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Some rigidity theorems of the Kihler angle of surfaces in C’
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Abstract: The Kahler angle of a surface immersed in an almost Hermitian manifold is an important invar-
iant which can be used to measure the deviation of the surface from being a complex (or pseudo-holomor-
phic)one and, in particular, the surface with a constant Kihler angle has been an interesting object in
the study of submanifolds for years. In this paper, we prove two rigidity theorems for complete self-
shrinkers of mean curvature flow with constant Kahler angle, which are immersed in the complex Eu-
clidean space C* of dimension 3. These are direct extensions of some known theorems for self-shrinkers
immersed in C*
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1 Introduction case thatm =% dimg N, the totally real submani-

Let (NoJ.C++) dbe an almost Hermitian folds are also called Lagrangian. Furthermore,

when m=2, we can define the Kéhler angle 0 of x
byU,

manifold with w its Kdhler form, and x:M”—>N be
an isometrically immersed submanifold of dimen-

] ] " w=cosfd Vy, 6C[0, =] (D
sion m. Denote, accordingly, by TM", T+ M"

Then, x is totally real if and only if the Kahler
and d V) the tangent space, the normal space and

_m .
the volume form of x. Then x is called totally re- angle 6:?. Furthermore, if cos 00 everywhere

alif J C . TM”) CT+-M". In particular, in then x is called symplectic. Symplectic surfaces
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are also of great interest to study. For example,
if the initial surface of a mean curvature flow in a
Kihler-Einstein surface is symplectic, then the
surface M, at every time ¢ is also symplectict?*!.
So this kind flow is reasonably referred to as a
symplectic mean curvature flow.

As we know, the concept of Kahler angle has
been effectively used to study conformal minimal
surfaces that are immersed in the complex projec-
tive space CP". For example, each map appeared
in the Veronese sequence must be a minimal im-
mersion of 2-sphere into CP". With a constant
Kihler angle ™. On the other hand, the Kihler
angle is successfully used in Refs. [7 Jand [ 8] to
study minimal surfaces immersed in the nearly
Kihler manifold S°.

Denote by R""* the real Euclidean space of
dimension m +p with m =2 and p=1. Then, an
isometric immersion x: M"—R""* with the mean
curvature vector field H is called a self-shrinker

4

(of the mean curvature flow) if H= —x", where

+ is the orthogonal projection of R”"” on to the
normal space T+ M of x.

To introduce our main theorems in this pa-
per, we first cite some of the relevant results. By
using the self-adjoint property of a stability opera-
tor, Arezzo-Sun proved the following two rigidity
theorems

Theorem 1. 1" Let x: M* —>C? be a com-
plete symplectic self-shrinker with polynomial
volume growth. If the second fundamental form A

<2, then |h|*=0 and x(M*)

of x satisfies | h
must be a plane.

Theorem 1. 2" Let x: M*—C’ be a com-
plete symplectic self-shrinker with Kahler angle 0
and polynomial volume growth. If |2 |* is bound-
ed and cos 08>0, then 2 (M*)must be a plane.

Remark 1 Before the appearance of Theo-
rem 1. 2, Han-Sun proved in Ref. [10] that a
translating soliton x: M* = C* to the symplectic
mean curuature flow in C* with polynomial vol-
ume growth, non-positive normal curvature and

bounded second fundamental form must be mini-

mal if the Kihler angle 0 of x satisfies cos =9
=0.

Complementary to the above symplectic case,
Li-Wang considered the ILagrangian case and
proved the following theorem:

Theorem 1. 3" Let x: M*—C’ be a com-
pact orientable Lagrangian self-shrinker. If the
second fundamental form h of x satisfies |h|*<2,
then |A|?= 0 and x(M?) must be the Clifford to-
rus S' (1) XS' (D).

Remark 2
Theorem 1. 3 in Ref. [12 ] under the additional

condition that the Gauss curvature K of M? is ei-

Castro and Lerma also proved

ther non-negative or non-positive.

Recently Li Xingxiao and Li Xiao proved the
following theorems which are generalizations of
the above theorems in some different direction:

Theorem 1. 4% Let x: M*—>C? be a com-
plete self-shrinker with Kahler angle @ satisfying

cos 0= 0. If the second fundamental form & of x
2
is square integrable with the weight e 2,

that is,
J R |% e dVy < oo (2
M

then 0 is constant and x(M?*)is either a Lagrang-
ian surface or a plane.
Theorem 1, 5/

plete self-shrinker with Kéhler angle 0. If the sec-

Let x: M*—C? be a com-

ond fundamental form h of x is square integrable

with the weigh e” 27, and there exists a number A

€[0,1) such that

A cos?0 | bJM |2

2< 4
Vo= 4(1 — rcos’0)

then 0 is constant and x(M?*)is either a Lagrang-
ian surface or a plane.

