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Dynamics behavior of discrete SIR model with a nonlinear incidence rate
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Abstract: In this paper we investigate the dynamics behavior of the discrete-time SIR epidemic model
with a nonlinear incidence rate A S”I. Firstly, we determine the topological type of the endemic fixed
point, including the existence and stability of the fixed point. Furthermore, we analyze the bifurcation
situations, and discuss the flip bifurcation on the center manifold and the Neimark-Sacker bifurcation of
this SIR system by center manifold theorem and normal form theory. Their bifurcation directions are
given respectively. Finally, some biological explanations of our mathematical results are presented.
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. bin model
1 Introduction

S=A—dS(t)—AS(DOI),

Many kinds of epidemiological disease models

I =21 —d+s+mI),
have been developed by a large number of re- D

searchers to give a theoretical basis for disease R =rl(t)=dR ).
prevention and government policies™ . Usually, N =S+ 1) +R@)

these models are of the continuous-time case be- constructed by Kermack and McKendrick™. Here
cause they are described by differential equations S(t),I(t),R(t),N(t) represent the numbers of

such as the following classical deterministic SIR susceptible, infected individuals, patients who gains
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immunity from illness and the total numbers of popu-
lation at ¢ respectively. A is the birth rate of the popu-
lation, A is contact coefficient between susceptible
healthy individuals and patients, d is the natural mor-
tality of the individuals, ¢ is the mortality from the
disease, r is the rate of recovery of the affected indi-
viduals.

In recent years, more and more attention has
paid to the case of discrete-time modelst” de-
scribed by difference equations because of more
wealthy dynamical behaviors and more convenient
data collection than the continuous-time case. In
general, by discretizing continuous-time SIR sys-
tem (1) and using the forward Euler scheme ™ we
obtain the discrete-time system

S, =S, th{A—=dS,—g(S,.1,)},
JI,,+1 =I,+h{g(S,,1,) —(d+et+r)l,}, )
R, =R, +h{rl,—dR,},

IN”H =(1—hd)N, +hA
where g¢(S,D
g(S,I) =2SIin (1). As indicated ", the incidence

rate is the rate of new infection and play a key role in

denotes the incidence rate and

ensuring that the system does indeed give a reasona-
ble qualitative description of the disease dynamics. In
order to analyze system (2), it suffices to consider
the dynamical behavior of (S,,I,) by the form of
(2). That is, we only need to consider
S,i1 =S, th{A—dS,—g(S,— 1)},

{L,H =I,+h{g(S,,.I,) —(d+s+rI,}

In Ref. [7], for system (3) with the bilinear inci-

3

dence rate g(S,I) = ASI. Hu et al. prove the ex-
istence and stability of fixed points, and show the
occurrence of the flip bifurcation and the Neima-
rk-Sacker bifurcation. Later, Du e al.™ investi-
gated the SIR model with the incidence rate
g(S,D)
ASI/ (1 +aS) .

In this paper we analyze the dynamical be-

being the saturated contact rate

havior of system (3) with nonlinear incidence

rates g(S,I)=AS"I,
jS,,ﬂ =S, +h{A—dS,—2aS!,}.
Lo =1 +h(ASI, —(d+o+11,)

where (h,A.d.o,rsd,p) € B: = {(h,A,d,o.r,As

i.e.,

(€Y

p) €R :h,A>0,0<d,s,rsA<<1,p=>1}. Here
we only consider the first quadrant in the phase
space, i.e., S,,I,=0 for alln € N". In section 2
we compute fixed points and determine their to-
pological types. All possible one-codimensional
bifurcations are analyzed in section 3 with & be
the perturbed parameter. Finally, some biological

explanations of our mathematical results are pres-

ented in the last of the paper.

2 Fixed points and their topological prop-
erties

By the method of Ref. [3], we compute the
basic reproductive number R, ' and get R, =2
A?/d? (d+o+r) for system (4). Straight com-
putation shows that system (4) has only a dis-
ease-free fixed point E, (A/d,0) when0 <R, <1,
a disease-free fixed point E,(S* ,I") when R, >
1, where

1/p

g — (d%ﬁr) :

=A/11'/p —d (d+e+r)?

