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A partial inexact proximal point method for separable convex programming
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Abstract: In this paper, a new method is proposed for solving a class of separable convex programming
problem. The method is referred to as the partial inexact proximal point method. In the method, we
take a fresh look at the alternating direction method of multipliers and two subproblems are solved inde-
pendently. One is solved directly and the other is handled by bring in inexact minimization. Convergence
of the method is proved under mild assumptions and its efficiency is also verified by numerical experi-
ments
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. be the subgradient of §, (x) and 0, (y) respective-
1 Introduction .
ly. By convexity of 8, (x) and 0, (y), we know

In this paper, we consider the following con- that f(x) and g(y) are monotone with respect to

vex optimization problem:

min 0, (x) +6,(y), s.t. Ax—y=0 (D
where x € X,y €Y, X and Y are closed convex
subset of R" and R" respectively, A € R"" is a
given constant matrix. The functions ¢, and ¢, are
closed proper convex functions on X and Y re-

spectively. Let f(x) =390, (x) and g(y) =30, (y)
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X and Y respectively. Then problem(1)is equiva-
lent to the following monotone structured varia-
tional inequality: find (x,y) €Q, such that

(2’ =) f(x) =0,

/ 2
(v =y Tg(y) =0
Y (x'.y) €Q, where
Q={(x,y|lzeX,y€Y:Axz—y=0} 3
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By attaching a Lagrangian multiplier A € R”
to the linear Ax —y, problem (2)-(3) can be re-
formulated into the following equivalent form:
(' =) T(f(x) —A™A) =0,

(v =y T(g(y) +1) =0, 4
AW =D TAz—y) =0

Vw €W, where w=(x,y,A) and W =X XY
XR™,

weWw,

In practical applications, there exist quite a
few structured optimizations arising from the
fields such as electronic engineering and computer
science, including digital signal processing”
signal enhancement'?', natural imaging process-
2] and traffic network a-

ing"*', matrix processing™"

nalysis®, ete. A classical method for solving (4)
is alternating direction method, which was pro-
posed originally in Ref. [6], and studied inten-
sively in the literature, see e. g. Refs. [7~11].
Especially, Ye and Yuan'® developed a variant of
alternating direction method with an optimal step-
size. Given a couple of (y*,2*), the new iterate of
Ye-Yuan's algorithm is produced by
J @ =T —ATN —HA
v =3 T{g") +A' —HAz!
lik =X —HAZ* =31,
V' €X, Vy €Y, and
JR A G CRN G PR
W = —ya* * =3,
where y€(0,2) and «*

However, the alternating direction method

—y" ]} =0,
N *}”]})O,

is the optimal stepsize.

may fail since the subproblems are hard to be
solved exactly in many practical applications. He
and Liao et al. " suggested a method for solving
subproblems (4) inexactly. This method is re-
ferred to as alternating projection based prediction
correction methods (abbreviated as APBPCM),
for a given triplet w*
ate W' = (2, LAY of APBPCM is pro-

duced by the following two phases.

=(a*,3",2*), the new iter-

Prediction phase. Let H be a given positive
matrix. The predictor @' = (7*,5*,A*) is genera-
ted by the following procedure:

(1) Set

@ =Pylat = LG —ATGE

HAZ" —y* )]},
where 7, >0 is a chosen parameter such that

|| <or, Il 2t =2 ||,

g = f(a*) — f@) +ATHA (2 —7) ;

(i) Set

' =Pyly **[g(y )+ —
H(A:f\_y\))] ’

where s, >0 is a chosen parameter such that
&1l <ovs I v =51l 5
et =g(y") —g(3") +HG —3");
(iii) Update 2* via 2* =A* —H(Az" —3").
Correction phase.
wh T =wt —yad (wh ,wWEL),
where

d(w* @, ") =(w" —w") —G, &,

and
7l 0 0 &t
G,=|0 sI+H 0 |.,&'=|&
0 0 H! 0

In recent years, the inexact alternating direc-
tion method have been studied intensively in the
literature, see e. g. Refs. [13~18]. Accordingly,
the following notations regarding the variables vy
and A will simplify our analysis:

v=(y,1); V=Y XR";0" =(3*,2");

7 =@G"2, VREN;

={(y" Az, y A )EQ" ).

