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Positive solutions for nonlinear fractional differential equations
with integral boundary value conditions

XUE Yi-Min, SU Ying, SU You-Hui
(School of Mathematics and Physical Science, Xuzhou Institute of Technology., Xuzhou 221018, China)

Abstract: We studied the existence of positive solutions for nonlinear Caputo fractional differential equa-
tions with integral boundary value conditions. The existence results of positive solutions for the bounda-
ry value problems are obtained by applying the properties of Green function and Schauder fixed point
theorem, which partly extend the corresponding results of fractional differential equations. Two exam-
ples are also presented to illustrate the applications of the main results.
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. many papers dealing with the positive solutions of

1 Introduction . . :
boundary value problems for nonlinear differential
1 At the same time,

Fractional differential equations can be ap- equations of fractional order™

plied to describe many phenomena in various-
fields, for examples in physics, control theory,
blood flow phenomena, regular variation in ther-
modynamics, chemistry, polymer rheology, bio-

physics, fluid dynamics, and so forth. There are
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boundary value problems with integral boundary val-
ue conditions of nonlinear fractional differential equa-
tions have aroused considerable attention. Boundary
value problems with integral boundary value condi-

tions have various applications in chemical engineer-
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ing, population dynamics,etc. For some recent devel-
opment on the integral boundary conditions, we refer
to the reader to the Refs. [5~14] and the references
cited therein.

Recently, Cabada and Wang™ wused the
known Guo-Krasnoselskii fixed point theorem to
obtain the existence for the boundary value prob-
lem as

S Diu () + f(,u(t)) =0,2<q<<3,0<t<1,
u(0) =« (0) = 0,u(l) =

~1
AJ u(s)ds,0 <A <2,
0

where § D¢ is the Caputo fractional derivative of
ordergand f € C([0,1]X [0,),[0,)).

Motivated by Ref. [ 5], the main aim of our
work is to establish the existence criteria for posi-
tive solutions to the following nonlinear Caputo
fractional differential equations with integral
boundary value conditions

§Diu () + f(tyu(t)) =0,
Ju(O) =u (0) =+ =u""?(0)=u"(0) =0,

lu(l) :AJ]u(s)ds (D

where0 <t <l,n <a<n-+1l.n=2n € N),0
<A < n,f:[0,00)—> Ris the standard Caputo
and [ €
C([0,1]X[0,00),[0,c0)) is a given function.
C([0,1]X[0,),[0,c0)) represents the set of

fractional derivative of order «

all continuous functions from [0,1]X [0, ) into
[0,°0) in this article. The existence results of
positive solutions for the boundary value prob-
lems are obtained by applying the properties of
Green function and Schauder fixed point theorem,
which partly extend the corresponding results of
Refs. [5] and [6]. Two examples are also presen-
ted to illustrate the applications of our main re-

sults.

2 Preliminaries

For the convenience of the reader, we will

recall some necessary definitions and theorems

which can been founded in Refs. [9, 15~18].
Definition 2. 1”7 For a function f: [0, o) —>

R, the Caputo fractional derivative of order ¢ > 0 is

given as follows

‘D fr) = T ! Jr (=) (sH)ds,

T —a) Jo
provided the integral exists, wheren = [« ]+ 1,
[a] denotes the integer part of a.

Definition 2, 2"} For a function f: [0, <) —>
R, the Riemann-Liouville fractional integral of order «
> 0 is given as

Fr = w0 o
provided the integral exists.

Lemma 2.3"%"  Leta > 0, then the equation

§Dfu () =0 has a unique solution given as

SO ;

w(t) = >, t

2 TG D
Lemma 2, 4%

mentioned integral and derivative have the proper-

Let « > 0, then the above-

ty as
[a]
(D “ul()} = u() — >

=0

w0
rG+1 -

To get the solution of the boundary problem
(1), we consider the following fractional differential
equation with integral boundary value condition

‘D ult) + f(tu(t)) =0,0 <t <1,
u(0) = u'(0) = -
l = uP(0) = u"(0) =0, 2

w(1) = Afu<s>ds
0

Then we have the following useful lemma
Lemma 2. 5" For arbitrary y(1) € C[0,1].n
<a<n+t+1l,n=2n € N),0<<A<n, then the prob-

lem (2) has a unique solution given as
1
W) = | Gy,
0

where

Jnt”1 Q=9 a=A+A) —(n—a (1 —5)!