! (d oA

Because of the importance of the endemic
fixed point in biology. by the classic dynamical a-
nalysis we give the topological type of E, shown in
Table 1, where

Ar=d" (1+p(R)» —1))" —

d4pd(d+s+r)(RY"—1),
d+pd (RV" —1)

et A et (R
hy, = dETPd R ZD ZVA (g
" opd(dteotr) (R —1) )
Tab.1 Topological types of fixed point E; when R, > 1
Conditions properties
A>0 0<<h<hy, stable node
h=h, non-hyperbolic
hy <<h<<2h, —hy saddle
h=2h, —hy, non-hyperbolic
h>2h, —hy unstable node
A=0 0<<h<h, stable node
h=h, non-hyperbolic
h>h, unstable node
A<0 0<<h<h, stable focus
h=h, non-hyperbolic
h=>h, unstable focus
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3 Bifurcation results

As given in section 2, fixed point E, is non-
hyperbolic if and only if (h,A.d.c.7.A,p) € F,
U F, UNS UR., where

F,.:={(h,A.d,o.r,d,p) €

B:R,>1,A>0,h=h,},

F,.={(h,A.d,o.r,2,p) €

B:R,>1,A>0,h=2h, —h,},
NS:={(h,A.d,c.,r:X,p) €
B:R,>1,A<0,h=h,},
R.:={(h,A.dso:r:A:p) €
B:Ry>1,A=0,h=h,}.
As shown in Table 1, the hyperbolicity of E,
changes if (h,A.,d,s.7,A.p) cross those hyper-

surfaces F, ,F,,NS,R. In this section we are go-

ing to analyze some significant bifurcation phe-
nomena with i being the unique perturbation pa-
rameter, i.e. , (h,A,d,s.r,A,p) do not change.
Theorem 3.1 Assume that (h,A.d.c.7,A,
p) € F. {1, I, #0, system (4) goes through a
flip bifurcation at E, , i. e. , a stable 2 -period orbit
appears when h =h, —sgn(l;) if [, > 0 or a unsta-
ble 2 -period orbit appears when h =h, +sgn(/,) if
[, <0, where0 <e < 1,
L ={pd(d+o+r)(R/" —1)h; —
2(d+pd(RY" —1))hy —2(wr — 1)}
hy ' (we 1)1
L=ct —c,(d+o+r)(wy T1)h,.
Here w. =1—2 h, (2 h, —h,) ' h,-h, are defined

in section 2 and

¢ = { [%dpu — AT (dFotr) T +%Ap(l T <d+g+r>%}h;§ —2pAT (d+otr)Th )

{w: +pd (R —1)h, — (6+r)h, )

e =b {plws +2d =327 (d+o+r) T hi+p1+p)A7 (d+o+r)

{w. +pd(Ry —1)h, — (c+r)h, —1},

2p—
P

“TAAT —d (d+o+r)7 )+

by = { [%dj)(l*p)/ﬁ(dhﬁtr)%l +%Ap(1+p)/1% (d+a+r)1172}h,2, —2pA7 (dtotr)Th, ) .

(2+[o+r—pd(Ry —1) hy} (o —1) ",

Proof (h,A,d,o,rsA,p) € F,,
straight computation shows that w. =—1 and

+ =120, (2h, —h) "€ C—1.1)