The rest of this paper is organized as fol-
lows. In Section 2, we summarize some proper-
ties and assumptions which will be useful for sub-
sequent section. In Section 3, we present our new
method. In Section 4, we analyze its convergence
under some mild conditions. Preliminary numeri-
cal results are reported in Section 5. Finally,

some concluding remarks are drawn in Section 6.
2 Preliminaries

In this section, we summarize some basic
properties which play significant roles for further
analysis.

Let || « ||:=1 « |, denote the Euclidean
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| z | = Vx> for any x € R". For the

nonempty closed convex set (), we denote by

norm,

P,( +) the projection onto ) under the Euclidean
norm;

Po(x) =argmin{ |z —y | |y €Q}.

Then, we will summarize some important in-
equalities relate to the projection operator Pg, the
proofs of these inequalities can be found in Ref.
[19].

Lemma 2.1 Let QCR" be a nonempty, closed
and convex set. Let Py ( ) be defined as above.
Then we have

(u—Pu)"(Pq(w) —w) =0, Yu€eR", weQ,

| Po(uw) —Po(o) | <llu—wvl,Yu,vel,
[Polw) —w 2 < u—w[*— lu—
Po(w |2, YueR", YweQ.

Throughout, we make the following assump-
tions:

Assumption 1 It is easy to compute the pro-
jection onto the sets X and Y under the Euclidean
norm;

Assumption 2 The mapping f(x) and g(y)
are Lipschitz continuous on X and Y, respective-
ly;

Assumption 3 The solution set of (2)-(3) is

nonempty.

3 Method for solving (2)-(3)

For analysis convenience, we denote
sl +pI 1

1
I -1
B

where 8>>0,0€(0,1). For a positive definite ma-
trix H € R™*",
smallest eigenvalue of H, Let A,,(M;) =§,.
Algorithm 3. 1
Step 0. Let ¢ >0,w’ =(a°,3%,1”) €R"1 X

{(1 —O s Bl 1 }

the operators A, (H) denote the

R: XR%.8>0.H=pl.OE (0. 1.y €[1.2).
set k=0.
Step 1. Find #* such that

~ :Px{jﬁfﬂ[f(jﬁ)*Al(/‘tﬁ*
HAzZ*—y")]) (5

Step 2. Update A* via

A= —HA "=y (6)

Step 3. Find 3" such that
¥ =Priyt f;[g<yk>+(1k—
HAz" =) ]} D)

where s; is a proper parameter which satisfies
I &1l <Os, Il »*
& =g(y") —g(3") +p(y" —3").
Step 4. Convergence verification; If

75//3 H ’

max{ || y* =5 | =, IA* =2" .} <e.
then stop.
Step 5. The new iterate is produced by
v =ut —od (', T, EY)
where
d(v*, 0", &) =M(v* —3*) —&*,
gh=(&,m",
and
T P e u
(0,6 = o' =7 1§ —
(vt —g*)Tex €

4 Convergence

Lemma 4. 1
(85 A, (M) =61.
(0", 0", ) =6 ot =3 |5
Proof
quality and the definition of &, we have
IYTek=—0s, ||l y*
By the definition of ¢(v*,%",£"), it is easy to get
that
(0", 7 ED = ot =T 1§, =01 10" =" |7

Let ¢ (v, ¥, &) be defined in

then for any %, we have

By using the Cauchy-Schwarz ine-

— (vt =7 =3¢ | 2.

/~h

,A®) be genera-
=(y",20).
Then for any v* =(y* ,A") €V*, we have

(v* —v ") Td (0", 7", ") Zp(v* , 0", EY).

