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Bernstien properties of F-complete parabolic affine hyperspheres

HU Chuan-Feng , JI Xiu
(Yangtze University College of Arts and Science, Jingzhou 434000, China)

Abstract; Let x: M—R""" be a locally strongly convex hypersurface given by the graph of a locally
=f(xi, x50 Defining the F-

strongly convex function x,:, ,x,) defined in a convex domain D CR",

metric G = F(p) E 5 9_7]( dx;dx; on M, we derive the PDEs of the F-complete parabolic affine hypersph-
- JdIX;JdX;

eres and obtain some Bernstein properties.
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. n+2n+2
1 Introduction ¢ [n +17 2

], then M must be an elliptic pa-

It is interesting to study Bernstein properties raboloid.

In Ref. [1], Xiong and

of affine hyperspheres In this paper, we consider a relative normali-

Yang considered hyperbolic relative hyperspheres
with Li-normalization and classify the subclass
In Ref. [2], Xu

studied q-relative parabolic affine hyperspheres

which is Euclidean complete.

and obtained that if
M= { (1'1 s Lo 9ttt

s Lpt1) ‘1'7171 -

f(ll s Tzt sx,) s (X s xp 5005 ,) € DCR”}
is a a-relative parabolic affine hypersphere which

complete with respect to the Calabi metric and «
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E& B HAfEIE (1978—),

zation of M induced by U =F(p)U (see section 2),
where F(p) be a C*- function defined on M such
that F'(p) > 0 everywhere. We call F(p) an F-rel-
ative normalization of M. With F-relative normali-

zation, the corresponding metric of M is given by

G = ﬂwz

and is called F-relative metric. Here and later we

da;dx;

(71(1

use the following notations:
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Parabolic affine hypersphere with F-relative
normalization is called F-relative parabolic affine
hypersphere. We study F-relative parabolic affine
hypersphere and obtain the following

Theorem 1.1 Let ( M,G ) is an F-complete
parabolic affine hypersphere with F-Ricci curva-
ture bounded from below by a negative constant

—N. If gk and yare all constants and y > 0, where

:2n‘+15n+4Jr 4n Loy

n—1

n2*2n*4(£/£)27n2 +5n+14£/£
n—1 F n—1 F

F”, 8 F’pZ n +7n+12 Fp

TEFY LI F =1 F
(D
. — 4 fi/[/ngnz-Q—n*lOE/B 5n + 10
—-1F 2n—1) F 2(n —1)
(2)

then M must be an elliptic paraboloid.

For a —complete parabolic affine hypersphere
(the case F(p) =p“ in Theorem 1. 1), by calcula-
tion we have

Corollary 1.2 Let x:M—R""" is a ¢ -relative

parabolic affine hypersphere and is complete with

respect to the ¢ -metric. If o* < i, then
—4dn + 2
M must be an elliptic paraboloid.
2 Preliminaries
Assume that x,, = f(x;, x5, s x,) is a

smooth strictly convex function defined in a con-
vex domain D CR". f defines a locally strictly
convex hypersurface x: M — R""', given by a

graph representation

M={(aysxyssx,i) |0 =F(ay 5250
17;) 9(1‘1 s Lo 9" 91'7,) EDCR” }.
For every point t € M, let Y =(Y",+--,Y"") be a

transversal vector field along M such that dY &€
T.M, thenY is called a relative normalization of
M. Corresponding to the transversal field Y, there

exists a unique conormal vector field U. Particu-

larly, whenY = (0,0,++,1), the conormal fieldU
and the relative Riemannian metric G" on M are de-

fined respectively by
U:(—ﬂ af,l),

’
(711 (71

G’=E S dx.dx; ,

dx;dx;

here G is called Calabi metric. Denote
p=[det(f;)] 7=

Li first considered a relative normalization of M

induced by U* = p*U, where ¢ is a non-zero real

constant, It was then called an q-relative normali-

zation of M in Ref. [2],

tion in Refs. [ 3,4 ]. With Li-normalization, the

later called Li-normaliza-

corresponding metric of M is given by!*

G =o' > 2L 4y da, (3)
~ J

and is called Li-metric, or « -metric. The corre-
sponding geometry is called Li-geometry or o -rel-
ative geometry.

For partial derivation of the vector valued
function x, we use the notation from above, while
covariant derivation with respect to the Levi-Civi-
ta connection of the relative metric is denoted by

x.; etc. Following Ref. [2], assume that q: =

N

F(p) > 0. We consider the new conormal vector
field U = F(pU. Then there exists a unique

transversal vector field Y that satisfies the equa-
tions

, (U,Y) =1.
7f(Il s Lo s

position vector of the graph hypersurface, then

WU, Y) =0

Letx = (xy,290° <+, x,)) denote the

the relative normal satisfies

Y = Fps_p
F(p) 3 Fp !

