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1 Introduction

Leta,b be two integers with b > a. Let us
employ [a,b], to denote the integer set {a.a +
1,...,b6}. For any real number ¢, [c] is the inte-
ger part of ¢. In this paper, we consider the exist-
ence of positive solutions of the discrete third-or-
der three-point BVP

jAsu(zfl) =f(tyult)), te[1, T—2],

1 2u(0) =u(T) = X ulyp =0 (D
where T>>4 is an integer, f € ([1, T —27], X[0, =),

[0,2)) is continuous and 7 satisfies the condition:
(Hy) 7}6[%,’1‘*2]2, if T is an odd num-

T—2 . .
ber, or 7/6[72 ,T—2],, if T is an even num-
ber.
Difference equations appear in many mathe-
matical models in diverse fields,such as economy,

(N7 In recent years,

biology, physics and finance
the existence of positive solutions of third-order
boundary value problems has been discussed by
several authors. For example, In Refs. [2, 8§~
15], by using different methods such as the Kras-
nosel’skiis fixed point theorem in cone, the itera-
tive technique, and the fixed point theory, the
authors obtained the existence of positive solu-
tions of the boundary value problems for third-or-
der differential equations. For the discrete case,
there are also several excellent results on the ex-
istence of positive solutions of the discrete third-
order boundary value problems, see, for in-
stance, Refs. [3, 6~12, 16] and the references
therein. For instance, by using the Guo-Kras-
nosel’ skiis fixed point theorem, Agarwal and
Henderson'” considered the existence of positive
solutions of the discrete third order boundary val-
ue problems
JNu(t*l) =xa(®) f(tyult)),
tel2,T+2],, (2)
lu(O) =u(l) =u(T+3) =0

Later, by using the same theorem, Kong et al"’
considered the existence of positive solutions of

the more general boundary value problems for

third-order functional difference equations.

However, in order to obtain the positive so-
lutions, the Green's functions they used are posi-
tive in all of the above papers. Now the question
is how can we get the existence of positive solu-
tions for the discrete problems when the Green's
function changes it’s sign. In 2015, by using the
Guo-Krasnoselskii’s fixed point theorem, Wang
and Gao™™ first discussed the existence of positive
solutions of the following third-order difference e-
quation boundary value problems
jASu(tfl) =a(t) fyu(t)), t€[1,T—1];,
Lu(0) = Au(T) = N ulyp =0
in which the Green’s function G(z,s) for (3) is
sign-changing. This leads many difficulties, such
as the positivity of the summation operator, the
construction of the cone, the concavity of the so-
lutions, and other computation difficulties in dis-
cussing the existence of positive solutions of (3).

Motivated by the above-mentioned results,
we consider the existence of multiple positive so-
lutions of (1). It will be shown that the Green's
function for (1) is also sign-changing. To over-
come the difficulties which are led by the sign-
changing Green’s function, a new cone is defined
and the positivity and concavity of the solutions of
the corresponding linear problems are discussed,
see Section 2. The main tool is the Leggett-Wil-
liams fixed point theorem!',

Now, let us state some fundamental concepts
and the Leggett-Williams fixed point theorem '™,

Let E be a real Banach space with cone P. A
mapo: P — (— o, 4+ o) is said to be a concave
functional if

cQQx + (1 —y) =2 (x) + (1 —De(y)
forallz,y € Pandx € [0,1].

Leta and b be two number with 0 <a << b and
o be a nonnegative continuous concave functional
on P. We define the following convex sets

P,={x€P: |zl <a},

P(ssa,b) ={x€P.:a<o(x), x| <aj.
Our main tool is the following well-known ILeg-
gett-Williams fixed point theorem.

Theorem 1.1 Let A: P, — P, be completely
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continuous and ¢ be a nonnegative continuous con-
cave functional on P such thate(x) < | x || for all
x € P,. Suppose that there exist 0 <d <a <b <
¢ such that

(i) {x € PGsa,b):0(x) > a} # < and
o(Ax) > aforx € P(s,a,b);

() [[Ax | <dfor x| <d;

(iii) ¢(Ax) > a for x € P(s,a.b) with
| Az Il > b.

