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Central configurations for planar 3n-body problem:

triple nested regular polygons

DENG Chun-Hua , SU Xia
(Faculty of Mathematics and Physics, Huaiyin Institute of Technology. Huaian 223003, China)

Abstract: We study the existence of some families of triple nested planar central configurations for the n-

body problem withn = 9,12. For 9-body problem we show that there exist three families of triple nested

triangular central configurations. For 12-body problem we show that there exist different families of tri-

ple nested regular polygonal central configurations in different cases.
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1 Introduction

The Newtonian n -body problem'#

concerns
the motion of n mass points moving in space ac-

cording to Newtonian law .

n

mm ; (x; —x;) .
mx, =— § Bt Tl i =1,2,%,n
J=1ajFEi r

%
(D
Here x; € R? is the position of mass m; >0, the
gravitational constant is taken equal to 1, and r;
= |2, —x; | is the Euclidean distance between x;
and x;. The space of configuration is defined by
X={(x1,y2,) €E(R)": 2, #x; for all i#j},
while the center of mass is given by
c=(mixy +er+m,x,)/ M,
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where M =m, ++++ +m, is the total mass.

A configurations * = (x;,*,x,) € X is

[2.3]

called a central configuration if there exists a

constant A # 0, called the multiplier, such that

n

R C IR S R

j=1,%i T

(2)
It is easy to see that a central configuration re-
mains a central configuration after a rotation in R?
and a scalar multiplication. More precisely, let A
€ SO(d) anda > 0. If x=(xy,***»x,) 1s a cen-
tral configuration, so are Ax = (Ax,,*,Ax,)
and ax = (ax;,***,ax,). Two central configura-

tions are said to be equivalent if one can be trans-

formed to the other by a rotation and a scalar
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multiplication. When we say a central configura-
tion, we mean a class of central configurations as

defined by the above equivalent relation.

There are several reasons why central config-

urations are of special importance in the study of

the n -body problem™ ™.

-~
T

Fig. 1 Three families of triple nested triangular central configurations for 9-body problem

In this paper we are interested in planar cen-
tral configurations, that is d = 2. The existence
of double nested planar central configurations for
2n -bodies is known for two nested regular n -gons
with common centert® %, Refs. [9~11] studied the
necessary conditions about nested regular polyhe-

dra. The work was completed by Corbera and Lli-

bre-'#'*, Llibre and Mello-*) shown the existence
of families of triple and quadruple nested planar
central configurations for the n-body problem
with n = 6,8,9. In this paper we find new classes
of planar triple nested central configurations of n -
bodies for n = 9 and n = 12 according to Fig. 1
~Fig. 4.

my2

my

Fig. 2 Three families of triple nested regular polygonal central configuration for 12-body problem

my2

my

Fig. 3 One families of triple nested regular polygonal central configurations for 12-body problem
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Fig. 4 Two families of triple nested regular polygonal central configurations for 12-body problem
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The main results of this paper are the follow-
ing.

Theorem 1.1 Assume that we have a triple
of three masses M, = m;, = m, = my;, M, = m, =
ms; = mg, and My = m; = mg = m, on the vertices
of equilateral triangles with common barycenter
whose side have length 1, x and y (see Fig. 1),
such that (x,y) € D, = D;; U D, U Dy; (see
Fig.5).

where

D, — {(x,y):O <z <1,0 <y<%},
Dy, = {(x,y):0 <x <1,y >2},
D,, = {(I,y):o <y<%»0 <1<%}

Then there exist three non-empty open sets in
D, (i =1,2,3)((x,y) € Dy; has been found in
Ref. [8]), respectively, and positive masses M, ,
M, and M; such that the nine bodies with these
masses form three central configurations of the 9-
body problem.

Theorem 1.2 Assume that we have a triple
of three masses

M, =m =m, =my =my, = ms = mg»
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M, = m; = mg = mq,
M; = my = my = my,
on the vertices of a regular hexagon and two equi-

lateral triangles with common barycenter whose

side have length 1, /32 and /3y (see Fig.2),
such that (x,y) € D, = D,; U D,, U D,; (see
Fig. 6), where

Dy = {(x,y):0 <z <y <1},

Dy, = {(x,y):0 <ax <1,y >1},

Doy = {(xsy):1 <x <yj.
Then there exist three non-empty open sets in Dy,
(i=1,2,3), respectively, and positive masses
M, ,M, and M; such that the twelve bodies with
these masses form three central configurations of
the 12-body problem.