(n—20T(a+D

nt" ' (1 =) " (a—A+As)
(n—2T(a+1)

G(t,s) 1

,0=r<s=<1

,0==s=r=1,
3



% 2 BaR, F: —£F Ry AMEG RS KN 720 EM 253

Lemma 2. 6t

N), then the Green's function G(z,s) given by (3)

Letn <a<<n+1l,n=2(n¢€

satisfies the following conditions

(H,) G(t,s) >0 for any t,s € (0,1) if and
only if A € (0,n);
G(t,s)

L1 are continuous func-

(Hz) G([as) and
tions for any t,5 € (0,1).1 # n;

(H) Gty = & for any t.s €

T ()
[Ovljvk € I:Ovn);

(H) " 'G(1.5) <G (t.5) =—% _G(1,5)
Ala—n)

for anyz,s € [0,1 ], € (0,n).
Proof From the expression of the Green’s
function G(t,s), (Hy).(H,) and (H;) are trivi-

al, here we omit them. Now, we have only to

prove (H,).
Set
) — G(t,\)
¢ =G

Suppose in a first case that0 <t <s <1, we have

" a—a—5))
Ala —n +ns)

go(t,s) =1

from which, we can deduce that

n—1

nt a Nna

Aa—n) " Ala—n)’

n—1

t
r lg"Tgsp(z,s)g

YV O0<r<s<1.
On the other hand, if 0 <s <t <1, we have

nt" 1a—2A(1—5)) —a(n =) —s) (1 —5) ¢
A(a—n+ns) )

Clearly, we can obtain

t"il(a_/\(l—.\‘))< na

n 1< .S <77 s
v st = AMa—n+tns) “Ala—n)

V0 <<s =<z <<l.

This concludes our desired result.

Lemma 2. 7(Arzela-Ascoli theorem™™)  Let
D C X be a compact set with a sequence {x, } CD
being uniformly bounded and equicontinuous,
then the sequence has a uniformly convergent
subsequence.

Lemma 2. 8(Schauder fixed point theorem!*?)
Let X be a Banach space with U C X being closed,
convex and nonempty. Let P;U—U be a continu-
ous mapping such that P(U) is a relatively com-

pact subset of X. Then P has at least one fixed

point in U.

3  Main results

In this section, we show sufficient conditions
of the existence results of solutions for boundary
value Problem(1). First, we establish some no-
tions. Let E = C[0,1] represents the set of all
continuous functions defined on [0,1 ] with real
values. Then E is a Banach space endowed with
the norm given as

lull = max |uCo)].
tel[0.1]

For any ¢t € [0,1], define the operator F:E —
E by

1
(Fu) (D) :J G(tas) f(sau(s))ds 8,

It follows from Lemma 2. 5 that the fixed points
of the operator F coincide with the solutions of
fractional differential equation (1). Now, we will
show that the operator F:E — E is completely
continuous.

Lemma 3.1 The operator F: E — E given by
(4) is completely continuous.

Proof By continuity of functions f(z,u) and
G(t,s), the operator F is continuous. Let Q C E
be bounded. Then for anys € [0,1]andu € Q,
there exists a positive constant K; > 0 such that

\f(t,u) \ < K,. From Lemma 2. 6 and (4), we

can deduce that

1
| (Fu) (1) | gj | G(tys) f(sauls)) | ds <
0
! n -
Jo G TG | /e | ds

n

=T T
which implies that | (Fu) () |

KZ’

< K,. Analo-
gously, for the derivative, we obtain that

(s
o 'l — 1)~

Jl nn — D" 2 (1 —) " a—A+2As)
0 (n */\)al—‘(a)

| (Fu) (1) | = ‘—J f(souls))ds+

fCsyuls))ds
g1-‘((1_1) J() (t S) ‘f("u(s))‘ds#—

n(n — 1Dt *? Jl
(n =D+ 1D

A+ | fGauls)) [ds <

(1—9"(a —

0
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B[ a—otas+

I'(a — 1) Jo

n(n — 1aK, J'l Lyl gy —
TG+ D J, E 797 ds =
K, nn — DK,

= Kg.

M) (=Ll +1D°
Therefore, for any 0 < <t, <1, we have
| (Fu) () — (Fu) (1)) | =

H (Fu)' (s)ds

t

< sz | (Fu)' (s) | ds <

K;(t, — 1),
which implies that the operator F is equicontinu-
ous on [0,1]. Thus, by Lemma 2. 7, the opera-
tor F: E — E given by (4) is completely continu-
ous.

In the following, for convenience we denote

. . !
£y = hm{ max M}’

w0t lz€l0.1] u

. . (¢
fo= hm{ max M}

u—>co (t€[0,1] u

o = max {J]G(t,s)ds}.

te[0,1] 0
Theorem 3. 2 Assume that f € C([0,1]X
[0, +c),[0,+c0)) is a given function and exists

real constant K > 0 such that
faao =B v e 0K e [0.1] 5
©

Then the boundary value Problem (1) has at least
one solution on [0,1].

