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Flat ideals in unit interval with canonical fuzzy order
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Abstract: A characterization of flat ideals in the unit interval with the canonical fuzzy order is obtained

with the help of the ordinal sum decomposition of continuous t-norms. This characterization will be use-

ful in the study of topological and domain theoretic properties of fuzzy orders.
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1 Introduction

[ is a commutative

A commutative quantale
monoid (Q,&,1) such that Q is a complete

lattice and

P& ( \/ g, = \/ p& g,

i€l i€l

forall p € Qand {q,};c; =Q. The unit 1 of the
monoid (Q,&,1) is not necessarily the top ele-
ment of Q. Given a commutative quantale Q = (Q.,
& ,1), since the semigroup operation & distrib-
utes over arbitrary joins, it determines a binary
operation — on Q via the adjoint property
plg <req < p—>r.
The binary operation — is called the implication

corresponding to &. So. commutative quantales
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are often the table of truth-values in many valued
logic, with & playing the role of the connective
“conjunction”, — playing the role of the connec-
tive “implication".

A Q-order (or an order valued in the quanta-
le Q)™ on a set X is a reflexive and transitive Q
-relation on X. Explicitly, a Q-order on X is a
map P:X X X—Qsuch that P(x,2) >1and P(y,
2)&P(x,y) < P(x,2) for any x,y.z € X. The
pair (X, P) is called a Q-ordered set. As usual,
we write X for the pair (X,P) and X(x,y) for
P(x,y) if no confusion would arise.

HP. X XX —>Qis aQ-order on X, then P”.
X XX —>Q, given by P*(x,y) = P(y,x), is also
a Q-order on X (by commutativity of &), called
the opposite of P.
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If welet d, (p,q) =p—>q for all p,q € Q,
then d; is a Q -order on Q, called the canonical Q -
order on Q. The opposite di of d, is given by
dr (psq) =q—p. Both of (Q.d;) and (Q.dy) play
important roles in the theory of Q -ordered sets.

A fuzzy lower set of a Q-ordered set X is a
map ¢: X — Q such that ¢(x) &X (y,1) < o(y) for
all x,y € X. Dually, a fuzzy upper set of X is a
map ¢: X - Q such that X(x.y) &g (x) < ¢(y) for
all z,y € X.

Given a fuzzy lower set ¢ and a fuzzy upper
set ¢ of aQ -ordered set X, the tensor product of ¢

and ¢ is defined to be the value

0@ = \/ o (1) &g ().
ceX

Intuitively, ¢ @ ¢ measures the degree that ¢
intersects with ¢.

Definition 1. 17°7 A flat ideal in a Q-or-
dered X is a fuzzy lower set ¢ of X such that

(i) ¢ is inhabited in the sense that ué/Xgo(a) =
1;

(ii) @ is flat in the sense that for any fuzzy
upper sets ¢ 5, of X,

e @ AN) = (@@ ¢) N (o @ ).

Flat ideals are a counterpart of directed lower
sets, so, they play a crucial role in the study of
the topological and domain theoretic properties of
fuzzy orders. It should be noted that there exist
different approaches to the notion of “fuzzy ide-
als", a comparative study can be found in Ref.
[5]. We would like to note that the notion of flat
ideals has also been extended to partial metric
L6

spaces ' under the name “flat left module" in

Ref. [7].

In order to understand the structure of flat i-
deals in fuzzy ordered sets, the first step is to
characterize the flat ideals in the table of truth-
values, 1. e. , the flat ideals in Q with the canoni-
cal fuzzy order. Among the best known commuta-
tive quantales are the unit interval [0,1 ] together
with a continuous triangular norm (t-norm, for
short). The importance of such quantales in fuzzy

set theory cannot be over estimated. In particular,

the BL-logic of Hdjek ', a very successful theory
of fuzzy logic, is a logic based on such quantales.