Theorem 1,3 Assume that we have a triple

of three masses

M, =m, =my, =my =m, = m; = Mg »
Mz = N7 = Mg = My »

and
M, = my = my, = my,

on the vertices of a regular hexagon and two equi-

lateral triangles with common barycenter whose

side have length 1, /3 z and+/3 y (see Fig. 3),such
that (x,y) € D; (see Fig. 7), where

D, = {(x,y):0 <x <1l,y>1}.
Then there exists a non-empty open set in D; and
positive masses M, ,M, and M; such that the
twelve bodies with these masses form one central
configuration of the 12-body problem.

Theorem 1.4 Assume that we have a triple

of three masses

M, =m =my, =m; = m, = ms; = mg,
M, =m; = mg = my,

and
Ms = Ny = Ny = My

on the vertices of a regular hexagon and two equi-

lateral triangles with common barycenter whose

side have length 1, +/3 2 and+/3 y (see Fig. 4),such
that (x.y) € D, = D,; U D,, (see Fig. 8), where
Dy = {(x,y):0 <<y <1},
D, = {(x,y):1 <x <yj.

Then there exist two non-empty open sets in Dy,

(i=1,2),respectively, and positive masses M, ,
M, and M, such that the twelve bodies with these
masses form two central configurations of the 12-
body problem.

Without loss of generality, we suppose that
0 <x <yandx # 1,y # 1 in the next sections.

2 Proof of Theorem 1.1

For the planar central configurations, instead
of working with equations (2), we consider the

Dziobek equationst*! ;

n

Z 771/€(R,-;\, _Rﬂ\,) A,'jk =0 (3)

fi =
k=1.k#i.j

for 1 <i <j <n, here,R; =1/r;* and A;, = (x; —
;) N (z; — ;). Thus Ay gives two times the
signed area of the triangle with vertices at m,,m;
and m, ,equations (3) is a system of n(n —2)/2
equations.

For the 9-body problem, equations (3) is a
system of 36 equations. Without loss of generali-

ty., we can assume that

()08 ().

2’ 6 3 27 6
m, (%lﬁ *%T) s M5 (0 ,§T> s
iy
1 3 277
m <7—I,7“/;x>,m
6 2 6 7 ng
7)13(7%3}’«/%3})9”’19(0,*\/;3}) 4)

where (x,y) € D,. According to Fig. 1, our class
of configurations with nine bodies must satisfy
Ti2 Trs Ty =y Ty =15y =0,
Y78 T V79 T Tg9 = Vo

V3

—?(1*1)»

Yy 7125 — 136

=7, =§«/ P Fa+1,

Fis =716 = Vo4 — V26 — I'su

3 3
=739 :£v y —y+tl,

3

Yig =™ 7TVig = Tg7 = Tag =~ I'sg

Pe

rig =7Va9 —T37 —

3 (y+1),

Yag = Vg9 = V57 = V58 = V63 — Vg —

@«/ 2P —xy+yh,
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V3 V3 [ V3 V3 (x+2) 1}
— s = =2 (2 V2 + -1,
Tig =159 =717 3 (x+y) (5) sy 2 (1—2)? (12 +1~+1)% x
Taking into account that M, = m;, = m, = 3 x(2—y) L
my M, =m, =m; =mg,M; =m; =ms =m,, the s _2[(y2y+1)§ (1+y)?

equationsf1, = 0, f13 = 0, fs =0, 5 =0,f,5 =
05 f55 =05 /15 =05 f20 =0, fs0 =0, /1 =0, f55 =
0, /55 =0, 15 =0, 2 =0,f5; =0, f1s =0, fs0 =
0 and f;; = 0 of equations (3) are trivially satis-
fied. The other 18 equations of equations (3) can
be put into 3 sets of equivalent equations:
Set 1. Equations f15 = 0, f1s = 0,/ = 0, fy
=0,f5 = 0and f35 = 0 can be written as
anM, +a,M, +a,;M; =0 (6)
where
an = (Ry; — Ry Asz +(Ry; — Ris) Ay s
ay, = (Ryy —Rys) Asy + (Ris — Rys) Niss s
ai; = (Ri7 —Ryp) Aisr + (Rig — Ryp) Aisg +
(Ri; — Rig) Aiso.
Set 2. Equations f1; = 0, f1, = 0, fo; =0, fas
=0, f35 = 0and f35 = 0 can be written as
anM, +a,M, +a,sM; =0 7
where
an =Ry, —Ri7) A H(Riy —Rig) Nirs s
az =Ry —Ry) Ay T (Ris —Ryp) Aies +
(Ris —Rus) Aigs »
asy = (Ris —Rzg) Airs +(Ry7 —Ryg) Nigo.
Set 3. Equations f4; = 0, fi,s = 0, f5; =0, f5s
=0, fss = 0and fg = 0 can be written as
as M, +as, M, +assM; =0 (8)
where
asn =Ry, —Rip) Ay H(Ris =Ry A +
(Ri; —Ris) A urs s
asp =(Rys —Rip) A s F(Rys —Rig) A s
as; =(Rig —Ris) A g T (Ryp —Rig) A g
By fundamental calculation, we find that equation
(8) is a linear combination of equations (6) and
(7). Thus equation (3) has nontrivial solutions.
In order to have planar central configurations ac-
cording to Fig. 1., we need to find positive solu-
tions M, , M, and M, of equations (6) and (7). Ac-
cording to assumptions (4), we have

