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A new characterization of boundedness and compactness for differences
of differentiation composition operators between Bloch spaces

J1 Jing-Rong
(School of Mathematics, Tianjin University, Tianjin 300350, China)

Abstract: Let ¢ and ¢ be analytic self-maps of the open unit disk D in the complex plane C. The operator
C,D", which maps an analytic function f to f* c¢ is called differentiation composition operator, where
™ denote the n-th derivative of f. In this paper, we give some new characterizations of the bounded-
ness and compactness for the differences of differentiation composition operators C,D" —C,D" from the
Bloch space to the Bloch space in the open unit disk D. Some estimates for the essential norm of differ-
ences of differentiation composition operators C,D" —C,D" between Bloch spaces in the open unit disk D
are also considered.
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(Cf) () =flg(x)), =z€D, fEHD).

1 Introduction .
For related books about composition operators see

Let N denote the set of non-negative inte-
gers. Let D be the open unit disk of complex
plane C and H (D) be the space of all analytic
functions on D. Denoting by S(D) the collection
of all the analytic self-maps of D. If ¢ € S(D),

then the composition operator C, is defined as

WA 2018-04-02
E£WAB: HRARPAES (11371276)

Refs. [1] and [2].
Let n€N, f® denote the n-th derivative of £
and f” = f. A linear operator C,D" is defined by
(C,D")H(2)=f"(p(2)), z€D,
SEHD).

The operator is called the differentiation composi-
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tion operator. In fact, if n=0, it is the composi-
tion operator C,. For more recent research of
C,D", we refer to Refs. [ 3-5].

Recall that the Bloch-type space Ba(0 <<¢ <<co
) consists of all f€ H(D) such that

If e =1 0]+

Elelg(l —|z|H] f(2) | <oo.

As we all know, B* is a Banach space under the
norm| ¢ [l x. When a=1, we write B for B,

Dl T flls=]

define the semi-norm and the

Then | « || =sup(1—]z
€D

FCoO |+ .l

norm on B respectively.

Recently, there has been an increase interest
in characterizing the boundedness and compact-
ness of differences of composition operators, or
more generally differences of differentiation com-
position operators acting on spaces of analytic
functions. In 2018, Hu and Zhu'® gave a new
characterization for the boundedness and com-
pactness of the differences of generalized weighted
composition operators D}, — Dj.,: B> H?. A-
mong others, they showed that D;, —Dj..: B—
H? is bounded if and only if

sup I D;.. —Dj DOP; || mr <o
Moreover, the estimate for the essential norms of

the differences of these operators was given: if

D;,—D;,:B—>H? and D}, —D},: B—>H are
bounded, then
| (D;}.u *DZ/').,@)PJ' [ e.B>H? =2
lirrjl;zup | (Dy..—Dy)P; s

where P; =2/, z € D. Shi and Li"7 gave a new
characterization for the compactness of the differ-
ences of two composition operators on the Bloch
space. To be more specific, they proved that C,
—C, is compact if and only if

}LILI I ¢" —¢" Il 5 =0.

Motivated by the study in Refs. [6, 7], we
are concerned about the boundedness and com-
pactness of the differences of two differentiation
composition operators on Bloch space. More pre-
cisely, we will show thatC,D" —C,D": B—B is
bounded if and only if

sup | (C,D"—=Cy,D")2" | p<<oo, z€D.

And if C,D":B—>B and C,D": B—B are bounded,
then C,D" —C,D": B—B is compact if and only if
lim sup || c,D" *C,/,D”)zj | =0, z€D.

oo

Throughout this paper, we will use the same
positive constant C to denote various positive con-
stant, the exact value of which may be different.
The nation a <b, a =b mean that there may be
different positive constant C such that a <Cb, a =
Cb. We say a=b if both a=<b and a=b hold.

2 Notions and lemmas

In this section, we will recall some basic
facts which are helpful in the later sections.