The aim of this note is to characterize, with
help of the ordinal sum decomposition of continu-
ous t-norms, the flat ideals in the unit interval
with the canonical fuzzy order. The result is very
likely to be useful in the theories of topological
spaces and partially ordered sets based on contin-

uous t-norms.

2 Fuzzy lower sets of ([0,1],d,)

U on the unit inter-

A left continuous t-norm
val [0,17] is a binary operation & on [0,1] such
that ([0,1],&,1) is a commutative quantale. A
left continuous t-norm &. is said to be continuous
if it is a continuous map from [0,1]* to [0,1]
with respect to the usual topology.

Example 2. 1 Basic continuous t-norms and
their corresponding implications.

(i) The t-norm min:

a&b =a A b = min{a.b},

{1, a <b,

b, a >0b.

a—>b =

The implication of the t-norm min is known as the
Godel implication.

(ii) The product t-norm:
1, a <b,

a&b =ab,a—>b =
b/a, a > b.

The implication of the product t-norm is known as
the Goguen implication and, as a binary opera-
tion, it is continuous except at the point (0,0).

(iii) The Lukasiewicz t-norm:

a&b = max{0.a +b—1},

a—>b=min{l —a +b.,1}.
The implication of the FEukasiewicz t-norm is
known as the Lukasiewicz implication and it is a
continuous binary operation.

The following conclusion is essentially Prop-
osition 2. 3 in Ref. [9].

Proposition 2. 2 Let & be a continuous t-
norm on [ 0,1 ] and ¢ be an idempotent element of
&. Then x&y = x A y whenever x < ¢ < y.

As an immediate corollary of the above prop-
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osition we obtain that if & is a continuous t-norm
anda,b (a < b) are idempotent elements of &.,
then the restriction of & on[a.b]is a continuous
t-norm on [a,b], hence ([a,b],&,b) is a com-
mutative quantale.

The following result, known as the ordinal
sum decomposition of continuous t-norms, is of
fundamental importance in the theory of continu-
ous t-norms.

Theorem 2. 3" For each continuous t-norm
& on[0,1], there exists a family of pairwise dis-
joint open intervals {Ca;, b;)};e; of [0, 1]
such that

(1) for eachj € J, both a; and b; are idempo-
tent and the restriction of & on [a;,b;] is either
isomorphic to the Lukasiewicz t-norm or to the
product t-norm;

(D) 2&y =z A yifl (x,y) € EJ[aj,bj]z‘

Therefore, for a continuous t-norm & on
[0,1] andc € [0,1], if we let

& =inf{x € [0,1] | 2 =c.a&ax =z},

¢ = supi{x € I:O,l] \ Tr < c,x&x =z},

+ Both ¢" and ¢~ are idempotent,
« If ¢ is idempotent thenc = ¢ = ¢,

+ For each non-idempotent element ¢, the
restriction of & on[¢ ¢ ] is either isomorphic to
the Fukasiewicz t-norm or to the product t-norm.
Furthermore, the implication operation in the
quantale ([¢ ,¢" ], & ,¢") is given by

="y = min{c" ,x —> y}
forallz,y € [¢ ¢ .

The purpose of this section is to characterize
the fuzzy lower sets and fuzzy upper sets in ([0,
1].d.). In the case that the t-norm is one of the
basic continuous t-norms, such characterizations
have been presented in Ref, [11](Proposition 2. 4
and Proposition 2. 6). We use the ordinal sum de-
composition of continuous t-norms to establish
the desired characterizations in the general case
(Proposition 2.5 and Proposition 2. 7).

Proposition 2. 4™ (fuzzy lower sets of ([0,
1].d.) s basic cases) Let ¢: [0,1] - [0,1] be

a map.

() If & is the Lukasiewicz t-norm, then ¢ is
a fuzzy lower set of ([0,1],d.) if and only if it is
decreasing and 1-Lipschitz;

(i) If & is the product t-norm, then pis a
fuzzy lower set of ([0,1],d;) if and only if it is
decreasing and y/x < ¢(x)/¢(y) whenever x > y;

(iii) If & is the t-norm min, then pis a fuzzy
lower set of ([0,1],d;) if and only if it is decrea-
sing and for allx € [0,1],¢(2) < x implies that
o(x) = ().