We consider this relative normal Y on M and its as-

sociated relative metric
G = F(o > fyda.da;.
With this geometry the relative Weingarten form

B is given by

B 2(F) F
1/ = [ 77][01(0/ 7?(011 +
f” Ify
D R 4
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The Fubini-Pick tensor A is given by Mo =h I~7p 12 (9)
©
~ 1 ’ J Jd
Ap = =g LF g F gt L
* 3 Estimation of A®
’ (7
Ff, 2 +Ff, 5
I dx; Sl Proposition 3. 1 Let f(x) be a C” -strictly

The components of the Ricci tensor read

~ ~ ~ ~ ~
Rik - Z (Amll Am//e - Aim/e Amll) +

m,l

2 Z(, 6)

ik
Under the F-relative normalization,

~
Z A mll 2 (Il_/ gm

n+z1 P
e )

In local terms thc Laplacian A with respect to the

F-metric G reads

A=

(7 /det(Gy) %)

det(G ) o i
We define
LS pei el
@ [— f] J
FZ o P

In this paper, we will consider the pair

{Uv,iw’} and call it the F-relative normalization of
the graph hypersurface M. The eigenvalues 2A; .,
=, A, of the associated Weingarten operator or
relative shape operator are called the F-relative

principal curvatures, and
~ 1
= A‘
— >
is called the F-relative mean curvature. M is called

a, F-relative parabolic affine hypersphere if A, =2,

=-+.. =2, =0 everywhere on M. Let B =0 , we ob-
tain the following proposition for a F-relative par-
abolic affine hypersphere.

Proposition 2.1 Choose F(p)U as a relative
normalization of M, then a locally strongly convex
F-relative parabolic affine hypersphere satisfies
the following system of PDEs:

2(F)* — FF” W,
Qi — Tplp, + Efuf”‘kpu

V1<ij<n (8

In the following we will use the F-metric to

do the calculations. That is to say, the norms and
the Laplacian operator are defined with respect to

the F-metric. From (8), we have

convex function, and satisfy the PDEs (8). Then
we have

AQ 712\vq5|

. 2 +[71 P — IOEQ+
n

n—1) F

4 J+ 5n+1o

]<7,Vlogp> +

n—1F’ n—1)
[277 +15n +4 4n (419) B
n—1 n—l F’

n’ *277*4(5&)2 n” +5n +14£/[97

n—1 F’ — au-1 F
F”, 8 F , n +7n+12ﬂ9
2FP Ta—iFe T 1o
(10)
Proof Let p € M be any fixed point. We

choose a local orthonormal frame field of the F-

metric. Then

D)t
- e

.1

PRCIE
o

2yl ek g,
©

AP = 22 Pv:fzwi 49 E(fm) B
0

g P_%&+(6 L

where we used (9). For the case ®(p) = 0, it is

easy to get (at p)

2 Z (1‘:'/1')2.
0
Now we assume that @(p) # 0. Choose a lo-
cal orthonormal frame field of the the F-metric
such that (at p) o, = | Vo Il >0,p,=0,Vi>
1. Then

2

o
2

g e e g ap)g (D
14

AD = 22 P~j;02.jn 49 E(f’q:)‘ N
0

Applying Schwarz's inequality we get
227007 =207 +4D, (o) +
i=>1

2> (p.i)?
i>1

= 2(/),11 )2 + 42 (p.li)z +
i>1
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Ll( Ap_p,11) 271(,0.11)2 + o, = —2 Kn,&mlz;)h—?(l + ?p)m_
©
’ 3
P+ ) e
i>1
4h O, e (12) Thus
n—1 p D o ~ (o)
- o S Pps _ 5, 0
An application of the Ricci identity shows that P ;
2 03P i _ g (0~1[07~11'1 — 5: 5/ 2
>l p o 201 + o0 + 100 ® (16)
%(Ap).lp,l +2R11‘(%: (@) A 2<‘0.1;)2 B
© o Z o) o 2
e
(p.1)? / ‘
Lho 122 4 2R, @ +2(h o —h)@F (13) s Lo g
0
Note that
F' F % () F’
2 (@,,‘)2 _ 8(1 +?p +F{O)A1“ ‘03 +4(1 +F/‘O +
@ F' o, POIRY
SV o’ , Sk 4D (AD D an
gl g5y o) o g (g -
0 o By the same method as deriving (12),

Substituting (12), (13) into (11) yields

2 2
AD = 2n ((9.1?1) +42 ([9.121) +
n—1 3 -
© 0
2h*

(6 —4h +2hp +—==7

Y+

4(7171:12) (@(0 )? hos + 2R, ® =

n_12%+(674h+2h‘o+

2 2
2h” g 4= 2) L 1) ho.ai + 2R, @
n—1 n—1
From the above inequality and (14) we have
n | v |* 4(77*2)
2(n—1) () n—1
4n —2)4 (p.)°
n 0
2h*
n—1

AD = +[

par + (6 —4h +2h'0 +

s

Choosing a local orthonormal frame field of the F-

metric, Ff,; =8, =F ' f¥ and using (5),we have

~ F’ )
—2Aup.= f(é‘gfof + oupiprt

81’1(01‘(01) + fk[fijkpz-
From (8) and the above equality,we get

0. =05 TAjpa =
F’ F/

TR TR0 |7pl? —

111‘01

From the definition of @ and the above equality,

we have

we have

SA,LD?

