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Stevic-Sharma operators from logarithmic Bergman-type spaces to Bloch spaces
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Abstract: Let D be the open unit disk in the complex plane C,¢ be an analytic self-map of D and H(D)
the space of all analytic functions on D. In order to unify the products of composition, multiplication and
differentiation operators, Stevic and Sharma introduced the following Stevie-Sharma operator: T, ., .. f
(2) =¢n (2) f(p(2)) Jr()ljg(z)f/(gp(z)),fG H(D), where ¢, ,¢» € H(D). Motivated by some recent re-

sults of this operator, the boundedness and compactness of the operator T, from logarithmic Berg-

Wy
man-type space to Bloch space are characterized in this paper.
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1 Introducti If ¢ =1, it becomes the composition operator, u-
ntroduction .
sually denoted by C,. If () = z, it becomes the

LetD = {2 € C:|z| <1} be the open unit multiplication operator, usually denoted by M,.

disk in the complex plane C and H(D) the class of Hence, since W, , =M,C,, it is a product-type

all analytic functions on D. Let ¢ be an analytic operator. A natural problem is to provide func-
self-map of D and ¢ € H(D). The weighted com- tion theoretic characterizations when ¢ and ¢ in-
position operator W, on H(D) is defined by duce a bounded or compact weighted composition

W, f(2) =¢(2) f(o(2)) 2 €D operator (see, e. g. » Refs. [1~5] and the refer-
g ) .

ences therein).
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A systematic study of other product-type op-
erators started by Stevic and his collaborators
since the publication of paperst®™ . Before that
there were a few papers in the topic, e. g. » Rel.
[8]. The differentiation operator onH (D) is de-
fined by

Df(2) = f'(2),z € D.

The product-type operators DC, and C,D at-
tracted some attention first (see, e. g. » Refs. [9~
127] and the references therein). The publication
of Ref. [ 7] attracted some attention in product-
type operators involving integral-type ones (see,
e.g.» Refs. [13~17] and the references therein).
Since that time there has been a great interest in
various product-type operators on spaces of holo-
morphic functions. For example, the following
six product-type operators from Bergman spaces
to Bloch type spaces

m,.Cc,p.M,DC,,CM,D,C,.DM,,

DCM,,DM,C, @D)
were studied by Sharma in Ref. [18]. The next
product-type operators W, ,D and DW, ,, which
were considered in Refs. [19] and [20], are in-
cluded in (1) as the first and sixth operators re-
spectively. For some other studies of In order to
treat operators in (1) in a unified manner, Stevic
and Sharma introduced the following Stevic-Shar-
ma operator

Ty o (2)=¢ flp(x)) +

& () (@), fEH(D) (2)
For example, in Refs.[21] and [ 22] the operator
was studied on the weighted Bergman space.

By using Stevic-Sharma operator all six pos-
sible products of composition, multiplication and
differentiation operators can be obtained. More
specifically we have

mMC,D=T,,,.M,DC, =

Tog s CMD =To gy
C.DM, =Ty, 4., -DM,C, =
Ty sDCM, =T

We characterize the boundedness and compactness

FYedirepe

of the Stevic-Sharma operator from logarithmic
Bergman-type space to Bloch space in this paper.

As the applications of our main results, readers

can obtain some characterizations for the bound-
edness and compactness for all six product-type
operators in (1).

Now we present the needed spaces and some
facts. The Bloch space B consists of all f € H(D)
such that

b(f): = sup(l —| =

zeD

D f) | < oo,

It is a Banach space with the norm fy = | £(0) | +
b(f). Obviously, the quantity 6( /) is a seminorm
on the space B and a norm on the quotient space
B/P, ,where P, is the set of all constant func-
tions. For some results on Bloch spaces and some

concrete operators on them, see, for example,

Refs.[1, 3, 10] and the references therein.