Proposition 2.5 (Fuzzy lower sets of ([0,1],
dy) ,general case) Let & be a continuous t-norm
on [0,1]. Then a map ¢:[0,1]—[0,1]is a fuzzy
lower set of ([0,1],d,) il and only if ¢ satisfies
the following conditions:

(LD If a < b then p(a) = ¢(b);

(L2) If () < ¢ then p(c) = ¢(1);

(L3) If ¢ is not idempotent and (¢ ) = ¢ ,
then p(x) = ¢ forallz € [¢ .¢" ] and the corre-
spondence x —¢" A ¢(z) defines a fuzzy lower set
of the fuzzy ordered set ([ ¢ ,¢” J,d) valued in
the quantale ([¢ ,¢" ], & ,¢"), where df (x,y) =
x>y =min{c ,x>y};

(L4) If ¢ is idempotent and ¢(c) = ¢ then
(1) =c.

Proof We prove the necessity first.

(L1) Obvious.

(L2) This follows from (L1) and that ¢(¢) =
o) N =gl &c <o) &(1—> ) < (D).

(L3) For each x € [¢ 5, ¢ ], since ¢ <
¢(c ), then

¢ = &plc) < (x> )&elc) <gla).
Hence p(x) = ¢ forallx € [¢ .c¢"]. It remains to
check that d¢ (6(a) s6(b)) = df (b,a) whenever ¢*
>b>a=>c.

di(e(a) ,6(b)) =

min{c" ,d; (c(a),6(b))} =
min{c” ,d; (¢ Apla)sc™ Ap(b))} =
min{c" ,d; (pla), (b))} =
min{c  ,d.(b,a)} =
ds (bya).
(L4) Since ¢ < ¢(0), then ¢ = c‘&go((') = (1

We calculate
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— c‘)&go(c) < (D).

Now we prove the sufficiency. That is, ¢(a)
— ¢(b) = b— a whenever b > a.

Case 1. There exists some ¢ such that & < a
<b<c.Helc) <c,thengplc) = pla) =
e(b) = (1) by (L2), hence p(a) — (b)) =1 =
b—>a. He(c) > ¢ then, by (L3), ¢p(a),p(b) =

\%

¢ and
min{c’ ,p(a)—=>¢p(b)} =di (c(a)6(b)) =
di (b,a) =b—>a,
hence p(a) — ¢(b) = b — a.

Case 2. There exists some idempotent ele-
ment ¢ such thatb > ¢ >a. It is clear thatb—>a =
a. Then we proceed with three subcases.

Subcase 1. ¢(a) <a . Then gpla) = ¢(b) =
(1) by (L2), hence p(a) — ¢(b) =1 =b—a.

Subcase 2. ¢(b) = a. Then ¢(a) — ¢(b) =
o(b) = a.

Subcase 3. ¢p(a) >a and ¢(b) <a. First, we
show that a is not idempotent and ¢(a) <a . If
either a is idempotent or ¢(a') = a', then, by
(L4), we have either (1) =aorg(1l) =a", con-
tradicting ¢(b) < a. This shows that a is not
idempotent and ¢(a") < a". Then, by (L2), we
have p(a™) = ¢(1), hence p(a™) = (b)) < a.
Now, applying (1.3) to a we obtain that

a=di(a" ;a)<di(g(a) Na" spla’)) =

¢(a") Vmin{a' spla)—>¢pla )},
hence gp(a) = ¢(b) = gla) > ¢la’) = a.

The following characterization of fuzzy upper
sets of ([0,1],d,) (Proposition 2. 7), will be
used in the next section. Since its proof is similar
to that of Proposition 2. 5, the details are omit-
ted.