For any a €D, let g, be the Mébius transfor-

mation on D defined by g, (2) :lafazz The pseu-

do-hyperbolic distance on D is defined by

T W

az(w)|:\1 w|,z,w€D.

o(z,w) =

In the rest of the paper, we set p(2) * =p(gp
(2),¢(2)) for the pseudo-hyperbolic distance ¢
(2) and ¢(2).

After some simple calculations, we can easily
get the following lemma. We omitted details.

Lemma 2. 1'%
if f€B, then

(=2 f () —A—[w|[)"f " (w) | <

CllflsoCzsw,
for all z,weD.

Lemma 2.2 Let ¢.¢ € S(D). then C,D"
—C,D":B—>B is compact if and only if C,D" —
C,D":B—B is bounded and for any bounded se-

quence { f; }ren in B which converges to zero uni-

For every positive integer n,

formly on compact subsets of D, then | (C,D" —
C,D") fi | 5—>0 as k—>o0.
Lemma 2, 3"

{fu)nen in B which converges to 0 uniformly on

For every bounded sequence

compacts, if K:B—>DB is a compact operator, we

have lim | K f, Il 5 =0.

n—>o0

Proof Suppose that there is a subsequence
{f.,} such that | Kf, [ls=0, for every £k € N
and some §>>0. Since K is compact and {f,,k }ois
bounded in B, we obtain {Kf, } has a subse-
quence{Kf,,k[ tand f € B such that
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—f I B=0.
From Lemma 2. 3 in Ref. [10], we see that for
any f€B, we have

lim | K,
I 1

|f(z)\§ w3 | f s log 7 5 Zw,zep

Hence for arbltrary r€(0,1) and any x €rD, we get
| (K}‘ N <

u/

— ||f HBlog1 = [ Kf,,, —f Is.
Therefore, K1,
l

D, as l"w. And fn’,
L

— f—>0 on compact subsets of
converges to 0 on compacts
converges to 0 on compacts. Then

| =0, which

implies Kf"’k[
we obtain f=0. Thus 11133 I Kf,,k[
is contradictory with | Kf, | 5=6.

To further study the differences of differenti-
ation composition operators, we define

1—[=z[?

M(Z) 1_| ( )| )71+1¢(Z)9

. |2]* »
M, (z) (1*\¢(z)|2)”“¢(Z)7
where ¢,¢€S(D),z€D. For any a €D, we con-

sider two test functions defined as follows:

. 2
E. (Z)_Jo <1fa‘5>‘“”d
and
(r 1—1al® a—u
F.() 7Jo (1*c’zu)”+21—?zud

Some simple calculations show that E, F, € B""!,
Thus, there exist f,,g, € B such that f,"” =E
ga(n) :Fa-

3 Boundedness of C,D" —C,D"

In this section, we begin to prove one of our
main results in this paper. Hence, we first state
some lemmas which will be used in the proofs of
the main results.

Lemma 3.1 Let n €N, ¢ and ¢ be analytic
self-maps of D. Then the following inequalities
hold.

(D

sup|M, () [p(2) =sup || (C,D" —C,D") f, | 5+

€D a€D

sup I (C,D"—=CyD" g, |l 53

(iD)

%Q‘M‘”(Z) | p(2) Ssgg | (C,D"—=CyD") f, |l 5+

sup I (C,D"=CyD" g, |l B3

(i)

sup|M, (=) =M, ()| =sup | (C,D"

€D a€D

sup | (C,D"—=CyD" g, |l 5.