Proof Define Qx CE as

Qk = u‘uEE,LZ”(f]) €k,
n—1 —
lu | éK,u(z‘)Zlquian) lul

Veel[0,1]}.
Sincen <a <n-+1,0<<A <<n,n=>2(n &€ N), then
we have

O</1(a*n)<L<l’
Nna na n

which implies that Qg is nonempty. Moreo-
ver, it is easy to see that Qg is a closed convex
and bounded subset of E by the definition of Q.
When u € Qk » note that the non-negativeness and
continuity of f(z,u) and G(¢,s), in view of Lem-
ma 2.6 we have Fu € E and

Fu(t) _ (" G(z,5)
t”71 - tnfl B

f(s,u(s))ds € E.

On the other hand, by (5) and the definition

of p, we have

1
Fu(t) :j G(tys) FCsouls))ds =
0

1 1

J G By = K max {J Gliods| = K,
0 p [O tef0,1] 0

which implies that

| (Fu) () | gK,VHEQK 916[091].

By virtue of Lemma 2. 6, we deduce that

1
Fu (o) :j G(ty) F(souls))ds =
0
"1
! J G(1,5) f(s,uCs))ds =
0

max {G(t,s) } f(s,u(s))ds =

0 tel0,1]

" "Ala —n) Jl

no

w1 _ !
M max {J G([,.\‘)f(Sau(S))ds -

na tef[0,1] 0

n—1 o
i CElONTS SN
ne

Then we have

F(Qk) CQksi.e. F:Qx—>0xk.
By virtue of Lemma 3.1, we obtain that F;Qx—
Qg is completely continuous. It follows from a-
bove that all conditions of Lemma 2. 8 hold. Con-
sequently, the boundary value Problem (1) has at
least one positive solution on [0,1].

Theorem 3.3 Assume that f € C([0,1]X
[0, +),[0, + c)) is a given function and ex-

ists real constant L > 0 such that
£ty gZI—‘,vu € (L)t € [0,1] (6)
©

Then the boundary value Problem (1) has at least
one solution on [0,17].

Proof Take a real constant M such that

M =L +1+2p max f(z,u) 7

ue[0,L]

Define Qu CE as

u(t)

Qm = u‘uGE,Z”,l

ek,

n—1 _
| =M, u() =t Aemm
no

Veel[0,1]).
Then, like the proof of Theorem 3. 2, we get that
Qu is a closed convex bounded and nonempty sub-
set of E. In addition, one can also obtain that

Fu(t)

FueFE, 1

cr,
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(Fu) (=L Aa=m) gy
no

By (6), (7) and the definition of p, for any u €
Qu.t€[0,1],we have

1
Fu (1) :J G(tys) f(syu(s))ds =
J' G(tys) fCsauls))ds +
Dl
j G(tos) f(sauls))ds =

J G(t,s) ds -O-J G(z,5)ds max f(t,u) <

ue 0,1

zeFo 1] wuel0,L]

L M
2y

where
D, = {s € [0,1],uls) >L},
D, = {s € [0,1],u(s) <L},
which implies that || (Fu)(#) | < M for any u €

Qu.t€[0,1]. By means of Lemma 3.1, we ob-

20
—~ max J (J(Z,s)ds +p max f(t,u) <
<

M,

tain that F: Quy —> Qu is completely continuous.
Thank to Lemma 2. 8, the boundary value Prob-

lem (1) has at least one positive solution on [0,

1].
4 Examples

Example 4. 1  Consider the following prob-
lem of fractional differential equations with inte-
gral boundary conditions

J‘D”u(t) + fu() =0,0 <t <1,

w(0) =4 (0) =4 (0) =0, %)

1
u(l) = ZJ u(s)ds

where
3<a——b <4.0<i-2<3,
. _ tusin'u  _ RPN
fw) = ———,p = max G(t,s)d.s},
ref0.1] UJo

here G(¢,s) is defined by (3).
that f S C([O?l]x [Oa + OO)’[O’ + OO)) For
anyu € (0,K ], one can get that

It is easy to find

tu sm u

<5,VK >0,z € [0, ].
Y

Hence all the conditions of Theorem 3. 2 are satis-

f(tsu)

fied, the boundary value problem (8) has at least

one positive solution on [0,1].

Example 4. 2 Consider the following prob-
lem of fractional differential equations with inte-
gral boundary conditions

‘D ut) + f(tou(r)) =0,0 <t <1,
w(0) = u' (0) =4 (0) =u? () =0,

1 D)
1 u(l) :HJ u(s)ds
3 Jo
where

_9 _ 11
4<a*2<5y0<1 3<4

_ tu (1) _ Jl N
ftw = G ,Sﬁf‘i‘q{ O(m,.\)d.s},

here G(¢z,s) is defined by (3).
that f € C([0,1]X [0, +),[0, + o)), For

any u € (L,c>), one can get that

It is easy to find

¢t sinu L
CZ+ul))o ™ (2+L)p

f(t,u) =

L oyr-1.er0]
20

Thus, by the use of Theorem 3. 3, the boundary
value problem (9) has at least one positive solu-

tion on [0,17.
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