Then A has at least three fixed points x, , 2, , 23 in

P. satisfying

Iz I <dsa <olxy)s las | >dsola;) <a.

The rest of this paper is arranged as follows:
In section 2, we will show the expression and
some properties of the Green’s function of (1).
Specially, we show that the Green’s function
changes its sign. Moreover, we give some other
preliminaries. In Section 3, we demonstrate our

main result and prove it.

2 Preliminaries

At first, let us consider the following
linear problem
JASM(L—I) =y(t) te[l1, T—2],
1 Au(0) =u(T) = N ulyp) =0
Define the Green’s function G(z,s) as follows.
If (z,5) €[2,T], ><[77+1,T*2:|Z, then
G(t,s) =
(T —)(T—=5—1)

4

’O <t72 <S<T*2,

2
(t—T)(t+2T—1—25)”7<S<t72<T72
(5)
If (f,S) GEZ,T]Z X[ly‘/]]z, then
G(t,s) =
t—t2 — s — s+ 25T
{ 5 0 <12 <s<n.
S(T—, 1 <s<t—2<T-2 (6)

Meanwhile,
G(Oa.\‘) = G(la\) =
J(TS)(TSD

5 7]<S<T*2,

1”2“1 <s<y %

If = T — 2, then the Green’s function G(z,

s) is defined only by (6) and (7).
Lemma 2.1 The problem (4) has a unique so-
lution
)
u(@) = DG, y(s) (&)
s=1
where G(t,s) is defined by (5)~ (7).
Proof

both sides of the equation in (4), we get

Summing from s =1 to s =¢— 1 at

—1
Nu(t —1) = Nu(0) + D) y(s).
s=1
Repeating the above process, we obtain
AuCt — 1) = (¢ — 1) Nu(0) +
—2
E(t —s5s— Dy(s).
=1

Summing from s=1 to s =t at both sides of above

equation, we have

w(t) = u(0) +%

G =G —5s—1) ,
; 5 y(s).

Nu(0) +

By using the boundary condition Au(0) = u(T) =
Nu(yp) =0, we get that

7
Nu(0) + Ey(s) =0,
s=1

7 _
u(0) = Z wy(s) —

=1 2
< (T =T —s—1
Z 5 y(s).
=1
Therefore,
T] - — —
w(t) = Z (T 1)2 t(t l)y(b_) N
s=1
T2
E (T—s)(’g—s—l)y(s) 4
s=1
2 (Z*s)(z‘Z*S*l)y(S) (9)

=1
This implies that (8) holds.
Now, we can give some properties of G(z,s).
If (e,5)€[2,T], ><[7]+1,T*2]Z, then
AG(t,s) =
0,1 <t—2<s<T—2,
{Z*s,l <s<t—2<T—2;
If (z,5) €[2.T], X[l,y}]z, then
—t =<t —2<s<T—2,
—s, 1 <s<r—2<T—2.
Thus, if1 <s <7 then AG (z,5) <0 fort€[0,T

AG(Z,S) :{



38 Wl K FROERAFF IR

%54 %

—1]z, and G(z.s) = 0fort€[0,T],. Iy <s <
T — 2, then AG(¢,5) =0 for t €[0,T—1],, and
G(tys) < 0 for t € [0, T],. Therefore G(z,s)
changges its sign. If s > 7, then

max,ei()_,”:(}([,.s‘) =G(T,s) =0

and
min G([ﬁ.\‘) = (}<O9\) =
tel0,T],
*(T*s)(ZTfs*l) >*(T*77)(2T77771).