Since

are two eigenvalues of the Jacobian matrix at E,.
Let & =S, —S" .p=IL.—1",pu =h —h, for each k
=1,2,++. System (4) can be rewrote as
&1 —ané, Tany, taé tauby, +

as 77?, Toné&upn Thu s 01 ,2,/1,1 +

b 5117771/1:1 +bys 7]121/1,, To( (¢,
Pt = fs
Put1 =an&, Fann, tané tanéy, tasy +

+ T )2 )/lna

11218,;1” T by Mnfhn +
bas Si/ln + by, 5,7];;/1 w Thss 77,24/17, +
oCClE D)+ g [Pp (5)

where

an=1—(d+AxpS " 'I")Hh,,

a;; = —(d+o+rh,,

1 ot
alazfgllj)(])*l)sap I hy s
ay =—ApS" " hy,
as :09a21 :APS* pilI* h,(,7
as =1,

b“:i(d‘*’APS*ﬁ II* )9
b,=—(d+o+r),

b3 :*%/\P(Pfl)s*/) I,

by =—ApS* "1,

bi; =0,

by =ApS*r 1",

by, =0,
and ass = — a3 Ay = @14 sAss = — 1503 = — D13 »
by =— by s by =— bys. Obviously, a;; # 0.

Through transformation
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& aiz 0 aiz

o | = 0 1 0

SRS

N —l—an 0 wy —anlv,
system (5) can be normalized as

Uyt —1 0 0
Sl | =] 0 1 0
Uyt 0 0 w=s

J1Cu, 58, 50,)

0
foCuy 58, 50,)

£

1

&
+

<

where

fl (U 58,50, ) :}'1 (alz (u, +’U” )
0ns (wr —an)v, — (1 +a,u,)

and

For Gy s8ss0,) s = foCay (u, +v,)
Ous (wr —an)v, — (1 +a,u,).

Here
(wi —an tap)ag 2
ap (we +1)

(wy —an Tap)ay

ap (we +1) 5”77”

]‘1 (571 ’fln’vn) -

(wy —an Tap)ags 2
ap (wy +1) &

oCCl& |+ )+

(wy —an )by —apbs,
aqr (a}+ +1)

(w+ —an )by, —aby, +
ap(w, +1) T
(wi —an tap)by ,
i, T
ap (wy +1) S”Iu"

(wye —an +a12 )bn
+
an (0. 1) Eanuttn

+

Eupen T

(w+ —dan +Ll12 )1)15 2 +
ar <w+ +1) 7771#71

o((|& | +

)2 ),U”a
(1+an —an dais 2
+
an (@t &
(1 +ay, —ap)ay
ap (we T1)
(1+ay —ai)as
ap (wy +1)
oCClE | gD+
(1 +ay )by Tanbsy,
ap (we 1)
(1 +ay )by Tanbs, +
ap; (w+ +1) Tt

7711

}2 (S,m/l,mﬁ,,) =

& T+

7+

Euprn T

Sﬂ +

(1+ay —ai)by ,
St
POTESD, Entn

(1 +ay —ap)by
+
a, ((1)+ +1) Ev17711/1n

(1+an —aw)b; 2
ap (we +1) Tt

oCCLE |+ 7)) e
By Ref. [2] or Ref. [9], there is a center manifold

% (O) for system (6). We can express locally it

+

(6)

as

Wi (O) ={(u,+8,,0,) ER v, =W (w,.5,) »
< <1, 16, | <e, K1,
W (0,0) =W/ (0,0) =W} (0,0)=0}.

Uy,

Clearly, we can assume that
W (u,.8,) =bu, +b,u,d, +b:0, +
oCCI& | 0D
on the center manifold W5, (O). By (6), we ob-

tain
V1 =w+ U, T f5 (Uys8,s0,) =
w+ W, 56, + f2 (s 6, s W (w,56,)) (1)
Comparing the coefficients of (u,,d,) on both
sides of the equation in (7), we obtain the ex-
pression of b, as given in the statement of this the-
orem, b; = 0 and
b, ={2[d +pd (Ry" —1) Jh, —
pd (d+o+r)" (R/" —1)h; —4}
hy ' (ws 1) 7.
Confined on W5, (O) we get
U1 — —u, +
SiCuy 0, s W (56,0 ) = : F (u, 56,
where
F(u,,6,) = —u, +
cul tesu,d, teuid, tosu,dl ol

ap (wr T1) +
oCClu, | +18,1)").
Here

cs = (aby —b1; —anby) (wy —ayn ) —
atyby =(d +o+r){2(wy —1)+
2{d+pd(Ry* —1) }h, —
pd(d+o+r)(R)* =1)hi}.

