Journal of Sichuan University (Natural Science Edition)

Nov. 2018 Vol. 55 No. 6

doi: 10. 3969/j. issn. 0490-6756. 2018. 06. 001

非经典扩散方程的时间依赖强全局吸引子的存在性

王 静,马巧珍,姚晓斌

(西北师范大学数学与统计学院, 兰州 730070)

摘 要:本文在具有光滑边界 $\partial\Omega$ 的有界域 $\Omega \subset \mathbf{R}^3$ 上研究非经典扩散方程 $u_t - \varepsilon(t) \Delta u_t - \Delta u + \lambda u = f(u) + g(x)$ 并在强拓扑空间中讨论了该问题解的长时行为. 所用方法基于 Meng 和 Liu 引入并证明的时间依赖全局吸引子存在性的充分条件.

关键词: 非经典扩散方程;时间依赖全局吸引子,存在性

中图分类号: O175.29

文献标识码: A

文章编号: 0490-6756(2018)06-1133-04

Existence of time-dependent strong global attractors for nonclassical diffusion equation

WANG Jing, MA Qiao-Zhen, YAO Xiao-Bin

(College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China)

Abstract: We consider the nonclassical diffusion equation $u_t - \varepsilon(t) \Delta u_t - \Delta u + \lambda u = f(u) + g(x)$ on bounded domain $\Omega \subset \mathbb{R}^3$ with smooth boundary $\partial \Omega$, discuss the long-time behavior of solutions for this problem in strong topological space. The used method is a sufficient condition for the existence of time-dependent global attractor introduced and proved by Meng and Liu.

Keywords: Nonclassical diffusion equation; Time-dependent global attractor; Existence (2010 MSC 35B25, 37L30, 45K05)

1 Introduction

Let $\Omega \subset \mathbb{R}^3$ be a bounded domain with smooth boundary $\partial \Omega$. We consider the following nonclassical diffusion equation

$$\begin{cases} u_{t} - \varepsilon(t) \Delta u_{t} - \Delta u + \lambda u = f(u) + g(x), x \in \Omega, \\ u|_{\partial\Omega} = 0, t \geqslant_{\tau}, \\ u(x, \tau) = u_{\tau}(x), x \in \Omega \end{cases}$$
(1)

where $\lambda > 0$, $\tau \in \mathbb{R}$ and $g \in L^2(\Omega)$. Let $\varepsilon(t)$ be a decreasing bounded function satisfying

$$\lim_{t \to +\infty} \varepsilon(t) = 0 \tag{2}$$

The nonlinear function $f \in C^1(\mathbf{R})$ satisfies the following growth conditions

$$\limsup_{|s| \to \infty} \frac{f(s)}{s} < \lambda_1, \forall s \in \mathbf{R}$$
 (3)

$$|f'(s)| \leqslant C(1+|s|^4), \forall s \in \mathbf{R}$$
 (4)

and

$$|f(s)| \leq C(1+|s|^{r}), \forall s \in \mathbf{R}$$
 (5)

where λ_1 is the first eigenvalue of $-\Delta$ in $H^2(\Omega) \cap H^1_0(\Omega)$, C is a positive constant.

The nonclassical diffusion equation arises as a mathematical model to describe the physical phenomenaes, such as non-Newtonian flows, solid mechanics, and heat conduction^[1-3].

Since (1) contains the term $-\varepsilon(t) \Delta u_t$, it is different from the usual reaction diffusion equa-

收稿日期: 2017-07-11

基金项目: 国家自然科学基金(11561064,11361053);西北师范大学青年教师科研能力提升计划项目(NWNU-LKQN-14-6)

作者简介: 王静(1990-),女,博士研究生,主要研究方向为无穷维动力系统. E-mail: wj414 029715@163.com

通讯作者:马巧珍. E-mail: maqzh@nwnu.edu.cn

tion ($\varepsilon(t) = 0$). For instance, the reaction diffusion equations have some smoothing property: although the initial data only belongs to a weaker topological space, the solution will belong to a stronger topological space with the higher regularity. In addition, we can not understand its dynamics in the standard semigroup framework because the coefficient $\varepsilon(t)$ of $-\Delta u_t$ depends on the time t, which makes the problem complex.