Ifs < 7 then
minleyo,ﬂZG(I,s) =G(T,.,s) =0

and
2 ]
max G(z,s5) = G(0,s) = s —s 25T <
te[0.T], 2
/L
5 .
Remark 1 1f y = T — 2, then we find that

G(tys) = 0 and G(¢,s) # 0. This case has been
discussed by several authors, see, for instance,
Refs.[3~11]. So, in the rest of this paper we
could suppose that y < T — 2.

Remark 2 Before we consider the existence

of positive solutions of (4), we may discuss the

existence of positive solution of a more
special problem
JASLL([*I) =1:€[1,T—2],,
(10)

1 Au(0) =u(T) = N ulyp) =0
We will see that (H,) is a necessary and sufficient
condition for the existence of positive solutions to
(10). To some extend, this explains why we
choose such y which satisfies (H,).

From Lemma 2.1, we know that (10) has a

solution u(t) as follows,

u(t) =

For the sake of convenience, let
o) =1° =31+’ +Bp+20t =T +
3L +pT — By +2T.
Obviously, u(1) = 05¢(1) = 0. By direct compu-
tation, we get

Ag(t) = t(3t —3 — 69,

Ap(t) =0
fort > 1 +2ypand Ap(r) <O0for0 <z <1+ 2.
Furthermore, if 1 4+ 27is an integer, then Ap(1 +
2y = 0.

Now we prove that (H,) is a necessary and
sufficient condition of ¢(¢) =0,1€[0,T],. In
fact, if () = 0, then ¢(T) = 0, which implies
that (T —1) =0. Ifgp(T—l) >0, then Ae(T —

1) < 0. This implies that > *—-2. T o(T — 1)

= 0, then (T —2) > 0. Otherwise, ¢(¢) =0,z €
[0,T],. This contradicts to ¢(z) # 0. Therefore,
AT —2) <0and Ap(T —1) = 0. These two e-
quations imply that T is an even number and y =
T—2

5

Conversely , if p = %, then T —1 <1+

£ =30+t + Bp+2)t =T +300 +pT° — Gp+DT

6

Zyand Ap(T —1) < 0. This combines the condi-

tion ¢(T) = 0 implies that ¢(z) =0, €[0,T],.
Let E = {u:[0,T], >R | Au(0) = u(T) =

Nu(yp) =0}. Then Eis a Banach space under the

norm | u | = max.ro.t7 |u(t)|. Now we define a
cone P C E as follows:

P:{ yGE:y(Z)EO,ZGEO,T]Z,Ay(Z)<O9
te[0, T—171,}.
Lemma 2.2 Assume that (H,) holds. If y

€ P, then the unique solution u(¢) of (4) belongs

to P, where u(t) is defined as (8). Moreover,
u(1) is concave on [0,9+2]7.
Proof First, if 0 <t —2 < 7 then

t—2

w(®) = D)s(T —Dy(s) +

s=1

t—t* —s" — s+ 25T
y

>
(s) —
s=1—1 2
(T —(T—5—1)
S ; S NOR

7l
pult) —— Sy + (1 =Dyt —1) —

s=1
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! +2—1 ot 2—1
Ety(s) <0 (11D u(t) 2‘777]Tu(0) 71777?‘“!”
and This implies
7 d minu(t) —u(@) =120, =
Nu(t —D :—Zy(s) <0 2> reLT-2-0.0], = gt
Second. if n <t —2 < T — 2, then 0" lull.
7 . T+1_T-2 T _T-2
W(t) — Zs(T—t)y(s) n Since 5 > 5 for odd T and 5 >72 for

s=1
—2

Z(Z*T)(tJrT*l*Zs) N
5 y(s)

)

T2

E (T*s)(T*.s‘*l)y(s).