cp ={(apaub, +b,0) (w: —a; )+

a%z (2 aizhy, Tby3) —
(ayzay b, Tayby) (1+ay )}

(wy —an Tap),
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cs =0y (byws —brpan) (we —an tan),
and ¢, , ¢, as given in the statement of this theo-

rem. Thus,

(72F _ C3 =Z
Ju, 38, | cuy5,>—coo> @z (wy T1) v
1 (*F\* 13°F
BGH 33
2 \du, 3 Ju, Cu,20, > =C0.0>
2C2 2(,‘% 2[2

aty (wy +1)° :a?z (we +1)%°

where [, ,/, are the same as which are given in the

ap (wy +1)

statement of this theorem. By Ref. [11], system
(6) undergoes a flip bifurcation at E, if /, I, # 0,
so does the equivalent system (4). In addition,
by the expression of F(u,,d,), we get the normal
form of (4) confined on its center manifold as
Uy = —{1—=4Lh—hy) tolh—h,) ju, +
sgn (L) ud +o(ul),

which implies the bifurcation direction of h as giv-

(172 w4 )CUZ—

w: =1—h {1+pd(RY"—1)Fi v/ —A}/2,
pt =hAd+pd(R* —1)}/2,
1
8V —A

Yo P

en in the statement of this theorem.

The bifurcation analysis for (h,A.d.o,7.A,
p) crossing through the non-hyperbolic surface F,
is similar to the non-hyperbolic surface F,. Thus.,
we omit it here. The proof is end.

In the following we discuss the bifurcation
phenomena of system (4) when (h,A,d.c,7,A,p)
crosses the non-hyperbolic hypersurface NS.

Theorem 3.2 Assume that (h,,A,dsos7sA»

p) ENS. If
{d+pd(R)? —1)}*#
jpd(d+o+r)(RY"—1).j=2.,3 (8)

and ¢ # 0, system (4) goes through a Neimark-Sac-
ker bifurcation at E, , i. e. , a unique attracting invari-
ant closed curve appears when h=h, +e if { < Oor a
unique repelling invariant closed curve appears when

h=h, —e il £ >0, where 0<(e <1 and

1 ) .
Y2071 ) 7? ‘ AN ‘“ - ‘ Yoz ‘2 +Re(vsi0 ).

{(2h, (o= (d+s+rh,) (p—1)(AAT —d (d+a+r)7) —

(4p" —A(d+o+rhp—h.A) (d+o+r)7 pas (d+otr)'T +

é{z (d+o+m)T —(p—1)(AxT —d (d+o+r)7) par (d+o+r)Tht,

Tnt =pAT (dtotr) T {(p—1)(AXT —d (d+e+r)¥Oh, —20 (d+o+r)7 )

1
2y A
1
2y —A

1
d +G+r)hu 7(0) +Ihu ’

Yoz P T

(2h,(p—(d+a+rh,) (p—1)(AAT —d (d+o+r)7) —

(408 —4(d+o+rhp—hiA) (d+o+r)F 1pat (d+o+r)'T +

(2 2p—(dtotrh) (dtotr)r —h, (p=1) (AT —d (d+o+r)7)}p s (d+otr) Thi,

c oL
Y1 16
1

32 —A

2p

p(p—1A7 (d+o+r) T ht +

[ 2o+ (d+o+rh,) (d+e+r7 —h, (p—2) (Aa7 —d (d+a+r)7))

{(4Co—(d+otrh) (p—2)

(AAT —d (d+o+r)7) +(12 0" —12(d +o+r)h,o —h:A) (d+o+r) T )

p(p—DAT (d+ot+r)Th,,
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h.s A are defined in section 2.

