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MENG Feng-Juan', CAO Feng-Xue*
(1. School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China;
2. School of Computer Engineering, Jiangsu University of Technology, Changzhou 213001, China)

Abstract: In this paper, we are concerned with the longtime behavior of the non-autonomous strongly
damped wave equation

eWuy, —Au, — Au+olu) = f.
We first obtain the dissipativity of the process associated with the equation. Then, by using the skill of
operator decomposition,we prove the asymptotic compactness of the process. Finally, we prove the exist-

ence of the time-dependent attractors for the equation.
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1 Introduction

Let QCR® be a bounded domain with smooth
boundary 9). For any ¢ € R, we consider the fol-
lowing nonautonomous strongly damped wave e-
quation:

euy —Au, —Autolu) =f, t>r, D
U og=0ulx,0) =uo-u,(x,7) =uy

where the unknown variable u = u(x.t):Q X [z,

o) > Rand ug »u; : ) — R are assigned data, f €

B4R 2018-01-28

L?(Q) is independent of time.

Equation (1) arises as an evolutionary math-
ematical model in various systems for the relevant
physical application. For example, it describes the
variation of the configuration at rest of a homoge-
neous and isotropic linearly viscoelastic solid with
short memory. For more details, see Ref. [1] and
the references therein.

We impose the following assumptions on e

and the nonlinear term ¢.
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(C)): e=e(®) is a function of 1,6 € C'(R) is

a decreasing bounded function and satisfies

lime(z) =0 (2)
t—>+oo

In particular, there exists L. > 0 such that
%gIE)U e |+l W |T<L (3)
(C): Letg € C'(R) be such that
\¢(r)\<(‘1(1+|r\5),V7f€R 4)
lim infgp/(r) >—) (5

| oo

where A; > 0 is the first eigenvalue of the strictly
positive Dirichlet operator A =— A with domain
D(A) = H*(Q) N Hy(Q).

Remark 1 From (4),the more general con-
dition

L o(r) —p(s) | <

clr—s| Q4+ +s,¥Vr,s €R (6)

is hold naturally, where ¢ = ¢(c¢;).

Set

u(x)

ow - | (|

Q
0

e(y)dy)dz.

from (5) we can obtain that

D) 2—% lul?—a (7

(el w = @) =5 lul? —a (8)

for somey << A;.

Whene is a positive constant, system (1) is
autonomous and the problem is completely under-
stood within the framework of semigroups. It is
known'**! that under the conditions (4),(5),e-
quation (1) generates a C°- semigroup S(¢) in the
natural energy phase space H = H} (Q) X L*(Q),
the asymptotic behavior of solutions to equation
(1) has been investigated quite extensively by
several authors in recent years-*'%/.

On the other hand, when ¢ is a positive con-
stant and f is depends on time, system (1) is non-
autonomous, the asymptotic behavior of nonau-
tonomous strongly damped wave equation has
been considered'. The pullback attractor for the
strongly damped wave equation has also been con-
sidered"'?/.

When e is not a constant, but a positive de-
creasing function of time ¢(¢#) vanishing at infini-

ty,the natural energy associated to the system is

E :e(t)JQ | w (xst) |*dx +

J | Vulax,t) |2,
Q

It is easy to see that the vanishing character of € at
infinity prevents the existence of absorbing set or
pullback absorbing set in the usual sense.

To circumvent these issues,in Ref, [ 13], the
authors made a essential progress by adopting a
new point of view on pullback dissipativity. The
authors provided a suitable modification of the no-
tion of pullback attractor and established a new
theory of pullback flavor for dynamical systems.
To this end, the authors described the solution
operators as a family of maps

S(tyr): X, —~X,.t=7€R
acting on a time-dependent family of spaces X,.

In Ref. [14], the authors recovered and im-
proved the results in Ref. [13] by giving new in-
sights on attractors on time-dependent spaces.
Moreover, the authors established a new frame-
work to study the longterm behavior of weakly
damped wave equation.

In Ref. [15], the authors established a suffi-
cient and necessary condition for the existence of
attractors on time-dependent spaces, which is e-
quivalent to that provided by Conti et al. ™. Fur-
thermore, a technical method for verifying com-
pactness of the process via contractive functions
was given. Finally, the existence of time-depend-
ent global attractor for the wave equation with
nonlinear damping was proved by using the new
framework.