2

s=1—1
Since y satisfies (H,), we obtain that

t—2

Ault) == Dlsy(s) + D) (1 =)y +

s=1 s=qtl

V=D =y LB <0 Ay
and
Nutt—1D = STy + 36—+
y(t —2) 2(?.VH

By (11) and (12), we get that Au(z) < 0 for all ¢
€[0,T —1],. Combining this with the boundary
condition u(T) = 0, we get u(t) =0 for t €[0,

T1,, which implies u € P Moreover, by (12)
and the condition A'u(y) =0, we get that A'u(zr —
1) <0 for t€[1,77+1]2. Therefore, u(¢) is con-
cave on [0,9+2];.

Lemma 2.3 Suppose that (H;) holds. If y

€ P, then the unique solution u(#), defined as
(8), satisfies the following inequality:

min  Lu(t) =0 llul a4
t€ [ T—2—0.6]

where @6[%,77+1]Z, for odd T and 06[%,77+
1], for even T. Moreever, §° = M
7 +2
Proof By Lemma 2. 2, u(¢) is concave on
[0,77+2]Z. Then

u(t) —u(0) >u(1]+2) —u(0)
t nt2

7t€[0777+1]z
15
From Lemma 2. 2, we get that u(¢) is non-in-

creasing for t € [0, T],, which implies that «(0)

= Jlu |l. Combining this with (15), we obtain

even T, we get@ > T —2 —(@and the set [T —2—
0.0]. is well-defined.

3  Main results

In the reminder of this paper, we assume
that f:[1,T—27], X[0,)—[0, ) is continu-
ous and satisfies the following conditions:

(D) For eachx € [0, + =), the mapping ¢
— f(t,x) is decreasing;

(D,) For each t€[1,T—2],, the mapping x
— f(t,x) is increasing.

Let

P={u € P| mnuz) =0 u}.
te[T—2—0.0],
Then it is easy to check that P is a cone in E.

Now, we define an operator A on P by

T2
(A (D) = DG s) f(sauls)) e € [0,T],.
=
Form Lemma 2. 2 to Lemma 2. 3, we know that
Au:P — P. Meanwhile, since E is finite dimen-
sional, Au:P — P is completely conutinuous. Ob-
viously, if u is an fixed point of A in P, then u is a
nonnegative solution of (1).

For convenience, we denote

b

/AN R
H, — Z 7 271+271T
s=1

4
H, = min 2 G(t,s).

elT=2=0:007, 15 ¢

Theorem 3.1 Assume that there exist num-

a

bers d, a and ¢ with0 <<d <<a << —— < ¢ such that

X d
f(t,u)<ITI,t6[l,7]]:,146[0,51] (16)

a _o _ a
f(t,u)>H2,te[T 2 0,@]:,ue[a,€x]
an

f(z,u><i,re[1,n]l,ue[o,c~] (18)
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Then (1) has at least three positive solutions u,v
and w satisfying

lul <dsa < minv(t) ,
(€l T—2-0.0),

lw [ >d,minw(t) <a.
t€ [T—2-0.4],

Proof Foru € P, we define

o(uw) = minu(z) .
€[T—2—0.0],

It is easy to check that s is a nonnegative continu-
ous concave functional on P withe(u) << | u || for
u € P,

We first asssert that if there exists a positive

number r such that

ft,w <P%for té[l,rﬂz and u € [0,r],
1

then A.P,—P.,. Indeed, if « € P,, then
T—2

| ZG(z,.of'(s,u(s)) | <

[ Au | = max
te [O.T’,

max | EG(t,s)}‘(s,u(s)) | +

telo,T],
T—2

max | D) G, f(s,uls) | <

rel0,T], )

o o Ui
SIS ) +
=1

(T — (T —
2

Since 7 satisfies (H,) ., we get that
= (T —p(T —5—1D. Then

o 1) T2
] Ef(s,u(s)).

s=qt1

—772 —77+21]T

. T2
| Au | = =T 223 futs) =
=1

Tj 7 ?z+2,zT ro_

1

Therefore Au € P,. Hence, if (16) and (18) hold,

then A maps P, into P, and P, into P,. Next, we

assert that {u € P(a,a,e )iolu) > a} # & and

o(Au) >aforallu € P(a,a,a%). In fact,the con-

a
a+T

stant function belongs to {u € P(s.a,

Ly o(w) >a).