Let dA(2) = idchy be the normalized Lebe-
T

sgue measure on D, For —1 <y < c0,§ <<0and0
< p << oo, the logarithmic Bergman-type space
Au’jy.a consist of all f € H(D) such that

£ = [ 1A Fage(o) < e

where the weight function w,,;(2) is defined by

wy.5(2) = (log ﬁ){log(l —@)T

For p =1 it is a Banach space, while for 0 < p <
1 it is a translation invariant metric space with the

metric given by d(f,g) = || f—g Il4 . From a
wyw)
1
calculation and the factj wyss (Mrdr < oo, it is
0

easily seen that H™ CAﬁy,s. In fact, this contain-
ment is proper since the function k.., (z) in Sec-
tion 2 is in A{jy,a but not in H”. In particular, ev-
ery complex polynomial function belongs to Al s
Some properties of this kind of space were studied
by Jiang in Ref.[24].

Let X and Y be two topological vector spaces
whose topologies are given by the translation in-
variant metrics dx and dy. A linear operator L ;X
— Y is bounded if there exists a positive constant
K such that

dy(Tf,0)<Kdx(f,0)
for all f € X. The operator L : X —Y is compact if
it maps bounded sets into relatively compact sets.

Throughout this paper, positive constant C

may differ from one occurrence to the other.
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2 Auxiliary results —— = —.z€D.
(1—wz) »

In order to characterize the compactness, we
need the following result which was proved in a
standard way. So, the proof is omitted.

Lemma 2.1

D and ¢ s¢» € H(D). Then the bounded operator

Let ¢ be an analytic self-map of

T%,%,(F;Aﬁyﬁ%B is compact if and only if for ev-
ery bounded sequence {f;} in Aﬁy,g such that f;—
0 uniformly on every compact subset of D as j —
co, it follows that

}Lrn 1Ty, .g,.ofi IIs5=0.

The following useful results were obtained in
Ref. [24].

Lemma 2.2 Jlet—1 <y < >, <0,0 <p
< coand 0 <r <<2/3. Then for each# € N, , there
exists a positive constant C, =C(y,d, p,r.k) in-
dependent of fGAﬁy_@ and z € {z € D:|z|>r)}
such that

Ck

FAEIN =

1 5
[10g<1 W)} H f H /\57-3.
The above lemma does not provide any rela-

tion between | f®(0)| and | f Il »» . But from
(U,/nﬂ

this lemma and the maximum module theorem,
we obtain the following result.

Lemma 2.3 Let—1 <y <<,/ <0,0 <p
< oo and 0 < r < 2/3. Then for all f EAjjy,a,
we have
Cy

(17’,2 )%Jr/s

[mg(l—@)} ’ 1 s

where C, is the constant in Lemma 2. 2.

| @ | <

The following function is in Aﬁy_o\ , which will
be used in the proofs on the main results.
Let—1 <y < 0.0 <0.0 < p <
coand 0 << r << 1. Then for everyt > 0 and w € D

Lemma 2. 4

with | w |> r, the following function belongs

to Aiy.a

kw,,(z):[log@*lwgﬁ”

9
»

Moreover, there exists a constant C independent

of k.., such that

sup I o I ar <C.
{w€D:|wl>r} Wy 0
Lemma 2.5 Let —1 <y < 00,0 <0,0<p

< coand 0 <r <1. Letw € D with | w | > rand
m € N,. Then for each # € {0,1,+,m +2},
there exist constants ai.s ai.4.... @5, such that

the function

m+3

fw,k(z) = Eai,kk w.i (2)
i=1

satisfies

Viif',)k(w):[log(l—logﬁ>}
w/\‘
for each j € {0,1,2+-,m +2}\{k}. Moreover,

there exists a constant C independent of &, such

9
b

and £, (w) =0 3)

that sup I S I ar <C.
{we€D:|wl>r} “y.8
Remark 1 As a special case, we will use the

case m=0 in LLemma 5 in the proof of main results.

3  Main results

First we characterize the boundedness of op-
erator T¢],¢2_¢;Afy_a—>B.