In Ref. [16], by using the method of Ref.
[15], the authors considered the longtime behav-
ior of some nonlinear evolution equation,

Since the wave equations with different kind
of damping arise from different evolutionary
mathematical model, it is meaningful to consider
the longtime behavior of the strongly damped
wave equation under the new framework. The aim
of the present paper is to study the longtime be-
havior of the solutions to (1) with e depending on
time, according to the abstract framework devel-

oped in Ref. [ 14 ]. We obtain time-dependent ab-
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sorbing set and time-dependent global attractor
for (1). Since (1) contains the strong damping
term Au,,compared to the weakly damped wave
equation, the critical nonlinearity exponent from 3
to 5 in 3 dimensional space,see Refs. [2,3,5,7~
11], etc. In order to obtain the asymptotic com-
pactness of the process, we apply the techniques
introduced in Ref. [ 7] for the autonomous case to
overcome the difficulty due to the critical nonlin-
earity. Moreover, we need to tackle the terms

caused by time dependent terme(#).

2 Preliminaries

Throughout the paper, C denotes any posi-
tive constant which may be different from line to
line even in the same line (sometimes for special
differentiation, we also denote the different posi-
tive constants by C;.

We denote the inner product and the norm on
L?(Q) by{e,«>and | « | , respectively. For 0 <
o < 2, we define the hierarchy of (compactly)
nested Hilbert spaces

H,=D(A?) ,{uv), =(A%u,A%v),

lullo=1A%ul.
Then,forz € Rand 0 < s < 2, we introduce the
time-dependent spaces

H;=H,, XH,
endowed with the time-dependent product norms

I {ugsur} 7= llug 131 +e(@ Tuy 3.
In particular, the symbol ¢ is always omitted
whenever zero,that is H, =H, X H with

[ {ugsery 15, =1 Vuo 12 +e@ [uy |2,
Then we have the compact embedding

H:—H,, 0<¢g<2
with the injection constants independent of t € R.
Note that the spaces H, are all the same as linear
spaces and the norms || « [[# and [ « [# are
equivalent for any fixed 7,z € R. However, this e-
quivalence blows up as we let 1,7 == oo,

For every ¢ € R, let X, be a family of normed
spaces,we introduce the R-ball of X,

B/(R) ={z€X,: | = | x <R}.

For any givene >0, thee neighborhood of a set B

CX, is defined as

OB =) yeX:la—yly <e =

xEB

U {x +B,(e)).

x€B
We denote the Hausdorff semidistance of two

(nonempty) sets B,CCX, by

5, (B,O) ::ggig(f |x—ylx,.

Finally.given any set BCX,, the symbol B stands
for the closure of Bin X,.

Definition 2. 1 Fort € R, let X, be a family
of normed spaces. A process is a two-parameter
family of mappings {S(z,7): X,—~>X,,t=7r.r €R}
with properties

(i) S(z,7)=1d is the identity operator on X,
Tt €R;

(i) S(t,9)SGs, o) =SVt =s =1, €
R.

Definition 2, 2 A family ¥ = {B, },cx of
bounded sets B, CX, is called uniformly bounded
if there exists R > 0 such that

B,CB,(R), VteR.

Definition 2.3 A family € ={C, }cr is called
pullback absorbing if it is uniformly bounded and
for every R >0, there existst, = ¢,(¢,R) <t such
that

r<t,=> S(t,o)B.(R) CB,.

The process S(z,7) is called dissipative when-
ever it admits a pullback absorbing family.

Definition 2. 4 A time-dependent absorbing
set for the process S(¢,7) is a uniformly bounded
family 8 = { B, },cr with the following property:
for every T > 0 there exists t, = £, (T) = 0 such
that <<t —¢,=>S(,7)B,(R) CB,.

Definition 2.5 A (uniformly bounded) fam-
ily 8 ={K, },cr is called pullback attracting if for
alle > 0 the family {( (K,) },cr is pullback ab-
sorbing.

Consider the collection K ={& ={K, },cr: K,
CX, compact, & pullback attracting}. When K #
&5, we say that the process is asymptotically com-
pact.

Definition 2. 6

global attractor the smallest element of K, 1. e. the

We call a time-dependent
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family A={A,},cr €K such that A,CK,, YV:€R
for any element 8 ={K, },cr €K.

Recall that for any pair of fixed times ¢t > ¢,
the map S(t,7): X.—X, is said to be closed if z,
-z, inX,,SU,Dx,—~>y in X,, =>SU,0)x=x.