Remark 3  The complex structure Jy ap-
peared in Theorem 1.5, which is well-defined on
C? along x, was also used in Refs. [2,14].

The aim of the present paper is to extend the
above last two theorems to higher codimensions.

To this end, the natural, simpler but important

step is to consider surfaces in C* of the next high-
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er dimension to C*, and the basic idea of doing so
comes from Ref. [13]. Now the main theorems
here can be stated as follows.

Theorem 1.6 Let x:M*—C’ be a complete
self- shrinker with the Kéihler angle satisfying sin
070. Then the trivial holomorphic bundle M* X C?
is decomposed into the orthogonal direct sum of
two J-invariant subbundles V and N: M*XC’=V
@N, where V is of rank 4 and generated by the
tangent bundle x. (TM). Furthermore, if

(1) cos 6=0;

(2)N is flat with respect to the induced con-
nection;

(3) The second fundamental form A of x is

2
||

square integrable with the weight e 2", then 0 is
constant, and x (M?) is either a totally real sur-
face, or a real plane contained in C* up to a holo-
morphic isometry of C*.

Theorem 1.7 Let x: M*—C® be a complete
self-shriker with Kéhler angle satisfying sin §+#0.
Denote by N,: = Nt C T+ M, the sub-normal
bundle complementary to N in the normal bundle
T-M of x. If

(1) N is flat with resprct to the induced con-

nection;

(2) The second fundamental form h of x is

square integrable with the weigh efJ%L;
(3) There exists some A€ (0,1)such that
(1=2)cos’0C|h|* —2Kx )
1—2Xcos @

| vo|*< 3

where Ky, is the (Gaussian) curuature of N, ,then
0 is constant, and x(M?) is either a totally real
surface, or a real plane contained in C* up to a
holomorphic isometry of C*.

Remark 4 1In case that sin 0740, the orienta-
tion of M? and the complex structure J naturally
define an orientation of Ny and N by formulas (6)

~(8) (see Remark 5). Moreover, the complex

structure J induces an orientation-preserving bun-

dle map J: TM — N,. In particular, the (Gaussi-
an)curvatures KN@ ,K y on N, and N, respective-

ly, are well-defined. So the condition in the above

theorems that N is flat is the same that Ky=0.
Furthermore, for any local oriented orthonormal
tangent frame {e; .e,} and oriented orthonormal
of N,, the Ricci equation

frame {e;, e, }

implies that

| h1*—2Ky = |h|* —2R = =
: 3412

DVChE +hiDE + (Rl — R3O 4 (Wi +

(h$D* + (h3)?* +(h$D*H) =0 4)
It can be easily shown by (14) ~ (16) that, when
sin 2670 ,the equality in (4)holds if and only if x

is of constant Kahler angle, the bundle map J is
connection-preserving and, up to a holomorphic i-

sometry of C*, x(M?*) C C2.

2 Kahler angles of surfaces and self-

shrhrinker of mean curvature flow

We shall recall some necessary facts for the
Ka hler angle and self-shrinkers. First the follow-
ing convention of the ranges of indices are to be a-
greed with throughout this paper, if on other is
specified: 1 <i,j,k <2, 3 <a,f,y <6, 1 <A,
B,C < 6.

Let x :M’* —C® be an immersed surface and
ws J»{*, ) be the standard Kéahler form, com-
plex structure and the corresponding metric on
C? ,accordingly. The Kaihler 0 of x in C* defined
by (1) is equivalent to be given by

cos =(J(x.e),x.e) (5
where {e;,e,} is an oriented orthonormal frame
field on M*, Clearly, the left hand side of (5) is
independent of the choice of {e; ,e;}.