Proof Since (h,,A.d,o.7.A,p) € NS, there
are two complex eigenvalues w; of the Jacobian matrix
at E, which satisfy ‘wi ‘ =1 Let§ ¢+ =S, —S" ,p,
t =1, —1"vpt =h —h, System (4) can be
rewrote as

Er —ar§, tazy, Tas& +a &y, +
as& tasm, o CCLE |+ 9. 1)),
eir =ki & TRy HhE TR Em, HhiE T
ks&m, To (€, >*)

+
where
ay=1—(h, tp) (d+pd(Ry"—1)),
a,=— (h, tp)(d++o+r),

ar == (h, +w)p (p—DA (d+

ct+r) PP (AQYP —d (d+e+r)VP),
ay = — (h, Tp)p AV (dFe+r)P e

as = —%Un Fwp (p—D)(p=2HA
(dto+r) Y"(AXY —d (d+o+r)'7"),
4=~ Ch0p (p= DA (dtotr) @2/,

ki = Ch, Tp)pd (RY? —1),

ky =1,k; = —as,

ki = —ay ks = —as ks = —as.
The Jacobian matrix of system (9) at (0,0) has a
pair of eigenvalues

ws (p) =

1= Che =) {d+pd (RY* —1) Fi v/ —A}/2.
By Table 1, |w.(0)| = 1. Leta + iﬁ/\ represent
w: (0). We obtain0 < || <1and 0 < \E‘ < 1as
A <0, which imply o’ (0) #1 for all & = 1,2.
Additionally, w® (0) # 1 if and only if ¢« # 1, —
1/2; By straight calculation, we can get that
wl (0) % 1 if and only if (8) holds for j = 3 and
wt (0)%# 1 if and only if (8) holds for ;j = 2.
Then, o (0)#1 for allk = 1,+-+,4, i.e. , condi-
tion (SH1) of Ref. [5, Theorem 3. 5. 2] holds
when (8) holds.

On the other hand,

d|w.(0)|/dy =d + pd (RY" —1) > 0.
Thus, condition (SH2) of Ref. [5, Theorem 3. 5.

2] holds. Through transformation
S,,} 0 —(d+et+rh, {u,,}
T B g U

where p is exactly as the definition in this theo-

rem, (9) is transformed into
u”

{unﬂ B @ *é +[fl(un9lvn)}
Unt1 B a ’

3 foCuys0,)
where f, (u,.v,) and f, (u,.v,) consist of all

Uy

high order terms higher than 2 order. Let w: (0)
as w.. By straight calculation, it is easy to check
that ¥,0 %11 Y02 » ¥21 given in this theorem are ex-
actly as

e fron 42 fo +

i(f2u”u” 7f2‘v”’z/” —2 flu”v” )}1/8,

e Fro, FiCE o+ Fron )} /4

{fl w, 7][11’”1»” —2 f2u”u” +

i(qu”u” 7f2‘v”’z/” +2 flu”v” )}1/8,

Lo+ Lo~ Fruns —fro ) /16,
System (9) goes through a Neimark-Sacker bifur-
cation at (0,0) if £ # 0 by Rel. [5, Theorems 3. 5.
2], then system (4) appear same bifurcation at
E,., where { is as the definition in this theorem.
We get the bifurcation direction and the attractivi-
ty of the closed invariant curve by the sign of { as
presented in this theorem. The proof is end.

The results of flip and Neimark-Sacker bifur-
cations reveal that the susceptible and infective
individuals can coexist in stable period-n orbits
and cycles. It is very difficult to consider that
case that (h,A.,d,o,r,A,p) crosses non-hyperbol-
ic surface R because 1:2 resonance happens. On
the other hand, we do not discuss the dynamical
behavior near E, in this paper. Bifurcation phe-
nomena maybe complicated near E, because of its
complicated topological type and non-hyperbolic
situation. From the perspective of biology, the
results of flip and Neimark-Sacker bifurcations re-
veal that the susceptible and infective individuals

can coexist in stable.
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