Definition 2.7 The process S(z,7) is called

(i) closed if S(z,7) is a closed map for any
pair of fixed times t > z;

(ii) T+ closed for some T > 0 if S(¢,t —T) is
a closed map for all ¢.

Note that if the process S(z,7) is a continu-
ous (or even norm-to-weak continuous) map for
all t = z, then the process is closed. Of course, if
the process S(z,7) is closed it is T+ closed, for any
T >0.

Theorem 2.8

compact, then there exists a unique time-depend-

If S(z,7) is asymptotically

ent attractor A, Furthermore, if S(¢,7) is a T~
closed process for some T > 0, then A is invari-

ant,

3  Well-posedness

In this section, we state the results about the
well-posedness of problem (1) which can be seen
in Refs. [2,3,7].

Definition 3. 1
(5) ,{or any initial data (u,u,) € H, on any interval

Under the conditions (4) and

[ 7,2 ] witht > 7, there exists a unique solution u € C
(Lot L, HY D) s w, €CLt ], L2 CQ)) NLF (Lzat ],

5 () swhich continuously depend on the initial da-
ta. That is, problem (1) generates a strongly continu-
ous process S(z,7) : H—>H, .t =7 €R,where S(z,7) ;
H.—H, acting as S(t,0)z={u(t) su, (1).

Remark 2 Tn Refs. [2,3],based on the theo-
ry of analytic semigroups, the authors established
the well-posedness of the strongly damped wave
equation, We can also obtain the existence of the
solution according to the standard Fatou-Galerkin
method, which is based on Lemma 4. 2 below.

Moreover, we state the continuous depend-
ence estimate for S(¢,7) on H,, which can be to
verify the uniqueness of the solution.

Theorem 3.2 Given R >0, for every pair of

initial data = ={wuo; s ui; } € H, such that | = [ 1

<R,i =1, 2, the difference of the corresponding
solutions satisfies
| SCtsr)zy =Sz [, <
T Nyl Vi=e (9
for some constant C = C(R) = 0.

Proof Given two different initial data 2, , 2
€ H, such that [ z; [ln. <R,7=1,2. By Lemma
4. 2 below we know that

| SCao)z; [l n, <C (10
Let {w;(£),du;(t)} =S(t,v)z;, by (1),the differ-
ence z(2) ={u(t),u, ()} =Sty )z —Sts1)
2, satisfies

eus —Au, —Auteu) —gluy) =0.
Multiplying above equality by 2 u, we have

Q > o 22—, 2 —
& I 1% +2 1| Vu, 12—¢" llu, |

—2{pCu) —@Cu) su,).
Considering the uniform estimates (10) for the
solutions and according to (6) we have
—2¢pu) —e(uz) yu,) <

CA+ llw lys+ lae 1) lu s a8 <

Ca+ [ Vu [*+

| Ve, DI Vull | Vu, | <

ClVul?+2| Vau, |2

Then we can obtain the differential inequality
d . - , _
— < 2, < .
& =) 75 <Cllz® 4.

Applying the Gronwall lemma on [ 7,z ], the proof

is completed.
4 Dissipativity

In this section, we study the dissipative fea-
ture of the process S(¢,7) associated with (1).
Theorem 4.1 There exists R, > 0 such that
the family 8 ={B, (R,) },r is a time-dependent
absorbing set for S(#,7). Moreover, we have
sup [ IS0z Im +

2€EB_CR, >

f IV w(y) [2dy] <M.¥zeR (1)

for some M > R,,.
In order to prove Theorem 4. 1, we need the
following lemma.
Lemma 4.2 let:z >z, forz € H,, let S(z,

)z be the solution of (1). Then there exists an
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increasing positive function Q such that
I SG, o=z lln <
QU= [l Ye MO +C, V<t
Proof Multiplying (1) by w«,,we have

;%(HVMHZ+eHmH2+2®QU‘Q§fm>)*

e lu 12421 Vu, [2=0
A further multiplication by du (where § > 0 is
small) yields

dt(o“ |V ll2+20eCu, su)) +26 | Vu || 2 —

20e llu, II* +26¢pCu) su) =28 fsu> =
26¢e" Cuyvuy s
and estimating
26| " uy sl <2OL Ml u, || lu || <