ﬁ[ + V3 W3(2at1) }

an =5 | x 3 5
! I=x)" (@ +x+D7

2

2x —y . 1 }
(2 —ay+yHT (xt» ]

J§[ V3 3 @ey—1) J

az —

2 (1+y)? (yZ*erl)%
_3 y y(x+2)
aﬂiz[(lil‘)z (2 +z+1)7
2y —x o 1
(2* —1‘y+y2)% (x+y)2}’

,ﬁ[ﬁ

G =Y A+ 9)?

REICEDN 7%]

(¥ —y+Dz ¥
Let N = (nysn,5n3) = N; A N,, where N, =
(ay, says»ai3) and Ny = (ag »az »as; ) be the vec-
tor parallel to the straight line defined by the in-
tersection of the two planes orthogonal to N, and
N,. Therefore there will be positive masses M, ,
M, and M, solutions of equations (6) and (7) if
and only if the components of the vector N have
the same sign.

The case of (x,y) € D3 C D, has been found
by Llibre and Mello", in the rest of the proof we
only show the existence of central configurations
with (x.y) € D,, U D,, C D,.

Consider the point (x,y) = (0.4,0.1) € Dy,
C D, and substitutingx = 0.4,y = 0. 1 inton, ,n,
and n;, it follows that n,(0.4,0.1) > 0,
n,(0.4,0.1) >0,n;(0.4,0.1) >0. Therefore the
components of the mass vector N have the same
sign.

In order to give some information about the
values of the masses, we consider M; = m; = m,
= m; = 1. Then

M, = m, = m; = m; = 0.921718508801,

M; = m; = mg = my, = 0.013379875786.
Then there exists a non-empty open set in D;; and
positive masses M, ,M, and M, such that the nine
bodies with these masses form a central configu-
ration of the 9-body problem.

Considering the point (x,y) = (0.3,3) €
D,, C D, and substitutingx = 0.3,y = 3 inton, ,
n, and ny, it follows that n,(0.3,3) > 0,
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n,(0.3,3) > 0,n;(0.3,3) > 0. Therefore the
components of the mass vector N have the same
sign.

In order to give some information about the
values of the masses, we consider M,
= m,; = 1. Then

M, = m, = m;

= m; — m,

) =ms = 0.862383986038,

M, = m; = mg = my, = 259.392386239189.
Thus there exists a non-empty open set in D;, and
positive masses M, ,M, and M, such that the nine
bodies with these masses form a central configu-
ration of the 9-body problem. The proof of Theo-
rem 1.1 is completed.

Remark 1

planar central configurations of the 3n -body prob-

Theorem 1. 1 can be extended to

lem with three nested regular n-gon forn > 3.

3 Proof of Theorem 1. 2

For the 12-body problem, equations (3) is a
system of 66 equations. Without loss of generali-

ty, we can assume that

ml(l,O),m2< 1 ,g),rng(f 1 §>7

2 9
v (o ()
7,17(0,1),7;18(*@% f%Jé)

mg (gl‘, — %r) )
e (gy,%y) sy <—§ys%y)’

my, (05 — ) D)
According to Fig. 2, our class of configurations
with twelve bodies must satisfy