Suppose that sin @ # 0. Then, starting from
any oriented orthonormal frame field {e, ,e,} on
M, we

frame field

can find along x an orthonormal

{x.e1 2. e 55,005,065
of C*, such that following are satisfied!™ .
J(x.e) = (x.e)cosd+
e; sin 0, J (x.e,) =
—(x.e)cos @ +e, sin 0 (6)

J(es) =— (x.e)sin @ —e, cos G, J (ey) =
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—(x.e;)cos 0+ e; sin B D)
J(e:,) :_669.](@(5):65 (8)
Remark 5  Clearly, {e;.e,} is uniquely de-

termined by {e, se,} and J.but {e;,es} is not. De-
fine N, : = Spang {e;.e,} Then N, is independent
of the choice of {e, se,} and thus is a well-defined
sub-normal bundle. Note that the orientation of
N, given by {e;,e,} is also well-defined and u-
niquely determined by the orientation of TM. Let
N be the sub-normal bundle orthogonally comple-
mentary to N, in the normal bundle T M, which
is J invariant and has the orientation by {e;,e; /.
WriteV: = 2, (TM) @ N,. Then V is also J in-
variant and the trivial bundle M X C’ can be de-
composed as follows:

MX C=VON =z, (TM) ®N,®ON (9

Denote by D, D and D' the Levi-Civita con-
nections on M*, C* and the normal bundle, ac-
cordingly. Then the formulas of Gauss and Wein-
garten are give by

Dx(x.Y) =x. (DxY) +h(X.Y),

Dye= —x. (AX) +Dse.
where X and Y are tangent vector fields, £is a nor-
mal vector field on x, h denotes the second funda-
mental form and A is the shape operator.

In what follows we often identify M* with
x (M?) and omit x, from some formulas and e-
quations,

Let {w?} be the dual frame field of {e,}.and
{wh} the components of the Levi-Civita connec-
tion of C* with respect to {e, }. Since the Levi-Ci-
vita connection D is a comples one, that is,

D(Je,) =J(Dey) .
a direct computation similar to that in Ref. [7] u-
sing (6)~(8)proves the following lemma.

Lemma 2. 1“7 If sin 040, then the following

identities for an immersed surface x: M*—C?,

di=w) —w) (10)
(w} tw3)cosd+ (w; —wi)sind=0 an
w) =ws cos 0 +twi sin 0, wh =

—w] cos @+w; sin 0 (12)
wi = "} sin § —wj cos 0, wi =

—wj sin 0 +w;3 cos 0 (13)
Writew§ = >, Tisw”. Thenw! = > Mo’
with h¢ being the components of the second funda-
mental form 2 of x. Thus, by (10), the Kihler
angle 0 of x is constant if and only if
hiy = hiy . hiy, = hi, (14
Moreover, by (12) and (13), we have

5 1
1 g( .
Sin

011?1‘ —cotdh;; .

Fii:sirll 6}13,+ cotbh;,; (15)
1 . .
ry, = *m}li;* cotbhy,;, I'};, =

fﬁhiﬁr cot GhS, (16)

Now let x: M”"—R""*? be a self-shrinker (of
the mean curvature flow)then the mcan curvature

L+, In this case, there is

is by definition H= — x
an important operator L acting on smooth func-
tions, which was first introduced and used by

Colding and Minicozzi"'**,

This operator is de-
fined as follows:

L =A—(2. V) —e 5 div(e 27 «) (D

where A, V and div denote the Laplacian, gradient
and divergence on M" ,accordingly.

Given an orthonormal tangent frame field
{e;351<<i<<m} on M"” with the dual {w'} and a

normal frame field {e,;m +1<a<<m+p},write h

= Zwﬁh‘f]w”wfea. Then the H = ZHH"ea with

H* = E;h?f'
Lemma 2, 2t

shrinker. Then
H = Dhi(ase) (18)

Let x :M"—>R""* be a self-

We end this section with another lemma
which is essential to our argument.

Lemma 2.3 Let 2:M"”—> R""’ be a com-
plete immersed submanifold. If « and v are C*-

smooth functions with

J (uVo |+ VaVo|+] ubv de ™ dVy < oo,
M

then it holds that

J uLvef% dVy, :*J <Vu,Vv>ef¥dVM.
M M
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3 Examples

In this section, we provide two examples of
surfaces in C’of constant Kihler angle, which are
of course surfaces in C* with constant Kahler an-
gles.

The Clifford torus
T?:=S'(1) XS'(1) C CXC=C*C C°.
Clearly, T? is flat, Lagrangian in C*and totally

Example 3. 1

real in C’.

Example 3. 2 ") 2-planes in C* with con-
stant Kédhler angles.