When $\varepsilon(t)$ is a positive constant, the long-time behavior of solutions for the nonclassical diffusion equations has been extensively studied by several authors^[4-10]. when $\varepsilon(t) = 1$ and $\lambda = 0$, Xiao^[4] investigated the global attractor of the problem (1) in $H_0^1(\Omega)$ for $g \in L^2(\Omega)$. Recently, Xie *et al.* [10] studied the existence of global attractors on unbounded domain when the nonlinear function satisfied the arbitrary polynomial growth.

When $\varepsilon(t)$ depends on time t, Ding and Liu^[11] obtained the existence of time-dependent global attractors for (1) in phase space $H_0^1(\Omega)$, in which the nonlinearity satisfies (3) and the following condition

$$|f'(s)| \leqslant C(1+|s|^2), \forall s \in \mathbf{R}$$
 (6)

The asymptotic structure of time-dependent global attractors and the further regularity of u_t have been obtained in Ref. [12]. Simultaneously, Ma $et\ al.$ [13] investigated the existence and regularity as well as asymptotic structure of time-dependent attractor with lower forcing term.

In this paper, we will take advantage of the method different from Refs. [14~16] to prove the existece of time-dependent global attractors in a strong Hilbert space, which has been introduced by Meng and Liu^[17]. We extend and improve the results of Ref. [13].

For convenience, we choose C as the positive constant which may be different from line to line or in the same line throughout our paper.

2 Preliminaries

We write $H = L^2(\Omega)$ and $V = H_0^1(\Omega)$, the scalar products and norms on H and V are denoted by $(\cdot, \cdot), |\cdot|$ and $((\cdot, \cdot)), |\cdot|$, respectively.

tively. Without loss of generality, we introduce the family of Hilbert spaces $I_s = D(A^{s/2})$, $\forall s \in \mathbb{R}$, with the standard inner products and norms, respectively,

$$(\bullet, \bullet)_{D(A^{s/2})} = (A^{s/2} \bullet, A^{s/2} \bullet),$$

 $\| \bullet \|_{D(A^{s/2})} = \| A^{s/2} \bullet \|.$

Then, for $t \in \mathbf{R}$ and $-1 \le s \le 1$, let $I_t^s = I_{s+1}$, endowed with the time-dependent norm

$$\| u \|_{I_{t}}^{2s} = \| u \|_{s}^{2} + \varepsilon(t) \| u \|_{s+1}^{2}.$$

Especially, $H = I_{0} = L^{2}(\Omega)$, $V = I_{1} = H_{0}^{1}(\Omega)$, $D(A) = I_{2} = H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$.

Definition 2. 1 (Condition (C_t))^[17] The process $U(t,\tau)$ is said to satisfy Condition (C_t) in time-dependent space if for any bounded set B_{τ} of X_{τ} and for any $\zeta>0$ there exists $\tau_{\zeta}< t$ and a finite dimensional subspace X_t' of X_t , such that $\{ \parallel PU(t,\tau)B_{\tau} \parallel \}$ is bounded and

 $\| (I-P)U(t,\tau)x \|_{X_t} < \zeta, \tau \leqslant_{\tau_{\zeta}}, x \in B_{\tau},$ where $P: X_t \to X_t$ is a bounded projector.

Theorem 2. 2^[17] Let $U(t,\tau)$ be a process in a family of Banach spaces $\{X_t\}_{t\in\mathbf{R}}$. Then there is a time-dependent global attractor $A = \{A_t\}_{t\in\mathbf{R}}$ for $U(\cdot, \cdot)$ in X_t if the following conditions hold:

(i) $U(t,\tau)$ has a pullback absorbing family $B = \{B_t\}_{t \in \mathbf{R}}$;

(ii) $U(t,\tau)$ is Condition (C_t) .

In order to obtain the main results, we need the following properties of compactness about the nonlinear operator f. It can be easily proved according to $(2)\sim(5)$, so we omit it.

Lemma 2.3 Suppose that $f \in C^1(\mathbf{R}, \mathbf{R})$ with (5) and let $f:D(A) \rightarrow V$ be defined by

$$((f(u),v)) = \int_{\Omega} f'(u) \nabla u \nabla v \, dx, \, \forall \, u \in D(A),$$

$$\forall \, v \in V,$$

Then f is continuous compact.