Tlos =To3 =73y =745 =756 =716 — 1

ris =rse =719 =V3 T,

Floan =71z =Tz =V3 s

riy T Ty T =35 =g =3

T T = =2

Yig T TVg9 =T33 = Va7 = V59 = Teg — \/1'2 +1,

T Va9 T Vs T Ter :m,
Vg = V27 = V37 = T48 — Tsg = Tgo :ms

i Treaz = Tsa2 = Taao = Ts.00

Yivz =Tz = a0 = Taaz = Vs =

reao =y 1,

7,00 = 7,11 — g — Tgoaz2 = Vo2 =

Y910 = WV x’ Xy +y2 ’

r72 =7rsa0 =req1 —X Ty aom
Taking into account that M, = m, = m, = m;
=my =ms =mg M, =m; =mg = my M, = m,

= m,, =my,, the equations f1, =0, fo3 =0, f3 =
0sfi5 =05 fss =05 f16 =0f2s =0, f10 =0, fs =
0, /10 =05/ = 0sf5 = 0sfr02 = 05500 =0,
foor =0, f10.n =0, f11.12 =0, and fi9.1; = 0of e-
quations (3) are trivially satisfied. The other 48 e-
quations of equations (3) can be put into 8 sets of
equivalent equations;

Set 1. Equations f13 = 0, f15 = 0, fou =0, f1
=0,f35 = 0, and f;s = 0 can be written as

aM, —bM; = 0 an

where

a = %1‘(1{13 +R19 - 2R]7> s

b = %y(Rl.m +Rl.ll *2R1,12)-

Set 2. Equations f1; = 0,2 = 0, f5% =0,/
=0, f5 = 0and fss = 0 can be written as
buM, +0,,M, +b,;M; =0 12)
where
by = (Riy —Rig) A+ (Riy —Rig) A s+
(Riy —Ri7) A+ (Ryy —Rig) Avrs +
(Ri; —Ris) A s
by = (Rig — Ryg) Ayg+ (Ryy — Ryg) Avsg s
by = (Ry,0 —Rio) Avraot
(Rii —Rr0) A+
(Ri.12 —R;.12) Avgae.
Set 3. Equations fi15 = 0, fos = 0, f5 = 0, fuo
=0,f5; = 0and fs = 0.
Set 4, Equations fi1; = 0, fo; = 0, f35 = 0, fus
=0, f5 = 0and fg = 0.
Set 5. Equations f1.10 =0, f2.00 =0, f5.11 =0,
fin = 0,f5.1: = 0and fs.1; = 0 can be written as
by M, + byy M, + bys M, = 0 (13)
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where Sia2 = 0,f51 =0and f5.,0 =0
by =(Ry;, =Ry 1) A0+ Set 8. Equations f7.16 = 0, f7.11 =0, fs.11 =0,
(Ris =Ry, A 1103 Ry —Ri DA o T+ fsaz = 04 fe.1, = 0and f,.,, = 0.
(Ris — R A 110s TR, —Ri2) A 1106 s By fundamental calculation, we find that sets
byy =(Ry; —R710) A0 + 3,4 and sets 6~8 are linear combinations of equa-
(Ris —R:12) Ava0s T (Rig —Rr0) A v1oso s tions (11), (12) and (13). In order to have planar
byy =(Ry11 —Rig, i) Ao T central configurations according to Fig.2, we
(R, —Ris.i) A 11012 need to find positive solutions M, , M, and M, of e-

Set 6. Equations f7.17 =0, /2.1, =0, f3,1, =0,
Sii0 = 0sf5.00 = 0and f5..1 = 0.

quations (11) ~ (13). According to assumptions

(9), we have

Set 7. Equations f1,1; =0, 2.1 =0, f3.10 =0,

2 ~Br+D? @B @D
b=3—y[ ! EN ! ERRE : i]

2 «/7y+1)2 (y* +«/§y+1)2 (y" + 17

5 1 _
by — (I +£)1'* 221 _— 2x Jm/g _ 2x ﬁ .
(" +1)7 (2 +3x + 17 (2> =3z +1)7
. _\3 { sV B-a 2}
12— 5 X 3 3 3]
2 (22 +/3x2 +1)° (2 =32z +1D° 31
; 1 2x —y —/3xy 4 21*y+«/71y 2(I+y) - 22x —y) - 2
D3 — 3 5 PN 2
19 (3 «/73/-0-1)2 (32 +«/7y+1) (y +1)2 (% —ay +3y°)2 (z +y)
, 1{(5 2y 2y +43 2y 3 }
o = 1 103 E T
CGPHDT G afBy DT (o Ayt D)

b 1 x+ty— ffy +y*21+«/§1y+ x Tty 2y —x . 1
22 T o 2 kX EX 2 273 g
T2l et @ EDE (BT @ sy Dt (D)