P PIEE
Moy 28l :
sl 1 2L

Introducing the functional
E=0+» [ Vul?+ellu |*+200) +

20eu, su> —2{fyu)
and noticing that u, € L* (7, t; H} (Q)), we use
| Vu, |l

Poincaré inequality AR >, together with
t

(7) and (8), and we obtain

AE+0E+ | Vu, 12 +T=2 010,
where
P=(3—& — 25L>Hv A PER
Al _ 2 2
o e 30e) Il u, |l 207 Cuy s u).
Thus, by setting ¢ small enough such that =0,
we have
AE 0B+ | Vu, 200 (12)

Applying the Gronwall lemma, we have

E) <E(e 7 +¢.
Denote E(¢) = | S(ts) = || #1,. Due to(7),(8) for0
< p<1,0 <p, it is apparent that

eE() —C < EQ@) <o) +C (13)
Combining with (12) and (13),we prove Lemma
4. 2.

Proof of Theorem 4. 1
tially established in Ref. [14 7], we only need to

The proof is essen-

make a few minor changes for our problem. For
convenience of the reader, here we restate it.
LetR, =1+ 2C,. An application of Lemma
4, 2 for z €B.(R) yields
| Sz |, <QR)e ™ 2 +2C, =Ry,
provided thatt —¢ > t,, where

QER)
log 7376
5

This concludes the proof of the existence of the

).

t() - maX{O,

time-dependent absorbing set.
In order to prove (11), it is enough to in-
tegrate (12) withd = 0on [z, o).

5 Existence of time-dependent global
attractor

The aim of this section is to prove the exist-
ence of the time-dependent global attractor for
(D). To this end, by Theorem 2. 8. we will verify
the asymptotic compactness of the corresponding
process. We will take advantage of the same tech-
niques used in Ref. [7]also in Ref. [14] that con-
sists in finding a suitable decomposition of the
process in the sum of a decaying part and of a
compact one,

In light of Refs. [ 7,17 ], owing to the as-
sumptions (4) and (5), we can decompose ¢ as
follows. Set = ¢y + ¢1» where ¢ € C(R), ¢ €
C(R) satisfying

() [ <c(1+|r [, VreR (14)
¢ (Nr=0,VYreR (15)
o (M) | <c(1+[r "), y<<5,VreR (16)
1117‘1 1nfM >— an
Let 8={B,(R,) },cr be a time-dependent absorb-

ing set and r € R be fixed. Then, for any r €
B,(R,), we decompose the solution S(z,7)z into
the sum

St z={u@®) su, (D} =S, )z +S, (1,02,
where S, (t,0)z={v(),v, ()} and S, (t,0)z={w
(1) »w, (1)} are the solutions to the problem
—Au +g¢,(v) =0,
S (z,70) ==

ev, —Au,

(18)

and
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ew, —Aw, — Aw+elu) —¢, (v) =f,
S, (z57) =0

respectively.

QL)

In a first step, we show that S,(¢,7) has an
exponential decay in H,.

Lemma 5.1 There exists§ = §(8) > 0 such
that

IS )z |, <Ce 7, Yizr.

Proof Repeating word by word the proof of
Lemma 4. 2. that applies to the present case with
S, (z,7) in place of S(z,7) (with the further sim-
plification that ¢ = 0 and f = 0), we get
the bound

| Si(ts)z || n, <C (20)
Then we denote
E=0+) I Vull?+ellu 12+
2 @, (u) +20eu; »uy

where
u(z)

=] (| @dnde.
0

we multiply (18) by 2 v, +25v. In view of (15)
and since f = 0, similar to (12) we have

%El 1 oE, <o0.

Applying the Gronwall lemma and using subse-
quently the estimates for E; that similar to (13),
the proof is completed.

Lemma 5.2 There exists M = M(8) >0
such that sup | 'S; (z, ) 2 | <M, where ¢ =

t=t

I R R 4
mm{4, 5 }.

Proof The idea is inspired by Refs. [ 7,11,
14 ]. Let
E,(®)=ellw [2+0+O w4, +
20w, s A’w).