Lemma 2. $4^{[18]}$ Let Φ , r_1 , r_2 be nonnegative, locally summable functions on $[\tau, +\infty)$, $\tau \in \mathbf{R}$, which satisfy the differential inequality

$$\frac{\mathrm{d}}{\mathrm{d}t}\Phi(t) + a\Phi(t) \leqslant r_1(t)$$

$$+ r_2(t)\Phi^{1-b}(t), t \in [\tau, +\infty)$$
for $a > 0$ and $0 < b < 1$. Assume also that
$$m_j = \sup_{t \ge \tau} \int_t^{t+1} r_j(y) \, \mathrm{d}y < \infty, j = 1, 2,$$

then

$$\Phi(t) \leq \frac{1}{b}\Phi(\tau)e^{-a(t-\tau)} + \frac{1}{b}m_1C(a) + [m_2C(ab)]1/b, t \in [\tau, +\infty),$$

where $C(\nu) = \frac{e^{\nu}}{1 - e^{-\nu}}$.

3 Main results

Lemma 3. $\mathbf{1}^{[12,13]}$ Assume that $(2) \sim (5)$ hold. Then for any initial data $u_{\tau} \in I_{\tau}$ and any $T > \tau$, there exists a unique solution u of (1) such that $u \in C([\tau, T]; I_t)$. Furthermore, if $u_{\tau} \in I_{\tau}^1$, then u satisfies $u \in C([\tau, T]; I_t^1)$, and the solution depends on the initial data continuously in I_t^1 .

It follows from Lemma 3. 1 that a family of maps $U(t,\tau)$: $I_{\tau} \rightarrow I_{t}$ acting as $U(t,\tau)u_{\tau} = u(t)$ define a strongly continuous process on a family of spaces I_{t}^{1} .

Lemma 3. 2^[13] Assume that $(2) \sim (4)$ hold. Let $U(t,\tau)u_{\tau}$ be the solution of (1) with initial value $u_{\tau} \in I_{\tau}$. Then there exists a positive constant K, such that

$$\lambda \| u(t) \|^2 + (1 + \varepsilon(t)) \| u(t) \|_1^2 \leq K,$$

 $\forall \tau \leq t - t_0$ (7)

Lemma 3.3 Assume that (2),(3) and (5) hold. Then there exists a time-dependent absorbing set $B = \{B_t(\rho_1)\}_{t \in \mathbf{R}}$ in I_t^1 for the process $U(t,\tau)$ corresponding to the problem (1).

Proof Multiplying the equation (1) by 2Au and integrating on Ω , we find that

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\| u \|_{1}^{2} + \varepsilon(t) \| u \|_{2}^{2} \right] - \varepsilon'(t) \| u \|_{2}^{2} + 2\lambda \| u \|_{1}^{2} = (f(u), 2Au) + (g(x), 2Au) \tag{8}$$

Recalling the Sobolev embeding $H^{6/5} \rightarrow L^{2r}$ (r < 5) and the interpolation inequality

$$\|u\|_{H^{6/5}} \leq C \|u\|_{L^{4/5}} \|u\|_{L^{1/5}},$$

for all $u \in I_t^1$ and combining with (5) and (7), we have

$$|(f(u), 2Au)| \le 2 \int_{\Omega} C(1+|u|^r) Au dx \le C(1+|u|^{\frac{2}{2}r/5}) + \frac{1}{2} ||u||^{\frac{2}{2}}$$
 (9)

Together with $(8)\sim(9)$, it follows that

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\| u \|_{1}^{2} + \varepsilon(t) \| u \|_{2}^{2} \right] + (1 - \varepsilon'(t)) \| u \|_{2}^{2} + 2\lambda \| u \|_{1}^{2} \le C + 2 \| g \|_{2}^{2} + C \| u \|_{2}^{2^{r/5}}.$$

Due to the boundedness of $\varepsilon(t)$ and (2), there ex-

ists a positive constantLsuch that $\varepsilon(t) \leq L$, and then it leads to

$$(1 - \varepsilon'(t)) \| u \|_{2}^{2} \ge \| u \|_{1}^{2} \ge \frac{\varepsilon(t)}{L} \| u \|_{1}^{2}$$
 (10)

Let $y(t) = ||u||_1^2 + \varepsilon(t) ||u||_2^2$ and choose $\alpha_1 = \min\{\frac{1}{I}, 2\lambda\}$ with $L, \lambda > 0$. Then we obtain

$$\frac{\mathrm{d}}{\mathrm{d}t}y(t) + \alpha_1 y(t) \leqslant C + 2 \parallel g \parallel^2 + C y^{2r/5}(t), t \geqslant t_0.$$