B By y _ 1
AP 3 , T3y

P DT (4 By + DT Y

From (11), we have

M, = %M, (14)
b

Since the function f(x) = 277 is convex in the in-
terval (0, + <), so the coefficients a and b are
positive in the interval (0, + c=). In order to
have positive solutions M, , M, and M, of equations
(11) ~ (13), the coefficients a and b must have
same sign, so we have 0 <z <y <1,0 <x <1
andy > 1orl < x <y, that is, the point (x.,y)
is in the region D, (see Fig. 6). Substituting (14)

into equations (12) and (13), we have

bby M, + (bbyy, +abis )M, =0 Q)]
by M, + (bbyy +abys YM, =0 (16)
Therefore, there will be positive masses M, and
M, solutions of equations (15) and (16) if and on-
ly if the determinant
bby, bbby, +abys
bby Dby + abss

is zero and A, = 0bby, (bb,, +ab,;) 1s negative.

=

Considering a straight line y = 4x in the region
D, , the straight line y = 4x and the curve A}, =0
have three intersection P, , P, and P; in the region

D,, .D,, and D,; , respectively.
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Consider the point P, = (0.218924200485,
0.875696801940) € D,, < D,, it follows that A,
< 0.

In order to give some information about the
values of the masses, we consider M,
=ms; =m, =ms =mg = 1. Then

M, = m; = mg = m, = 0.095628911130,

M, = my, = m, = m;, = 0.018007796440.

Thus there exists a non-empty open set in D, and

= m; — m,

positive masses M, ,M, and M; such that the
twelve bodies with these masses form a central
configuration of the 12-body problem.

Consider the point P, = (0.826973538630,
3.307894154520) € D,, < D,, it follows that A,

< 0. In order to give some information about the

values of the masses, we consider M, = m;, = m,
=m; =m, =ms =mg = 1. Then
M, =m;, =mg = my, = 2.292478218333,

M, = my, = my = my, = 139.402747556039.
Thus there exists a non-empty open set in D,, and
positive masses M, ,M, and M; such that the
twelve bodies with these masses form a central
configuration of the 12-body problem.

Consider the point P, = (2.439066222221,
9.756264888884) € D,; — D,, it follows that A,

< 0. In order to give some information about the

values of the masses, we consider M, = m, = m,
=my; =m, =ms =mg = 1. Then
M, = m; = mg = my, = 2.488927597396,

M, =my, =m, =m;, =681.137415705532.
Thus there exists a non-empty open set in D,; and
positive masses M, ,M, and M; such that the
twelve bodies with these masses form a central
configuration of the 12-body problem. Hence the
proof of Theorem 1.2 is completed.

Remark 2 There does not exist central con-
figuration of planar 9-body problem if we rotate
one of triangle with an angle of n/3 in Theorem
1. 2.

4 Proof of Theorem 1.3

For the 12-body problem, equations (3) is a
system of 66 equations. Without loss of generali-

ty., we can assume that

3
N
—
o
e
.
3
S
—
o[ —
R
N‘w
-
3
S
—
|
o | —
m‘w
_
.

mi, (y,0),myy ( *%y,7y> ’

mn(f%y,fgy) a7

According to Fig. 3, our class of configurations
with twelve bodies must satisfy

Tig =Ty =03 =15 =155 =116 =1

779 :\/gl'v

Tio.1 =710z =702 =V3 Y

Y78 = Tgy

Ty T Ty T =5 =g =3

Tig =Ty =V =2
— - / 152
—TIs9 — (x—1)",
_ _ _ _ _ _ /Z
Fig =iy =13 =rsy =15 =rss =/ x° Tax 1,

Vo7 = Tog = Vag = Vag = Vo7 = g9 —
Vat—x+1 (18)
=x+1,
_ / B
i = iz = a0~ sz =~ Vs =

rsn =y ty+1,

Y200 — 201 T Taon T Va2 T o0 T

Te,12 — \/y2 —y+1,

raae =rine =ren =y 1,

~VGao

Y702 T g0 = gz = o0

iz = T3

Va9 = Ty7 = Vg

Y10 — 31 T 502

Y700 T a1 T 1oz

r7.11

ron =V Fay .
Taking into account that M, = m, = m, = m; =
my =ms =mg. My, =m; =mg =my .My =my, =
m;, = m,, . the equations f13 =0, f1; =0, fs =0,
Jos =04 f55 =0, 15 =0, f5 =0, 20 =0, [0 =0,
Juu =04f5 =0,f3 =0,f1, =0,f =0,f5 =0,
Soo =05 fir =0 fos =05 /100 =05 /500 =04 f502
=0sf202 =05 fia0 =0, f5.0 =0, /700 =0, fon =
0y fo.12 =0, fro.1 =0, fi1.12 =0and f15,12 =0 of e-