0
On the one hand, foru € P(a,a,a%) , we have
a <o(w) = minu(t) <u@t) < |ull <2
e [T—2-0.0], g

~

19)

forallt€[T—2—-0,0].. Also, for anyu € P and ¢
GET*Z*Q,(QJM we have

T—0-1

EG(I,S)]‘(MM(&)) + EG(I,s)f(s,u(s)) +
T—2 o
ZG(t,s)f(s,u(s)) =
s=atl
T—0-1
DUs(T =) flssuls)) —
s=1
T2

L2 DG =

s=qtl

! T—6—-1

FCpuGp [ D) s(T — 1) —
s=1

N (T=9(T—s =D _

Z 2 ] =

s=0+1
(T-0OT—=0—-—DT—=0+D

SGpulp) 3 =0,

which together with (17) and (19) implies

T2

Z(I(t,s)f(s,u(s))

o(Au) = min
te [ T—2— 96']

min 2 G(ty) f(souls)) =

e[ T=2-0.0] =5 4

min 2 G(t,s) = a

HZ e (T—2-0.0], 575,
foru € P(a,a,eix).
Finally, we verify that if u € P(s,a,c) and

Au > 0%’ then ¢(Au) > a. To see this, we sup-

% Then it

follows from A(u) € P that
o(Au) = min(Au) (1) =

16T200

0" I Au |l > a.

To sum up, all the hypotheses of the Leg-
gett-Willianma fixed point theorem are satisfied.
Therefore, A has at least three fixed points, that
is, (1) has at least three positive solutions u,v
and w satisfying

lull <d,a<< minv(t) ,

(€[T—2—-0,0]_

lw | >d, minw(z) <a.
IEET*Z*U.OJ:
Theorem 3.2 Let m be an arbitrary positive in-

teger. Assume that there exist numbers d; (1 <<i<<m)
and a,(1<j <m —1) with 0<d, <a, <(;‘—1 <d, <a,

<d, 1 <@, <a5, !

<5L <... <d,, such that
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f(t,u)<I_dTi,tE[l,rilque[o,d,],lgiém
1

(20)
Fltvw) >;‘le 2 E€[T—2-0.6].,
ue[a],;—z;],lg@fl 2D

Then (1) has at least 2m —1 positive solutions in ﬁ

Proof We use induction on m.

First, form = 1, we know from (20) that A;
T%»Pdl . Then it follows from Schauder fixed point
theorem that (1) has at least one positive solution
in Pidl

Next, we assume that this conclusion holds for
m = k. To show that this conclusion also holds for m

=k +1 ,we suppose that there exist numbers d; (1 <<

i<k-+1 and a; (1<j<k) with 0<d, <a, <(;‘—1 <d,
as

<a2<0% .

. <d, <a, <0a4 <d,+, such that

Fw <2 e[l uelo0.d,],
1

I1<i<k+1 (22)

a; _o_
f(t,u)>H—2,t€[T 2—0.0]..

ué[aj,;%],l<j<k (23)

By assumption, (1) has at least 2k — 1 positive so-
lutions u; (i =1,2,...,2k —1) in Pidl At the
same time, it follows from Theorem 3. 1, (22)
and (23) that (1) has at least three positive solu-
tions u,v and w in Pidk such that

H u H <dk ,ak< minv(l‘) ’
(€[ T—2—0.0],

|l w | >d,, minw(t) <a,.
t€[T—2-0.0],

Obviously, v and w are different from u, (i =1,
24...:2k—1). Therefore,(1.1) has at least 2k +
1 positive solutions in TH, which shows that
this conclusion also holds form = & + 1.
Example 3.3 We consider the BVP
JAgu(t — 1) = ftut)), t € [1,4],,