Theorem 3.1 Let ¢ be an analytic self-map
of D and ¢1,¢, € H(D). Then the following
statements are equivalent:

(1) The operator T, ., ;Afm»B is bounded;

(ii) For eachk € {0,1,2}, it follows that M,

=supM, (z) <oo, where
z€ D

M(,(z)=
A=) ]¢ ()] 1 -2
| log(1—7——F— ,
(1) |7 [O < 10g|50(2)|”
M1(2)=

A==zl ()¢  (2) +¢i (2) |
(=g )+

1 5
[log(l log\go(z)|>} ’
and

Mz(z):
A—1z[")]¢ ) ¢ ()]
(A=) |)F
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ol
wl
Cu

»
[toe (1~ fogro51)]
Proof (i)=>(ii). Suppose that T¢1.¢2.¢:A:7_69
B is bounded. Set h, (2) =1€AL .
Ly =sup (1= [2[") [ (T, ho) ()] =

Then we get

flelg(l*‘z|2)|gb/1(z)|<c|\T¢l,¢2,¢ (NES)
Setting h, (2) =2 GA{LM , we have
BTy, 11D =sup(L—|2[*) [g1 ()@ () +
¢ (9" () +Po (D[ <CITy ., 1
By using (5), the boundedness of g and the trian-
gle inequality, we have
Ll:531;7)(1*\2\2)\@<z>gp’(z>+¢é<z>|<
ClT, ..l (6)
Also, setting h, (z) = 2%, we have
b(T¢1.¢2.¢/12):égg(l*\z|2)|¢i(z)¢2(z)+
20y (29" (2) +¢s () (2) +
200 ()@ ([ <C I Ty ., | )
Once again, by using (4), (6), (7), the bound-
edness of ¢ and the triangle inequality, we obtain
Lzzigguf\z\zwﬂz) I ¢ (2)] <
CIT,.,.l (8
Letr € (0,2/3) be fixed . For a fixedw € D
> rand £ € {0,1,2},

2.5, there exist constants aj.,sdas.,sas., such that

by Lemma

with | @(w)

the function

f‘gc(u')./c (2) = Za;./«kq;(m) (2),

i=1

satisfies
dews o (@p(w)) =
o (w)*
(1=l g(w) )T

[bg(l _1Og\g01(w) | )] ”

Félwsa(@lw)) =0 (9
for eachj € {0,1,2}\{k}, moreover
sup H fgc(u'),k H Ai <C (10)
{wED:|gCwd |>r} )

Then from (7), (10) and the boundedness of
T‘/’]"/”_)"P:
bCTy y af) =

%1%)(1 —|z|?)] (T¢l,¢2,wf')/(z)\ =
l2[*) | ¢) (o) fla(z)) +

and

ASY , B, we have

sup(1l —
z€D

[ (0 (2) + ¢, (D] f (w(2)) +
50;(2)]‘”(@(2)) | <
( sup + sup. )(1*|z\ )¢ () fla() +

[o() [<r Ja() | >

(g ()@ (=) + </;Z(z)]f (@(2) +
¢ (2) f(o(2) | < %up7\¢l(z)f(w(z)) +
(g ()@ (=) + ¢2<§>]\f (@(2) +

¢ () [ (@()) | + M‘*;H%,‘*“ () f(@(2) +
(g1 (00" (2) + ¢ ]f (@) +
¢2<z>f/<w<z>>\<‘$?§ Iyl flat) +
[ (00" () + ¢o ()] f (@) +

¢ () [ (@) ] + /2 CM, | flla, <

2 IC, I B
(k;)(lfr?)’%ﬂ[log(l g’ 7
2
ZCMOY S la,, (1D
where

I:max{‘ max. g1 () |5
eCzD r

(2) +¢n () ]

g}a)tg‘lgbl ()¢’
max | ¢, (2)p  (2) ]} <eo.
lgCzD|=r

On the other hand, from Lemma 2. 3, we see
that if ¢(0) = 0, then

| Ty, .. of (O] =g (0)f(0)+

g (O f O [<C I [l (12)
where
C=
(/o|¢11(0)| C1‘¢2(0)| 1 >
=) 1—
((I*r Yo 5 (1*r2)7“>[10g< logr):|
< oo,

If 9(0) # 0, then by Lemma 2. 2 it is clear that

| (Ty g o fIO[<C I £ A (13)
Hence, from (11)~(13) it follovs;s that the oper-
ator T, :AfM%B is bounded. The proof is
finished.