E (Kz‘il)z > (lel)z +22(K,‘11)2 +

i1 i1

(O A —An)? =

= (An)? +2>) (Aa)? +
i>1

n—l

~

Am DV An +

i1l

2
n— (2 A”l)
Then,from (16)~(18) and (6)~(7), we have

2R, = %E (Zlml)z(p.l)z -
©

a8

¥ v ) Gt . Fp
2 A A 2 _I: S—1) (1 ja )+
2L (1+Ji+59>]<vq5,vlogp>+
n—1 F
[8+147L+3n n(7172)(4[9)27

2(n—1) 2(n—1)
4+"2& 2n (EB) _Q_MEQ
n—1F n— n—1 ja
n' —nt2Fp" n |vol’
n—1 o -1 Z )

(19

Inserting (19) into (15), we obtain (10). The

proof is complete.

4 Proof of Theorem 1.1

Let p, € M, denote by r = r(p,,p) the geo-
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desic distance function from p, to p with respect to

the F-metric G. For anya >0, let B,(p,) ={p€
MIr(pysp)<al.

L= =)o
defined on B, (p,)

Consider the function
. Obviously, L attains its maxi-
mum at some interior point p. We may assume
that#? is a C* function in a neighborhood of p, and
@ > 0 at p. Then, at p, we have

0=L,=*—r)®, —4ra* —rHr & (20)
and

0=AL=(a" —r")*AP—8r(a’ —r) <

V. O —4Pr(a’ —r) Art+
P vr et —40 (@@ =) | vrlc

2D
Insert (20) into (21) one gets
AD 24r* 4 drAr
a8 b AT (99
o (a* =) a* —r"  at — 1 (22)
here we used the fact that || vr | g =1. Writing
2n® +15n+4 1 ’
= & =
n’> —2n */l({ﬂ)z ~n®+5n Jrl/l[ﬂ
n—1 F n—1 F
) ‘0211;‘///7 8 sz”Jrnz Jr7n+12(0;//’
F n—1 F n—I1 F
_on+10 4 L+n ‘Lt — IOpF
2(n—1) n—1F’ 2n—1) F°
Applying Schwarz's inequality we have
A G N0 gy — T (93)
a® —r 0 0(a® —7r*)
Combining (10) with (22) and using (23)
we have
16n r
—0) < (24 — )
Dy — ) < ( 1+ )(a — +
4 4rAr
A =+ A 24
aZ . rZ aZ . rZ ( )

Recall that (M,G) is a complete Riemannian man-
ifold with Ricci curvature bounded by a negative
constant — N, then the Laplacian comparison the-

orem implies that

rAr < (n—1D (1 +/Nr) (25)
Combining (24) with (25), we have
16n rt
_ < KN
Dy — ) < (24 — 1+ )( —r2)2+
4n 4(n —l)r\ﬁ
a® —r* a® —rt )

Since y is a positive constant, we may choose a
sufficiently small number § > 0 such that y —0 >
0. Therefore (at p) we have

r r
" at — )2 at — 7
d 1 (26)

a” —r°

D <d

(26) holds everywhere on B,(p,). Leta — < we
get @ = 0 on M. By the well-known theorem of
Calabi™'™, we conclude that M is an elliptic parab-

oloid. This completes the proof.
5 Proof of Corollary

Leta = v(py, p). We will separate the dis-
cussion into two cases:
Case 1, p, = p. we havea = 0.
Case 2, p,
B.(p) ={p € M| r(p,.p) <al.

Proposition 3.1 and the maximum principle gield

# p. thena > 0. Let

maxp () P=maxyp_,)PD.
Note that a® —r* = a* —a’ ondB; (p,) , it follows
that

maxp_,, P=P(p).

Consider p € B;(p,). We choose an affine
coordinate neighborhood {U,¢} with p € U such
that R; (p) =0, for i#j and G; (p(p)) =§;,1<
i,j<n in U. From (6)~(7) we have

Ri = D (A" =D A, A =
SN AL D A A =

SV A0 -V A +2<L DO =~

[O
P /
_(n+2) (L D,
16

If F = p*, we have

o 2

Ri=—"2 —1yag,

16

i. e. a -Ricci curvature is bounded from below by a
negative constant — N. From (1) and (2),
we have

4+ 8n—4 n—dn+2,
X n—1 n—1 ¢

S5n + 2 n+n—2
2i—1  2n—1D ¢

This completes the proof of Corollaryl. 2.

K =
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