quations (3) are trivially satisfied. The other 36 e-
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quations of equations (3) can be put into 6 sets of
equivalent equations:
Set 1. Equations f1; = 0, f25 = 0, f5 =0, f4s
=0,f5 = 0and fi; = 0 can be written as
oM, +pM, =0 (19
where
a = (Ry; —Ry) A+ (Rig —Ryp) A g+
(Rig — Ryg) Az s
B= (R —Rsi) Aot
(Ri,i —Rsi0) Ao+
(Rii —Ro2) Avzae.
Set 2. Equations f13 = 0, /19 = 0, f357 = 0, f3
=0, f5; = 0and f55s = 0 can be written as
cuM, + M, +csM; =0 20)
where
cn = (R —Ry) Ae + (Riy —Rip) Avgs +
(Riy, —Ry) A+
(Ri; —Ris) Avgs+ (R —Riyg) A g
c12 = (Ry; = Ryg) Ay + (Rig — Rig) A go s
s = (R0 —Ri) Nt
(Riyi —Rr0) Avsn +
(Ri,i —R;1) Avsae.
Set 3. Equations f5 = 0, fos = 0, fis = 0, fuo
= 0,fs = 0and f5% = 0.
Set 4. Equations f1.,1 =0, f1.12 =0, f35.10 =0,
fs02 = 0.f510 = 0and f5,,;, = 0 can be written as
cnM, +cpy My, +csMs =0 @D
where
co1 = (Ryy —Ry.00) A+
(Ri; —Ri0) At Ry —Roi0) A+
(Ris; — R A s+ (R —Ryin) A s
2 = (Ryy —Ryn) A+
(Ris —Rro) A s T (Ris —Ri) A s
€23 = (R0 = Rign) Aot
(Ri1 —Ripn) A,
Set 5. Equations f5,10 =0, 2.1 =0, f45,11 =0,
fiaze = 0,5 f6.10 = 0and f4.1, = 0.
Set 6. Equations f7.1;, =0, /7.1, =0, f5,00 =0,
fsaz = 0,5 f0.10 = 0and fy.;, = 0.
By fundamental calculation, we find that set 3
and sets 5,6 are linear combinations of equations
(19)~(21). In order to have planar central con-
figurations according to Fig. 3, we need to find

positive solutions M, s M, and M; of equations (19)

~(21). According to assumptions (17), we have

_ﬁ[ 1 —=x 2 +x -
“ 2 L(x? =22 4+1D7 (P Hx+1DT

2 —x B 1
(2> —z+D7 @+ ]
=Bt
2Ly —=2y+DzT (Y H+y+D2

2 —y _ 1 }
(yz—erl)% (y +1D?7 |’

5 1 T —1
S I v s
22 +1 o 2x — 1 o
(2 +z+DT (@ —x+ D7
_
(x +1)°
= a(x +2) : (1 —x) :
(2 +x+D2 (2 —2x+1D)2
1
SBat
- x(1l —y) : x(2 +3) -
(y' =2y +D7 (Y +y+Dz
2x +y . xr—y
(2% + xy +y2)% (2 —2xy erz)%’
(a1 y—1 _
S E ) s
2y +1 2y —1
(V' +y+DT (¥ —y+ 1D
1
(v + 1D’
= y(1 —a) _ y(2 +2) .
(2" =22 +D2 (" +x+1)z
2y +x y—x
(2f tay +y)7 (@ —2zy + oy '
s = y(y +2) : yd =y :
(Y +y+Dz (Y —2y+1)z
1

NER

From (19), we have

M, :—%MZ 22)
The function
N 1 —=x 2 +x
g(l) - 3 j 3
(2" =22 +D7 (" +x+1)z
2 —x 1

(2% — 7z + 1)% B (z +1)°

is positive in the interval (0,1) and is negative in
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the interval (1, + =), so the coefficients a and j3
are positive in the interval (0,1) and are negative
in the interval (1, + o). In order to have posi-
tive solutions M, , M, and M, of equations (19) ~
(21), the coefficients @ and g must have opposite
sign, so it follows 0 < x < 1and y > 1, that is,
the point (x,y) is in the region D; (see Fig. 7).
Substituting (22) into equations (20) and (21),

we have
,&11M1 + (&12 *aClg)Mz =0 (23)
ﬂﬂ‘lel + (ﬁfzz —ac;; )M, =0 24

Therefore there will be positive masses M, and M,
solutions of equations (23) and (24) if and only if
the determinant