In view of (3),we can estimate
28| ew, s A%w) | <% lw, le+Cs lwll, (21)

Choose & > 0 small enough and C, > 0 large e-

nough, then we have
S 18,0z i <E.(0 <

2 H Sz(t,'[)z |‘;—I§’+C1 (22)
Multiplying (19) with 2 Aw, +25 A w we have

%Em) F (= —200) Il |2+

2w, 121 +28 [l w | 21+
2¢p(u) —¢o (0) s A%w) =
20e’ (w, s Aw) —{p(w) — ¢y (V) s 2A%w,) +
(f42 A%w, +28 A%w? (23
In the following, we will deal with some
terms in (23) one by one. Due to LLemma 4. 2 and
Lemma 5. 1,we can obtain
[Vul + Vol <C (24)
Due to the decomposition of ¢, we can write
o) — @ (v) = pu) —p(v) + ¢ (V).
Combining with (24) and by virtue of (6) we get
—(p(w) —p(0) 2 A%, ) <C+ [u |l s +
lollie) lw s | A%, || i <

Ca+ [ Vul*+

1+ts

lig lio
[ Vol [AZwll A7 w, | <

Cllw e T o1 <

Cllwl 2 +§ e, 1241 (25)

Similar to (25),we have
— () —¢(0) 20 A%w) <Co(1 +
lullte+ ol lwliss | Aw [l <

Co llw |l 31 (26)

VA
5, = by

where C = C(c¢;). Moreover, since
(16) we deduce that
1 (0), 2 A%w,) <
Ca+ llvll%) Il Aw, || 17 <

CA+ 11 VoM lw | <
C+ I s 27

Similar to (27),we have
1 (0,20 Aw) <C+Co | w [ 145 (28)
At the same time,
26¢e’ (w, , Aw) <20L |l w, I, | w I, <
2C w, o1 +C8 |l w Il 41 (29
Finally, using the interpolation inequality, similar
to that in Ref. [11], we have
(fy2 A%w, +28 A%w) <
CH68 llw, [ o+1+6° | w [l o1 (30)
Combining (25)~(30), choose § small enough and
proper C, we deduce from (23) that

dE, () +8E, () <C
de
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and the Gronwall lemma entails [5]  Khanmamedov A K. Global attractors for strongly
E, (1) <C(p)e 2 +(C. damped wave equations with displacement dependent
In turn. (22) vields the boundedness of S, (z.7) 2 damping and nonlinear source term of critical expo-

in 2. nent [ J]. Discrete Cont Dyn-A,2011, 31:119.
Lemma 5.3 Under the conditions (2)~(5),

the process S(¢,7) : H.-—>H, generated by problem

[6] Kalantarov V, Zelik S. Finite-dimensional attractors
for the quasi-linear strongly-damped wave equation

[J]. ] Differ Equations, 2009, 247, 1120.

(1) is asymptotically compact. [7]  Pata V,Squassina M,On the strongly damped wave
Proof Consider the family M={M, }cg - where equation [ ] ]. Commun Math Phys, 2005, 253; 511.
M, ={z € H: <Mj. [8] Yang M H,Sun C Y. Attractors for strongly damped
By the compact embedding H— H,, M, is com- wave equations [ J ]. Nonlinear Anal-Real, 2009,
pact. Since the injection constants are independent 10: 1097.

[9] Yang M H,Sun C Y. Dynamics of strongly damped

wave equations in locally uniform spaces; Attractors

of .M is uniformly bounded. Collecting Theorem

4.1,Lemma 5. 1 and Lemma 5. 2, we can obtain
and asymptotic regularity [J]. T Amer Math Soc,

2009,361; 1069.
[10] Yang M H,Sun C Y. Exponential attractors for the

that M is pullback attracting, that is
0,(S(t.)B.(Ry) .M)<Ce " ?,Vt>r,

Thus the process S(z,7) is asymptotically compact. strongly damped wave equations [J 7. Nonlinear A-

Theorem 5. 4 Under the conditions (2) ~ nal-Real, 2010, 11: 913.
(5), the process S(z,7): H.— H, generated by [11] Sun C Y,Cao D M, Duan J Q Nonrautonomous wave
problem (1) has a invariant time-dependent global dynamics with memory asymptotic regularity and uni-
attractor A={A,} cr. form attractor [ J7. Discrete Cont DynrB,2008,9; 743.

Proof From Lemma 5. 3, by Theorem 2. 8., [12] Caraballo T,Carvalho A N, Langa J A. Felipe Rive-
there exists a unique time-dependent global attractor ro, A non-autonomous strongly damped wave equa-
tion: Existence and continuity of the pullback at-
tractor [ J]. Nonlinear Anal-Theor, 2011, 74; 2272.

[13] Plinio F Di,Duane G S, Temam R. Time dependent

attractor for the oscillon equation [ J]. Discrete Cont

A ={M, },er. Furthermore,due to the strong conti-
nuity of the process stated in Theorem 4. 1, we can

obtain that U is invariant by Theorem 2. 8.
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