Proposition 2. 6! (fuzzy upper sets of ([0,
1].d.), basic cases) Let ¢: [0,1] — [0,1] be
a map.

(i) If & is the Lukasiewicz t-norm, then ¢ is
a fuzzy upper set of ([0,1],d,) if and only if it is
increasing and 1-Lipschitz;

(i) If & is the product t-norm, then ¢ is a
fuzzy upper set of ([0,1],d;) if and only if it is
increasing and y/x < ¢(y)/¢(x) whenever x > y;

(iii) If & is the t-norm min,then ¢ is a fuzzy
upper set of ([0,1],d.) if and only if it is in-
creasing and for every x € [0,1],¢(2) < x im-
plies ¢(x) = ¢(1).

Proposition 2.7 (Fuzzy upper sets in ([0,1],
A map ¢:[0,1] > [0,1]is a
fuzzy upper set of ([0,1],d,) if and only if ¢ sat-

d,) ,general case)

isfies the following conditions:

(UD) Hfa <bthen¢la) < ¢(b);

(U2) I ¢(c) < ¢ then¢(c) = ¢(1);

(U3) If ¢ is not idempotent and ¢(c ) = ¢ ,
then ¢(x) = ¢ for allx € [¢ ,¢' ] and the corre-
spondence x — ¢ A ¢(2) defines a fuzzy upper set
of the fuzzy ordered set ([ ¢ ,¢” ],d{) valued in
the quantale ([¢ ,¢" ], & ,¢"), where df (x,y) =

x =y =min{c ,x—>y}.
3 Flat ideals in ([0,1],d,)

In this section, we characterize flat ideals in
([0,1],d,). The strategy is to do this in the spe-
cial case that & is one of the basic continuous t-
norms, then in the general case with help of the
ordinal sum decomposition of continuous t-
norms.

Given a fuzzy ordered set X, a net {x; },cp in

X is forward Cauchy " if

\/ /\ X (z,.2,) = 1.

AED o pa
A fuzzy lower set g of a fuzzy ordered set X is

a forward Cauchy ideal if there exists some for-

ward Cauchy net {x, },ep such that

o = \/ /\ X(—.x,).

AED =2

The following theorem was proved in Ref.
[47 in the case that & is isomorphic to the prod-
uct t-norm, and in Ref. [12] in the case that & is
isomorphic to the Lukasiewicz t-norm.

Theorem 3. 1

on [0,1] that is either isomorphic to the product

Let & be a continuous t-norm

t-norm or to the Lukasiewicz t-norm, and Q be the
quantale ([0,17,&,1). Then for each Q -ordered
set X, flat ideals coincide with forward Cauchy i-

deals.
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Theorem 3. 2 (Flat ideals in ([0,1],d,) ,bas-
ic cases) (i) If & is a continuous t-norm on [0,
1] that is either isomorphic to the Lukasiewicz t-
norm or to the product t-norm, then for every flat
ideal g of ([0,1],d,) ,there exists somex € [0,1]
such that o =d; ( —,x);

(ii) If & is the t-norm min,then a fuzzy low-
er set ¢ of ([0,1].d,) is a flat ideal if and only if
e(0) = 1.

Proof (i) By Theorem 3.1,

o(z) = \/ /\ (x> x,)

AED A

for some Cauchy net {x;};e;. Thenx = V A x

reDp=a "

satisfies the requirement.

(i) Trivial.

Theorem 3.3 (Flat ideals in ([0,1].d.),gen-
eral case) Let & be a continuous t-norm on [0,
1]. Then a fuzzy lower set g of ([0,1],d,) is a
flat ideal if and only if it satisfies:

(F1) ¢(0) = 1;

(F2) For each ¢ € [0,1], if p(¢) = ¢ then
¢(c) is idempotent;

(F3) For each¢ € [0,1], if ¢ is not idempo-
tent and (¢ ) >c¢ , then the correspondence x —
" N ¢(x) defines a flat ideal in the fuzzy ordered
set ([¢ ,¢"],dS) valued in the quantale ([ ¢,
"1, & ,¢"), where d5 (x,y) =2 >y =min{c" ,x
>y

Proof The proof is divided into four lemmas
given below. The necessity part is contained in
Lemma 3.4 and Lemma 3. 5; the sufficiency part
follows from LLemma 3. 6 and LLemma 3. 7.