By Lemma 2.4, we conclude that

$$y(t) \leq \frac{5}{5-r} y(t_0) e^{-\alpha_1(t-t_0)} + K_1, t \geq t_0,$$

where

$$K_{1} = \frac{5}{5-r} (C+2 \| g \|^{2}) m(\alpha_{1}) +$$

$$\left[Cm(\frac{\alpha_{1}(5-r)}{5}) \right] 5/(5-r).$$

Thus we have

$$\| u(t) \|_{1}^{2} + \varepsilon(t) \| u(t) \|_{2}^{2} \leq$$

$$\frac{5}{5-r} [\| u(t_{0}) \|_{1}^{2} +$$

$$\varepsilon(t_{0}) \| u(t_{0}) \|_{2}^{2}] e^{-\alpha_{1}(t-t_{0})} + K_{1}.$$

So

$$B = \{u \in B_t(\rho_1): ||u(t)||_1^2 + \varepsilon(t) ||u(t)||_2^2 \leq \rho_1\}$$
 is a time-dependent absorbing set in I_t^1 .

Theorem 3.4 Assume that $(2) \sim (3)$ and (5) hold, then the process $U(t,\tau)$: $I_{\tau}^{1} \rightarrow I_{t}^{1}$ generated by the problem (1) satisfies Condition (C_{t}) in I_{t}^{1} .

Proof Let $\{\omega_k\}_{k=1}^{\infty}$ be a orthogonal basis of I_t^1 which consists of eigenvalues of $A = -\Delta$. The corresponding eigenvalues are denoted by $0 < \lambda_1 \le \lambda_2 \le \lambda_3 \le \cdots \lambda_j \le \cdots, \lambda_j \to \infty$ with $A\omega_k = \lambda_k \omega_k$, $\forall k \in \mathbb{N}$. Let $V_m = \operatorname{span}\{\omega_1, \dots, \omega_m\}$ in V and let $P_m : V \to V_m$ be an orthogonal projector. We write

$$u = P_m u + (I - P_m) u = u_1 + u_2$$
.

Multiplying the equation (1) by $2Au_2$ and integrating on Ω , we find that

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\| u_2 \|_1^2 + \varepsilon(t) \| u_2 \|_2^2 \right] - \varepsilon'(t) \| u_2 \|_2^2 + 2 \| u_2 \|_2^2 + 2\lambda \| u_2 \|_1^2 = (f(u), 2Au_2) + (g(x), 2Au_2) \tag{11}$$

Since $g \in L^2(\Omega)$ and $f:D(A) \to V$ is compact, from Lemma 2. 3, there exists some m such that for any $\eta > 0$,

$$\|(I-P_m)g\| \leqslant \frac{\eta}{2}, \|(I-P_m)f\| \leqslant \frac{\eta}{2}.$$

Combining with (10), (11), we conclude that

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\parallel u_2 \parallel_{1}^{2} + \varepsilon(t) \parallel u_2 \parallel_{2}^{2} \right] + \alpha_2 \left(\parallel u_2 \parallel_{1}^{2} + \varepsilon(t) \parallel u_2 \parallel_{2}^{2} \right) \leqslant C\eta^2,$$

where $\alpha_2 = \min \{ \frac{1}{L}, 2\lambda \}$ with $L, \lambda > 0$. By the

Gronwall Lemma, it follows that

$$\| u_{2} \|_{1}^{2} + \varepsilon(t) \| u_{2} \|_{2}^{2} \leq$$

$$(\| u_{2}(t_{1}) \|_{1}^{2} + \varepsilon(t_{1}) \| u_{2}(t_{1}) \|_{2}^{2}) e^{-\alpha_{2}(t-t_{1})} +$$

$$K_{2}, t \geq t_{1}$$

$$(12)$$

where $K_2 = \frac{C\eta^2}{\alpha_2}$. Taking

$$t_2 = t_1 + \frac{1}{\alpha_2} ln(\alpha_2 \rho_1 / C \eta^2),$$

from Lemma 3.2 and (12), we conclude that

$$||u||_{1}^{2} + \varepsilon(t) ||u||_{2}^{2} \leq C(1 + \frac{1}{\alpha_{2}})\eta^{2}, \forall t \geq t_{2}.$$

Thus we obtain that the process $U(t,\tau)$ satisfies Condition (C_t) .