Bu iz —acus
B B — aco

is zero and B, = &y (12 —acy; ) 1s negative. Con-

B, =

sidering a straight line y = 2z + 1 in the region
D, , the straight line y = 2x + 1 and the curve B,
= 0 have a intersection Q in the region Dj.
Consider the point Q = (0.302606931501,
1.605213863002) € D,, it follows that B, << 0. In
order to give some informations about the values

of the masses, we consider M, = m, = m, = m; =

m, = ms; = mgz = 1. Then
M, = m; = mg = m, = 0.300691732891,
M, = my, = my; = my;, = 0.049115765210.

Thus there exists a non-empty open set in D; and
positive masses M, ,M, and M, such that the
twelve bodies with these masses form a central
configuration of the 12-body problem. In short we
have proved Theorem 1. 3.

5 Proof of Theorem 1.4

For the 12-body problem, equations (3) is a
system of 66 equations. Without loss of generali-

ty, we can assume that

ml(l,()),mz<i @),7n3(— 1 §>,

272 2’
m4(—1,0),m§(7%, 773)’
m6<%, —g),7n7(1,0),
m3<—%x,\/7§1‘>97729(*%1‘, *@I)s

myo (%y»@y) smi (—y,0),

V3 ) (25)

1
nyz <?y9 - 73)
According to Fig. 4, our class of configurations

with twelve bodies must satisfy

Tip =Ty =0s =145 =155 =115 =1

Vg —1Tg9 = I79 :\/g‘Ta

Yio,11 = 11,12 = 10,12 :«/gy,

Yizg = TVis = TVag = Ve — V35 = Tug :«/ga

— /G
=rys =Vl tx+1,
=/ 21,

Ti T Tsg =297 =13 =TIy
Fig =79 =137 —1T39 = I'sy

Vo7 =T = Vug = Vag = Vo7

rog =1y =res =X T1lari g =rs =rs00 =y T1,
Y0 = Tiaz2 = Vsao0 = o1~ s =
5,12 :\/y2 —y+1,
Y2,11 = T2z = Taoto = Taiz = Ve0
ren =y ty+1,
Y200 — Va1 ~ ez — WV (yfl)z s
Tl =rsaz =Feq0 =X T,
Y700 =772 = Tsa0 — sl — Vo1 — Vo2 —
Vit —xy -ty (26)
Taking into account that M, = m;, = m, = m; =
my =ms =mg M, =m; =mg =my , M, =my, =

my = mi, , the equations f13 =0, f15 =0, f5 =0,
Joo =05 fos =050 =05/ =05 [0 =0, fs =
0s fir =05 /25 =05 f5 =0, /10 =0, f355 =0, f50 =
O0sfso =0, 1 =0,fs = 0,110 =0,f52 =0,
S50 = 05200 =05 fin =05 f50: =0, f70 =0,
Ssaz =04 fo00 =05 fron = 04 f11,, = 0and fio.
= 0 of equations (3) are trivially satisfied. The
other 36 equations of equations (3) can be put in-
to 6 sets of equivalent equations:
Set 1. Equations f1; = 0, f23 = 0, f3 = 0, fus
= 0,f5 = 0and fis = 0 can be written as
aMl, — M, =0 @7
where
a = (R —Ry) At (Ris —Ryp) A+
(Rig — Ry) Ay s
B=(Riw —Rsio) Aot
(Ri, ;i =Ry Ao+
(Ri. 10 —Ry.11) Avss.
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Set 2. Equations fi15 = 0, f1, = 0, f5; =0, f3
=0, fs; = 0and f5 = 0 can be written as
duM, +d .M, +dsM; =0 28
where
din =(Ri; —Ry) A gy H(Ris =Ry A gy +
(Ryy =Ry Ay +
(Ri; —Ris) A jgs T(Ri; —Rug) A g6
diy =(Ry; —Ryg) A g T (Rig —Rig) A 1go s
diy =Ry —Ri0) A g0+
(Riy R0 A g0 T
(Ri 0 =Rr) A sz
Set 3. Equations fy = 0, f% = 0, f15s = 0, fo
=0, fs = 0and f4 = 0.