Let ¢ be a flat ideal in ([0,1],
d;). Then for each ¢ € [0,1], if ¢(¢) = ¢ then

¢(c) is idempotent.

Lemma 3. 4

Proof Consider the fuzzy upper sets ¢, ¢, of
([0,1],d.) given by ¢y = ¢(c) and ¢ = ¢ — id.
Since (0) = 1, then ¢ ® ¢ = @(c). Since ¢ is
fuzzy lower set of ([0,1],d,),it follows that

e ®¢ = e() & ¢g(a) =

xz€[0,1]

( \/ () &)V ( \/ () &g () v

z€[0.¢) el M)

@ ¢ = ()& (c—>x) = ¢(o).
¢ ¢ Ieyu ¢ 2
Hence (¢ ® ¢1) A (¢ ® ¢n) = ¢(o).
Since ¢(c) = ¢, then
0<<x <c,
c<x <1,

(g A ><»>—{C91’
Sbl (/’2 X 90(6‘)7
hence

()= (@) A (¢ ®¢p) =
(50@9/)1 /\(/12)=

< \/ @(x)&(c'»x)) %

x€ [0.¢>

(\/ p(2)&g (o))<

x€[c,1]

"V (p(a)&g(e)) = p()&p (o)
showing that ¢(¢) is idempotent,
Let ¢ be a flat ideal in ([0,1],
d;).For eachc € [0,1], if ¢ is not idempotent and

Lemma 3.5

(¢ ) >c thena(x) =" A o(a) is a flat ideal in
the fuzzy ordered set ([¢ s ¢' ], dy) valued in
([e ve™Ju& ¢, where df (2, y) =2 —‘y =min
{c™ ,1'—>y}.

Proof Since (¢ ) >c¢ , then (¢ ) is idem-
potent by Lemma 3. 4. Thus ¢(c ) = ¢~ and then
o(c™) = ¢, showing thatsis inhabited. It remains
to show that for any fuzzy upper sets ¢, s¢» of the
fuzzy ordered set ([¢™ ¢ ],d5) (valued in ([ ¢,
1, & M),

c @ Ag) =@ A (6@ ).

Step 1. For each fuzzy upper set ¢ in ([¢
¢ J.di) sthe map ¢:[0,1] —[0.1], given by

J X x €[0,¢),
97;(1) =q¢x)s x € [¢ "],
lsl)((j»)v x € (Cisl]’

is a fuzzy upper set of ([0,1],d.). This follows
from Proposition 2. 7 immediately.

Step 2. For each fuzzy upper set ¢ in ([¢ ,
" 1.d) s 6@y =9 @D¢. We calculate

( \/ () &g <

€ (1]
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A \/ (o(x) A &P V (plcH &) = \/ () &P(2) =6 @ ¢

z€[c ]

|
Step 3. For any fuzzy upper sets ¢n, ¢» of
(L™ e ].ds),
@ (P ANd) =0 @ (g A )=
0@ (P A )=
(@@ P A (o@D g) =
(e @) N (6@ ).
Therefore, ois a flat ideal in the fuzzy ordered set
(L¢ " ],d$) valued in the quantale ([¢ , ¢ ],
& e,
The verification of the following lemma is
straightforward and is left to the reader.
Lemma 3.6 Let K be a subset of [0,1 ], ¢:
K —[0,1] be a decreasing map, and ¢ » ¢, : K —
[0,1] be increasing maps. Then