For any given two real constants § ; and 4 , ,
denoted : = 0+ 0,. Let x :R?* - C° be defined

by(zm Z 2 Zs)Z.T(u1sUQ)With
21 — U COS ‘91+ N T 1142COS 629
2,= —u,sin@h—~—1 u, sinb,,

z .= 0.
- _ 9 _
For Cu,, u,) € R*. Choose e, = and e, =
9u1
aJ
T Then
x .e =(cosf, 0,0,—sinb,),
1‘%92:<O, 7Si1’102g COS@gy O) (19)

Thus
J(x .e) =(0,sinf , cosf,,0),
JCx e, )=(—cosf,.,0, 0, —sinb,)
20)
It follows that
(J(x.e)sx.e,) = cos (O +0,) =

implying that x is of constant Kahler angle 6.

cos 0,

4 Proof of the main theorems

Let x:M?—>C?® be a self-shrinker with Kahler
angle §. Suppose that sin @ #0. Then, by virtue of
Remark 5, there are two well-defined sub-normal
bundies N, and N,such that V. = x. (TM) @®N,
and N are both J-inviant, and the decomposition
(9 holds. Thus, to prove Theorem 1.6 and The-
orem 1.7,we only need to prove the rigidity part
of the conclusions. For this, the following lemma
is needed:

Lemma 4.1 Let Ky, be the Gaussian curva-

ture of the sub-normal bundle Ky . If N is flat,
then it holds that
Lcos§ =—cos@ (| h |* —2Ky) 2D

1

> Lcos’d =sin*0 | V 0 |* —

coszﬁ(\h\Z*ZKwo) (22)

Proof As done in the Section 2, we choose
an oriented orthonormal frame field { e;,e;, } on
M? which, via (6) and (8), makes it possible for
us to find a normal frame field {e;,e,se;5e5 .

Then by (10) and (11)
Ve = Z(h}; 7h§i)ei’lei — Iy =

cot OCht; + hi)fori = 1,2 (23)
From (15),(16)and the Codazzi equation, it fol-

lows that
A) = Z(h%,- —hi) ., =
DiCeihly —hi) — (Bl —hipD)) =
Z(h{,, —hi; +hi T4 — R Ty —hi Th +
Wi T3+ DTG + R T — Ay TS —

RS TS) = DVCHY —H. + (bl + RO T, —

i + BDTS + bl (2 hS + cot BT +
sin 0
6 1 5 6
1i (7 " hz, + cot 0}11,‘) -
sin 0

hs; (.L hé; — cot Oh5;) —
sin 0

hg, (_ﬁe h?l — cot @]Li;,)) =
DICH.L —H.} + cot OCChY +hiD? +

(hi)* + () + (h3)* + (RSP +
2
sin 6
By the Ricci equation and the flatness assumption

of N,

Chih S — hShs: ) (24)

0=Knx =Rz, =hi;h}; —hShs:.
Therefore
A) = DV(H.I — HY + cot 0CChl, +hiD? +
(RiD* + ()™ + Chy)® + (hz)™)) (25)
By using this and (23), we find
Acosf=—cos| VO | —sinfA)=
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— cos 0 (hi, —hi)?* —sin0CH,| —H,}) —
cos 0> ((hi +hiD? 4+ (hiD? + (h$)? +
(h3)% + (h$)?) =— cos 6> ((hi; —hiD® +

Chiy +hiD* + (A1) + (RD” + (ki) +
(h$)?) —sin§(H.,! — H,3}) =
- COS&(‘ h ‘2 *2R3L421) -

sin 9(H,} —H,}) =— cos (| h |* —2Ky,) —

sin0(H,; — H,}) (26)
From this, we also find

1

?A(coszﬁ):| Y cosd |+

cos @ ( Acos@)=sin* 4| Vo |*—

COS2 6(‘}1 ‘2 *ZKNU)i

cos 0 sin9(H,} — H,3) 27

By Lemma 2. 2, we have

H,t —H,} = > htilx.e) —
Dhilaaey = D)l —hid(x.e  (28)

Inserting (28) into (26) and (27), respectively,
we obtain

Acos == cos 0 C [h]* —2Ky ) —
sing ) Chi, —
—cos (| h |* —2Ky,) —
(xs sing > Chi, —

g;)<1‘9€{> =

g;)e; >:
—cos (| h |* = 2Ky, ) + <z, V cos 0
(29)

and
1

> Acos’ 0 =| Acos @ |*+ cosd (Acosf)=

sin® @ | V0 1% —cos* 0C| h |* — 2Ky, +

%Cosﬂx,v cos@) = sin 0| Vo |* —

cos” (| n|* —2Ky) +% (x,V cos” 0)

(30)
By the definition of L, (29)and (30) become, re-
spectively,
Lcos@ = Acos@ —<x,V cos )=
— cos0C|h|* —2Ky)

iL cos® @ :lA cos® § — 1 (x,V cos’* §)=

2 2 2

sin” 0 | VO|* —cos” 0C| h|* — 2Ky, ).
Thus Lemma 4. 1 is proved.
The proof of the rigidity part of Theorem 1. 6
Takev = cos . Then
| Vul|? =sin® 0 | Vo|* =
sin® 0 > [ty —hi 1T <

2sin’0 > (WP + (hED?) <2 | h|?