Set 4, Equations f1.10 =0, f1.1, = 0, f5.10 =0,
fs5.1 = 0,f5.1 = 0and f5,,, = 0 can be written as

daM, +dyp M, +dysM; =0 29
where

dyy =(Ryy =Ry 10) A1 102 T
(Ri; —Ri10)Avos Ry —Ryi1) Avoa +
(Ri; =Ry 1) A 1105 (R =Ry 1) A Lios »
do =(Ry; =R:0) Ao +
(Ris Ry A 1105 V(Ris —R; 1) A 1o s
dayy =(Ryi =Ry Ao +
(Ri,10 —Rip.) A 1oz
Set 5. Equations f5,,1 =0, f3.120 =0, f4.10 =0,
fiaz = 0, /5.0 = 0and f4.., = 0.
Set 6. Equations f7.10 =0, f7.12 =0, f5.10 =0,
fs1 = 0,f9.1 = 0and f,.., = 0.
By fundamental calculation, we find that set 3
and sets 5,6 are linear combinations of equations
(27)~(29). In order to have planar central con-
figurations according to Fig. 3, we need to find
positive solutions M; , M, and M, of equations (27)

~(29). According to assumptions (25), we have

5 1 > —1
du = (4 jL“/§>17(I2—21r+1)% B
22 + 1 2z —1 B
(2 Hx+D? (@ -z D7
I S
(x +1)*°
dy, — x(x +2) : (1l —x) _
(2" +x+D7 (2 —2x+1)2

VEES

AR, . 3 hZEHEELHHB P OB RA 927
dy; = (2~ y) T+ - 7
(o —y+Dz G+FD
2x —y - 1
(@ —ay +yH7  (ty)
5 1 -1
dy = |+ +—= y_y—z_
2y +1 2y — 1 -
(¥ +y+DT G —y+D7
I S
(v + 1’
dyy — ‘y(lfx) _ 4 y(2 +x) _
(2" =22 +D72 (a2 +x+1)z
2y —x 1

(2% — zy +y2)% 7(1~+y)2’

2=y Y _ 1
(yZ*erl)% (y +D? NERE

From (27), we have

Coz =

M, :% ) (30)

In order to have positive solutions M, ,M, and M,
of equations (27) ~(29), the coefficients o and j3
must have same sign, so it follows 0 <x <y <1
and 1 < x <y, that is, the point (x,y) is in the
region D, (see Fig. 8). Substituting (30) into e-
quations (28) and (29), we have

pduM, + (dy. tadis )M, =0 3D

oM, + (Bds +ads )M, =0 (32)
Therefore there will be positive masses M, and M,
solutions of equations (31) and (32) if and only if

the determinant
o ﬁdu ﬁdlz =+ 016113

,Qdm ,@dzz + ad 23
is zero and C, = Bd,, (fd1, +ad;) is negative.

(O

Considering a straight line y = ix in the region

2
D,, , the straight line y = %1 and the curve C, =

0 have a intersection K, in the region D,;.

Consider the point K; = (0.485133252406,
0.727699878609) € D,, , it follows that C, <0. In
order to give some informations about the values
of the masses, we consider M, =m; =m, =m; =
m, = ms; = ms = 1. Then

M, = m;, = mg = m, = 18.023447667221,
= m;, = 3.090055655630.

M, = my, = my,
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Thus there exists a non-empty open set in D,; and
positive masses M, ,M, and M; such that the
twelve bodies with these masses form a central
configuration of the 12-body problem.

Considering a straight line y = 4x in the re-
gion D,, . the straight line y = 42 and the curve C,
= 0 have a intersection K, in the region D,,.

Consider the point K, = (2.479104019882,
9.916416079529) € D,, , it follows that C, << 0. In
order to give some informations about the values
of the masses, we consider M, = m, =m, =m; =
m, = ms; = mg; = 1. Then

M, = m; = mg = m, = 2.374630964979,

M, =m,, =m;, =m;, = 693.243523466378.
Thus there exists a non-empty open set in D,, and
positive masses M, ,M, and M; such that the
twelve bodies with these masses form a central
configuration of the 12-body problem. In short we
have proved Theorem 1. 4.

Remark 3  Theorem 1. 2~ 1. 4 can be ex-
tended to planar central configurations of the n +n

+ 2n -body problem for n > 4.
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