Proof The inequality (5)~(7) are equivalent to

Lemma 4.2 Let @ —(1

ted by Algorithm 3. 1 from a given v*

(x=a)TCfE) —AT ) =0 (9
QA=—2AOTCA T =5 + G =y +
B (A —=2) =0 (10

(y =3 (g R+ (B s~y +
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(X =28+ =0 an o | dot ot et |2 =
respectively. 2ap(v* 0", ") —a® | d(v*, 70", |17,
Let w® =(x",y",1") be the solution of We can choose the value of ¢ =a * to maximize the

(2)-(3) and 7* € X,3* €Y, we have
(G = )T (f(x")—ATA*) =0 (12)
(3 =y )T (gly")+A")=0 (13
Adding (9) and (12) and using the monotone of |
(x), we have
QF=AOTAG =27 ) =0 (14)
Adding (11) and (13) and using the monotone of
g(y), it follows that
(3 =y T B+s) (V=3 +
QF =) =& — Q= A DHT (G —
¥y ) =0 (15
(10) is equivalent to
QP =ADT(—=AZ" =5+ =) +

BT (A=) =0 (16)
Combining (14)~(16), and using Ax* —y* =0,
we get

(7" —v HT(M(v* —3*) —&") =0 (an
By the definition of d (v*, %", &") and ¢ (2", ¥,
&), we get
(' —v ) Td (V" 0", 60 Zp(vt, T, EM).
For analysis convenience,we denote
0(a) = [l v* —v* 2= [ v (@) —v" II%.
Lemma 4.3 Let @ =(3* .5 ,1") be genera-
=y, 15).
=(y*,2*)€eV*, we have
() Z2ap(v" T, —a* 1 d(W" T ) |
Proof Since
0(a) = lv* —v* [ = v (@) —v" |*=
[ o* —v* —ad(* T E) |2 =
20(v* —v*)Td (v* , o, &%) —

ted by Algorithm 3.1 from a given v*
Then for any v”*

12— Il o* =0~

lower bound of the 9(a).
Theorem 4. 4
ated by Algorithm 3. 1 from a given v

Let @ =(Z*,5",A*) be gener-
k= (yk 20,
=(y*,A")eV*, we have
[ —o 2 vt —v" 12—
yQ2—=Ya” o1 I v* =3 ||2.

Proof we have

Then for any v

" —v* |2

12 —=2ya” (0", 0", ) —

v (@ )? 1d*, 7,6 1)<

17 =72 —=Pa" 0", 0", ") <
[o* =o" 2 =y(2—=pa" 6 |0 —7" |~

| vt —v”
| v*—v”

We see that v* is Feje'r monotone. After a similar
proof procedure as in Ref. [ 11 ], we can derive that
the sequence {w*} generated by the proposed
method converges to a solution of problem (2)-
(3). The proof is end.

5 Numerical experiment

This section is devoted to test the efficiency
of Algorithm 3. 1 in comparison with IPSALM in
Ref.[11] and APBPCM in Ref. [12]. We set ¢ =
1077, =s=2.4,8=1,y=1.3.

We consider the following problem:

mm{* | X—C %] XeS. NSy},

where
St ={HeR""|H"=H,H=>0},
and
Sp={HeHeR""|H"=H,H, <H<Hy}.

Tab.1 Numerical comparison of IPSALM, APBPCM and Algorithm 3. 1

IPSALM APBPCM Algorithm 3. 1

! No. of iteration Time (s) No. of iteration Time (s) No. of iteration Time (s)
100 81 0. 81 74 0. 61 59 0. 35
200 105 5.49 109 4.79 73 2.55
300 124 17. 28 121 13. 64 79 8.02
400 133 43.02 136 34. 26 95 20. 43
500 148 89. 41 151 72.20 97 38. 68
800 192 412. 25 173 311.12 111 179. 72




12 W)l K F

FIRCH AAF RO

6 Conclusions

In this paper, we take a fresh look at the al-
ternating direction method of multipliers and pro-
pose a new partial inexact proximal point method
based on the alternating direction method for
monotone variational inequalities with separable
structures. The proposed method handles one
subproblem by an inexact proximal point method
and solves the other one directly. The efficiency
of the method is also verified by some numerical

experiments,
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