(3D
| Ly |=(|L cos @ | =
\cos@(\h\z—ZK%)\<4\h|2 (32)

|x

|h|* e T dVy < e, (31)and(32) show

M

Sincej
that,foru =1,
J‘M(‘uVU‘Jr | VuVo|+ [l e dVy < .
Thus by Lemma 2. 4,we obtain

| Lcoste = avy o (33)

Since, by the assumption, cosf = 0, it follows
from (21)and (33) that

0= J L Cosﬁef‘%dVM :*J cos 0C|h|?* —
M M

2Ky e T dVy <0 (31)
where we have used the inequality (4). Conse-
quently, we obtain

cos O |h|* — 2Ky )=0 (35)

Consider the function ¢=| V@ [*. If ¢ is not
identically zero on M?, then there exists a point p,
where ¢ # 0. So by the continuity, there is a con-
nected domain U containing p, such that ¢>0 at
every point of U. Denote

Uy= {p € U] cos@(p) =0 }.
The U, obviously contains no interior points.
Therefore U\U, is dense in U, In particular, U\U,
# (. By (35), |h]|* —2Ky, =0 in U\U,. So by
€]

Rl =hiis hy = —hiss hi; =hy; =

hy;=h$;, =0, i=1,2
hold identically on U\U,. Thus, by (14), we
have V0= 0 on U\U, which contradicts the defi-
nition of U. This shows that ¢ = 0 on M, that
is, 0 is constant.

If cos 0 =0,then x is totally real.
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If cos§# 0, then [h|* —2Ky =0. It follows
that
Rty =hiy = —hs s hi, = hsy = —hiy s
B, =hi, =hi, =hS, =0, i =1,2
implying that H = 0. Since x is a self-shrinker, we
obtain
(xye3) = (xsey) = (xse;) = (xse6) =0
(36)
Hence,for «=3,4,5,6,
<1,D[(ea> =e;{x-e,) *<D‘,l.r ve,) =
0—<e;se,) =0,
namely
(xv —Ase; + D Thes) = 0.
So that
DIhGlase;) =0, a = 3.4 (37)
From (37) ,i]t is easily seen that
ki iy hiy s

h?z hgz h%z héz

that is,

hihi, — (hi)? = hiy ki, — (h3)? =0,

which with H=0 shows that
i =hi =hiy = h3 =0.

We already know that A7, =h3; =hS, =hS, =
for i =1,2. So M’ is totally geodesic and, by the
completeness, M? must be a plane, Finally, by
(15) and (16),N is parallel in C*, This with the
fact that N is J-invariant means that,up to a holo-
morphic isometry of C?*, x (M?) is contained
in C*.

The proof of the rigidity part of Theorem 1,7

Similar to those in (1), we take u= land v= %

cos’d. Since

| Vv |? =cos’* Osin” 0| VO I|* =

Lant20> | nt, —ni 12<

A
Lsin20>) (i + i =3 1w
2; [ 1i 2i —2

(38)

\LU\:%\LCOSZ 0 |=sin® 9 |V0|*—

cos? 0(\/1\2—2Kwo)£6|h|2 (39)

we can use LLemma 2. 3 to get

%J (L cos® §)e 2 ‘dVM:O (40)
M

On the other hand,by (3) and (22),we find

% L cos’0=sin’0 | VO|* —

cos’@C|n|* —2Ky, ) =
Acos’0C|h|* —2Ky )
1—2x cos’d B
cos’0C|h|* —2Ky ) =
(1=a)cos”0C|h|* —2Kx )
B 1—2 cos’d

sin®0

Take the integration of the above inequality, we
find easily that

cos’0([h|* —2Ky ) =0.
By using an argument similar to that in (1), we
P 2Ky, =

0. Then the rest of the proof is omitted here since

can conclude that either cos =0 or | A

it is the same as that of the proof of Theorem

1.6.
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