Theorem 3. 5 Assume that the conditions $(2) \sim (5)$ hold, then the process $U(t,\tau): I_{\tau}^1 \to I_t^1$ generated by the problem (1) has a invariant time-dependent global attractor $A = \{A_t\}_{t \in \mathbf{R}}$.

Proof It follows from lemma 3. 3 and Theorem 3. 4 that the problem (1) exists a unique time-dependent global attractor $A = \{A_t\}_{t \in \mathbb{R}}$. The proof is complete.

References:

- [1] Aifantis E C. On the problem of diffusion in solids [J]. Acta Mech, 1980, 37: 265.
- [2] Kuttler K, Aifantis E C. Existence and uniqueness in nonclassical diffusion [J]. Q Appl Math, 1987, 45: 549.
- [3] Lions J L, Magenes E. Non-homogeneous boundary value problems and applications [M]. Berlin: Springer-Verlag, 1972.
- [4] Xiao Y L. Attractors for a nonclassical diffusion equation [J]. Acta Math Appl Sin; Engl Ser, 2002, 18; 273.
- [5] Sun C Y, Wang S Y, Zhong C K. Global attractors for a nonclassical diffusion equation [J]. Acta Math Appl Sin E, 2007, 23: 1271.
- [6] Liu Y F, Ma Q Z. Exponential attractors for a non-

- classical diffusion equation [J]. Electron J Differ Eq. 2009, 9: 1, 7.
- [7] Ma Q Z, Liu Y F, Zhang F H. Global attractors in $H^1(\mathbf{R}^N)$ for nonclassical diffusion equation [J]. Discrete Dyn Nat Soc, 2012, 2012; 672.
- [8] Sun C Y, Yang M H. Dynamics of the nonclassical diffusion equations [J]. Asymptotic Anal, 2008, 59: 51.
- [9] Wu H Q, Zhang Z Y. Asymptotic regularity for the nonclassical diffusion equation with lower regular forcing term [J]. Dynam Syst, 2011, 26: 391.
- [10] Xie Y Q, Li Q S, Zhu K X. Attractors for nonclassical diffusion equations with arbitrsry polynomial growth nonlinearity [J]. Nonlinear Anal: Real, 2016, 31:, 23.
- [11] Ding T, Liu Y F. Time-dependent global attractor for the nonclassical diffusion equations [J]. Appl Anal, 2015, 94: 1439.
- [12] Wang X P, Ma Q Z. Asymptotic sturcture of time-dependent global attractors for the nonclassical diffusion equations [J]. J Sichuan Univ: Nat Sci Ed, 2016, 53: 508.
- [13] Ma Q Z, Wang X P, Xu L. Existence and regularity of time-dependent global attractors for the nonclassical reaction-diffusion equations with lower forcing term [J]. Bound Value Probl, 2016, 2016; 10.
- [14] Pata V, Conti M. Asymptotic structure of the attractor for process on time-dependent spaces [J]. Nonlinear Anal; Real, 2014, 19; 1.
- [15] Conti M, Pata V, Temam R. attractors for the process on time-dependent spaces, Applications to wave equation [J]. J Differ Equations, 2013, 255: 1254.
- [16] Liu T T, Ma Q Z. Time-dependent global attractor of nonlinear evolution equation with nonlinear damping [J]. J Sichuan Univ: Nat Sci Ed, 2017, 54: 917.
- [17] Meng F J, Liu C C. Necessary and sufficient conditions for the existence of time-dependent global attractor and application [J]. J Math Phys, 2017, 58: 1.
- [18] Claudio G, Munoz J E, Pata V. Global attractors for a semilinear hyperbolic equation in viscoelasticity [J]. J Math Anal Appl, 2001, 260: 83.

引用本文格式:

中 文:王静,马巧珍,姚晓斌.非经典扩散方程的时间依赖强全局吸引子的存在性 [J].四川大学学报:自然科学版,2018,55:1133.

英文:Wang J, Ma Q Z, Yao X B. Existence of time-dependent strong global attractors for nonclassical diffusion equation [J]. J Sichuan Univ: Nat Sci Ed, 2018, 55: 1133.