,

$$(v,w) \longleftrightarrow \prod_{a \in \mathbb{Z}/p\mathbb{Z}} (v(a), w(a)).$$

Since S_p can naturally give J a group action, we can define an operation for $L_1 \times L_1' \times S_p$ to make it a group which is isomorphic to $C(H^J, S_p)$, the canonical correspondence between the sets being the isomorphism between the groups. Let's denote this new group as N. Then we're able to compute, for $(v_i, w_i, u_i) \in N$ and i = 1, 2:

Lemma 3.1

$$(v_1, w_1, u_1) \circ (v_2, w_2, u_2) = (v_1 \circ u_2 + (w_1 \circ u_2) \cdot v_2, (w_1 \circ u_2) \cdot w_2, u_1 \circ u_2).$$

 w_1, u_1) and (v_2, w_2, u_2) in $C(H^J, S_p)$, then trace back the result of operation in $L_1 \times L_1' \times S_p$.

Let's go back to Zhang's $L_1^3 - L_2$ correspondence in Ref. $\lceil 2 \rceil$.

If f_1 and f_2 are in G_2 , and the V, W and U parts of f_i are v_i , w_i and u_i respectively for i=1,2, what's the three parts of $f_1 \circ f_2$. Take any F_i , U_i , V_i and W_i each of which induces f_i , u_i , v_i and w_i respectively. It's easy to see that $F_1 \circ F_2$ induces $f_1 \circ f_2$.

On the other hand, since $F_i(x) = pV_i(x) + W_i(x) \cdot (x - x^p) + U_i(x)^p$, we have

$$egin{aligned} F_1(F_2(x)) &= p V_1(F_2(x)) + W_i(F_2(x)) \cdot \ &(F_2(x) - F_2^p(x)) + U_1(F_2(x))^p \,, \end{aligned}$$

which means

$$F_1(F_2(x)) = pV_1(U_2(x)^p) + W_1(U_2(x)^p) \cdot (pV_2(x) + W_2(x) \cdot (x - x^p)) + U_1(U_2(x)^p)^p = p(V_1(U_2(x)) + W_1(U_2(x)) \cdot V_2(x)) + W_1(U_2(x)) \cdot W_2(x) \cdot (x - x^p) + U_1(U_2(x))^p.$$

Because $V_1(U_2(x)) + W_1(U_2(x)) \cdot V_2(x)$, $W_1(U_2(x)) \cdot W_2(x)$ and $U_1(U_2(x))$ induce $v_1 \cdot u_2 + (w_1 \cdot u_2) \cdot v_2$, $(w_1 \cdot u_2) \cdot w_2$ over $\mathbf{Z}/p^2\mathbf{Z}$ and $u_1 \cdot u_2$ respectively, according to Theorem 2.3 there is:

Lemma 3.2 The V, W, and U part of $f_1 \circ f_2$ are $v_1 \circ u_2 + (w_1 \circ u_2) \cdot v_2$, $(w_1 \circ u_2) \cdot w_2$ and $u_1 \circ u_2$.

With such preparation we can give a new proof to the following

Theorem 3.3

$$G_2 \cong C(H^J, S_p)$$

Proof As we find in the last section, consider Zhang's correspondence

$$\varphi: N \to G_2$$

$$(v, w, u) \mapsto pV(x) + W(x) \cdot (x - x^p) + U(x)^p.$$

As is constructed, $C(H^{J}, S_{p}) \cong N$, so we just need to show that φ is an isomorphism from G_{2} to N.

Since Zhang's correspondence is bijective, proving that φ is a group homomorphism suffices.

For any (v_1,w_1,u_1) and (v_2,w_2,u_2) in N with $\varphi(v_i,w_1,u_i)=f_i$, i=1,2, Lemma 3. 1 calculates $\varphi^{-1}(f_1)\circ\varphi^{-1}(f_2)$, which equals to $\varphi^{-1}(f_1)$

 \circ f_2), as shown in Lemma 3.1. Then φ^{-1} is a homomorphism, and so is φ . The proof is end.

Remark In Frisch's origin work^[1], she managed to prove the theorem in a general case, where R is isomorphic to the second Witt ring $W_2(F_q)$ of any finite field F_q (here $q=p^m$ for some $m \in \mathbf{Z}_+$). In this case she proved that

$$G_2\cong C(F_q imes F_q^ imes,S_q),$$

where G_2 represents the group of polynomial permutations over R and J is the underlying set of F_q .

Literally we have only proven the case when m=1.

Actually, the same method can be applied to the proof in her case analogously, so it's safe to say that we have proved Frisch's group structure theorem of G_2 in another way.

We limit our discussion to the $R=\mathbf{Z}/p^2\mathbf{Z}$ just for convenience.

References:

- [1] Frisch S. Polynomial functions on finite commutative rings [M]. Lecture Notes in Pure and Appl Mathematics 205. New York: Dekker, 1999.
- [2] Zhang Q. Witt rings and permutation polynomials

- [J]. Algebra Colloquium 2005, 1: 161.
- [3] Frisch S, Krenn D. Sylow p-groups of polynomial permutations on the integers mod pⁿ [J]. J Number Theory 2013, 133: 4188.
- [4] Zhang Q. Polynomial functions and permutation polynomials over some finite commutative rings [J]. J Number Theory, 2004, 105: 192.
- [5] Lidl R, Niederreiter H. Finite fields [M]. Encyclopedia of Math and Appl, Vol 20. New York: Addision-Wesley, 1983.
- [6] Nöbauer W. Über Permutationspolynome und Permutationsfunktionen für Primizahlpotenzen [J]. Monatsh, 1965, 69(3): 230.
- [7] Qin X and Yan L. Notes on permutation polynomials over finite fields [J]. J Sichuan University: Nat Sci Ed (四川大学学报: 自然科学版), 2014, 51 (3): 436.
- [8] Jiang J. A note on permutation polynomials over Z/p¹Z[J]. J Sichuan University: Nat Sci Ed, 2003, 5: 311.
- [9] Mullen G, Wan D, Wang S. Value sets of polynomial maps over finite fields [J]. Quar J Math Oxford, 2013, 61(4): 1191.
- [10] Serre J. Local fields [M], GTM 67. New York/Berlin: Springer-Verlag, 1979.