Next we characterize the compactness of op-
erator T¢],¢Z,¢;A5y_ﬂ—>B.

Theorem 3.2 Let ¢ be an analytic self-map
of D and ¢1,¢. € H(D).
statements are equivalent:

(i) The operator T, .+ AJ

Y7.0

vy v

Then the following

— B is com-
pact;

(ii) For each®k € {0,1,2}, it follows that L,
<o and lim Mg(z) =0, where L, and M, (2)

[ (o) | =1
are defined in Theorem 3. 1.
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Proof (i) = (ii). Suppose that (i) holds.
Then it is clear that the operator T%,%_@ ;Afy.a%B
is bounded. In the proof of Theorem 3. 1, we
have shown that L, <<eo for each # € {0,1,2}.
Consider a sequence {@(z;)} in D such that
| @(2) | =1 as i — o=, If such sequence does not
exist, then the last two conditions (ii) obviously
hold . We may suppose, without loss of generali-
ty. that [¢(z) | >1/2 for all i € N. For each
fixed 2 € {0.,1,2}, we define fi, (2) = fo.) ..
Then by Lemma 2. 5 it follows that the function

fix satisfies

—
D (o)) = plz)
(1| ez) |7
- 1 i
[log(l log [ ¢(z) | H
and
i (p(2)) =0 1

For each ; € {0,1,2}\{k}, moreover sup

iEN
I fie 4z <C. From Remark 2.1 in Ref. [243 ,
it followsy:hat f:—0 uniformly on every compact
subset of D as ¢ — o, Then by Lemma 2. 1

1Lm Ty, . I 5 =0.
From this, Lemmas 2. 2 and 2. 3, and since Ly is
finite, we obtain

limM, (z;,) =0 (15)

(iD=>(i). We first prove that T, , ., ;Afm9
B is bounded. We observe that the conditions in
(i) imply that for everye >0, there is an 5 € (0,
K =
{(x € D:|g(x)| >y} andk € {0,1,2} it follows
that M, (2) <e. From the fact L, <o, for each &

1>, such that for all =z €

€ {0,1,2} we obtain we have

Moot (i )]
(1—pH)7 logy

Hence from Theorem 3.1 it follows that operator
T ASM—>B is bounded.

Next we proof that the operator T, .,

*[’I .¢2 P :
A
cpt 0y

—B is compact. For this purpose, by Lemma 1
we just need to prove that, if {f;} is a sequence

<M and f,—0

70

uniformly on any compact subset of D as i —

in A(’j” such that supen || fi Il a»

oo, then

hm Ty, .. of i |5 =0.
For such chosen e and », by Lemma 2. 2 we have
(== [Ty 4. S D] =
=12 ¢l () file)) + (g ()¢ (=) +
¢o GO 1 () T ()¢ () f] (p(2)) | <
A==z | filepl)) ]|+
[ ()¢ () +¢L () Il f7 (el | +
[ () 1" D Il fT (e [ ) <
L, sup| f;(2) | +(sup+ sup ) (1 —
€D €K

z€ D\K
2|9 [ ()¢ (=) +¢h () Il fi (o)) | +
Ceoptagp =10
@ () | g () || f] () | <
2¢ +L, sgg‘f,(z)‘ +1, ‘%l‘lfiv‘f:(z) | +
L. sup | £l ()| (16)

I=1 <y

Since f;—>0 uniformly on compact subsets of D as
i — oo implies that for each # € N, f{¥ =0 uni-
formly on compact subsets of D as i — <o, from
(16) we get

llmsgg(l — |z (Ty . of D' () | =0 (D)
It is clear that

lli)r{;\ Ty of (0] =0 (18)
From (17) and (18) we obtain

lim Ty .. of: I 5=0 a9
Hence from (19) and LLemma 2. 1, we obtain that

T¢| oot
ished.

A, =B is compact. The proof is fin-
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