\/ () N (@) A g(a) =

c€K
( @ A () AC (@) A ().
y 2 d y 2 ¢
Lemma 3.7 Suppose ¢ is a fuzzy lower set of
([0,1],d,) that satisfies (F2) and (F3) in Theorem
3.3. Let K, = {x € [0,1] | () >z }. Then for
each fuzzy upper set ¢ of ([0,1].,d,),

0@ = \/ o(x) A 2.
.IEK(P

Proof Forallx € K,,¢(x) is idempotent by
(F2). Thus, 90(1)&5[1(1) = ¢(x) A ¢(x) whenev-
erx € K,. Since

o D¢ = o) &),

2€[0.1]
it suffices to show that for all ¢ € K,, there is

some b € K, such that o(c) &g () <o(b) A $(b).
We proceed with three cases.

Case 1. ¢ is non-idempotent and (¢ ) > ¢ .
By (F3), 6(x) =c¢" A ¢(x) is a flat ideal in the
fuzzy ordered set ([ ¢ ,¢" ],d;). Since the restric-
tion of & on [¢ , ¢ ] is either isomorphic to the
Lukasiewicz t-norm or to the product t-norm, by
Theorem 3. 2 there is some b € [¢ ,¢" ] such that

o(x) =d,(x,b). We claim that this b satisfies the

z€[c ]

requirement, that is, 9o(c)&¢)(c) < (b)) A ¢(b).

If ¢ <b, then o(c) =d{ (c,b) =c" ,hence (o)
> ¢, showing that ¢ € K, contradictory to that
c ¢ K,. Hence, we haved <c¢ < ¢"and (o) <c',
Consequently, ¢(¢) =5(¢c) = c¢—>b. Then

PO &g(e) < (c—>b) <" =06(b) < o)
and, since ¢ is a fuzzy upper set,

() &p(e) = (c > b &yle) < ¢(b).

Hence gp(c‘)&¢(c‘) < (b)) A (b)), as desired.

Case 2. ¢ is non-idempotent and (¢ ) < ¢ .
We distinguish two subcases.

Subcase 1. ¢(c) is idempotent. We show that
b = ¢(c) satisfies the requirement. Since p(c ) <
¢ s thenb = p(c) <op(c ) <c <c, hence p(b) =
o(c) =b =10b", showing thatb € K,. If (b) = b,
then @(0) &g (b) =b6&b = b = () &g (). T ¢(b)
< b, then ¢(b) = ¢(¢) by (U2) in Proposition 2.
7, hence ¢(b) &g (h) = () &¢ (). So, b satisfies
the requirement.

Subcase 2. ¢(¢) is non-idempotent. Since (¢ )
< ¢ , by (L2) in Proposition 2. 5 we have p(c ) =
(1), hence p(c) = ¢(1). Now we use this fact to
show that p(p(c)™) > @(c) ™. Since p(p(c)™) = (1)
=1 —>9(c)" = gl)7, it follows that

o() &plpla)™) =

()" A plp(a)™) < (1),
hence p(p(c)™) < @(1) because p(c)™ > @(c) =
o(1), 50 plp(c)™) = @(1) = ¢(c). Thus

(o)) = glep(ca)™) = (o) > plc) .

By (F3), 6(2) = ()" A ¢(2) is a flat ideal
soCe) ' ],df)
(valued in ([g(c) sp(c)" 1, & so(c)").  Then
there is some b € [¢(c)” ()™ | such that 6(x) =
dy (x,b). Since go(go(cﬁ) = (o), it follows that
c(p(c)") = g(c)s henceb < ¢(c)'. We claim that

in the fuzzy ordered set ([¢(c)

this b satisfies the requirement. It suffices to show
that b € K, and
P &P (o) < plp() ) &Plple)) <
(b)) A ¢(b).
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Firstly, since a(b) = ¢(c)", then ¢(b) = ceeds in the same way as that for Subcase 2 in
()" =b", hence bEK,. Case 2, the details are omitted here.

Secondly, we check the inequality
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