(24)
1Au(0) = w(6) = Xu(d) =0

Model, 1998, 27 49.

where
1 2
m(‘i HCu +1),(tyuw) 6[1?4:|z><[0’1]’
403~ + 7w € [1.47, x[1.2],
‘ 800 100 :
fult)) = )
m(ll - (u+1D?%*, (tyuw) € [1,4], X[2,10],
121
m(ll t)?(tau) S [154]7 X [109 ).
|
Letd = 4. Then §° = % A simple calculation

shows that H;, = 32.5 and H, = 18. If we choose
d =1,a =2,c = 1068, then all the conditions of
Theorem 3. 1 are satisfied. Therefore, it follows
Theorem 3.1 that (24) has at least three positive

solutions. So we omit them.
References:

[1] Agrwal R P,Wong P J Y,Advanced topics in differ-
ence equations [ J ]. New York: Kluwer Academic
Publishers, 1997.

[2]  Anderson D. Multiple positive solutions for a three-

point boundary value problem [ J]. Math Comput

[3]  Anderson D. Discrete third-order three-point right-
focal boundary value problem [J]. Comput Math
Appl, 2003, 45. 861.

[4] Chen K H. Global behavior of a rational difference
equation [ J]. J Sichuan Univ: Nat Sci Ed (P4 JI] K
g BB RD . 2016, 53 1190.

[5] Luo Y Y, Zhang Q. Global behavior of solutions of
a class of rational difference equations[J]. J Sichuan
Univ: Nat Sci Ed(PUJI] K2=2= 4. B KB 0
2012, 49. 1214.

[6] Jun]J,Yang B. Positive solutions of discrete third-or-
der three-point right focal boundary value problems
[J].] Differ Equ Appl, 2009, 15; 185.

[7] Agrwal R P, Henderson J. Positive solutions and



42

Wl K FROERAFF IR

50 %

(8]

[9]

(10]

[11]

[12]

nonlinear eigenvalue problems for third-order differ-

ence equations [ J ]. Comput Math Appl, 1998,
36 347.

Palamides A P, Smyrlis G. Positive solutions to a
singular third-order three-point BVP with an indefi-
nitely signed Green’s function [J]. Nonlinear Anal,
2008, 68: 2104.

Geng T M, Gao C H, Wang Y X. Positive solutions
of three-point eigenvalue problem for nonlinear
third-order difference equation [ J]. J Sichuan Univ;
Nat Sci Ed (P JI] K5 27 4le . H A B i) . 2016,
53. 1215.

Chu J.Zhou Z. Positive solutions for singular non-
linear third-order periodic boundary value problems
[J]. Nonlinear Anal, 2006, 64; 1528.

Du Z,Ge W, Lin X. Existence of solutions for a
class of third-order nonlinear boundary value prob-

lems [J]. ] Math Anal Appl, 2004, 294 104.

Gao C. On the linear and nonlinear discrete second-

[13]

(14]

[15]

(16]

[17]

order Neumann boundary value problems[]J]. Appl
Math Comput, 2014, 233. 62.

Ma R,Gao C,Chang Y. Existence of solutions of a dis-
crete fourth-order boundary value problems[]]. Dis-
crete Dyn Nat Soc, 2010, 2010, 839474,

Gao C. Solutions to discrete multiparameter periodic
boundary value problems involving the p-Laplacion
via critical point theory [J]. Acta Math Sci: Ser B,
2014, 34. 1225.

Sun J,Zhao J. Iterative technique for a third-point
BVP with sign-changing Green’s function [J]. ]
Differ Equations, 2013, 215: 1.

Wang J,Gao C. Positive solutions of discrete third-
order boundary value problems with sign-changing
Green’s function [ J]. Adv Differ Equ-NY, 2015,
2015: 56.

Leggett R W, Williams L. R. Multiple positive fixed
points of nonlinear operators on ordered Banach

space [ J ], Indiana Univ Math J, 1979, 28 673.