—C,Df, 5+

Proof First, for any ¥ € D, we choose the

test function f,. Setting a =¢ (2), we see

H (Cch” _C(/,D”)f(;(:) H [32(1 _‘Z‘Z) ‘ ( 5(@7(11)(@(2)) - ;,](I;) ((!1(2)))/‘ =

(1= [z [ Eum (p(x)g(2) —

E o (p(2)) ¢ (2) | =
1*|q0(z) |2

1—[e2)|* §
<1¢<;§¢<z>>"+29”(2) N
A= [ [H A — g [
(1 =) ()"
(1o [HA [ P!
1 —p() () ["7F

(A—1]z"

M, (2) —

IM, ()| —

Similar to the discussion of (1), we prove

| (C,.D" —=C,D") gyey | 5=(1—|2]*) [ F 0, (p(2))g(2) —
1|27y | —LleD ] ol) —¢lz)
(1 =) ()" 1 —p() P(2)
— 2 — 2 \nt+1
|M¢(2)‘(1 LoD ) A —[¢(2)[*) o)

1 —gp(2)¢(2) |2

Multiplying (1) by p(z) and (2), we have
IM, (2)[p(2) =

(1 =) ¢(2))

o =

M, ()| =

(M, ()] 1

F o (gl () | =

lg(2) | =

(2

I C,D"
I C,D

*C¢D7')f¢(z> | Hp(Z) +
—C¢D”)g‘¢<l> H B=
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1(C,D" —C,D") fo Il s+

H (C¢D7' *C¢D”)g¢<:> I (3
Similarly,
M, (2) | p(2) < || (C,D" —C,D") fyoy Il s+
[ (Q;D” —C¢D”)g¢<z> I s 4

Taking supremum in (3) over D, we obtain
sgg\Msp(z) lo(2) =
§gg“((%l)”‘7(%l)“>f;u)“B'+
Slng [ (C¢D” —C¢D’1)g¢<z> <<

H (C€‘D7l 7C‘/1D”)f<;(z) ” 132
(1] [H A —[¢) [H)""!
(1 —p(x) ()"

A e |[H A — gl D!
(1 =) ()"

M, () —

1

sup | (C,D"—=C,D") f, Il p+
sup | (C,D"=C,D"go .
Similarly, it holds that
ESB‘MVJ(Z) lo(2) =
sup | (C,D"—C,D") fo | s+
sup | (C,D"—C,D" g, |l p.
On the other hand, we use function f,., a-

gain, it follows that

M, (2) | =M, (2) =M, () | =M, ()] *

=M, () =M, ()| — M, ()| *

[ (=) [ E 0 (g(2)) — (1= [ () | By (¢(2)) | =

M, () =M, (2) | — M, ()| p(2).

The last inequality follows by LLemma 2. 1. Hence
by (4), it yields that
IM, () =M, ()| =
| (C,.D" —C,D™) foor | 5+ M,;(2) \p(z) =
| (C,D" =C,D") fu | 5+
| (C,D" —=CyD") fyer I 5+
| (C,D" —=CyD") gyo |l p.
Therefore, we have
egg\M¢(z) —M, ()| =
sup | (C,D" —=C,D") for Il 5+
?161%)) l (C(FD" 7C¢D”)f¢(z) I s+
sup | (C,D"—=C,D") gy Il 5=
:1618 [ (C¢D" *C¢D”)fa I 5+
sup I (C,D"—C,D"g, | 5.
This completes the proof of the lemma.

Lemma 3.2 Let n €N, ¢ and ¢ be analytic

| (C,D"—C,D) f Il 5=

I'k+n+2)

self-maps of D. Then the following inequalities
hold.
¢))
sup 1 (C,D"—=C,D" fo =
sup | (C,D"—C,D")2 || p;
JEN
(i
sup I (C,D"—=CyD"g, 5=
sup [ (C,D" —=C,D") 2’ || p.
JjEN

Proof Let us write

(= 1
1 2 — dy =
E.(z)=—|a| )jo (1_au)”+2du
. o [FET R+ t2) , _
(1~lal )Jo Sk Dty u'du
(1*\a|2)§: [k tnt2) atzt

=k +1) T'(n+2)

Then we can immediately get the upper bound of

| (C,D"—C,D) f, |5 and || (C,D"—CyDDg, | 5"

| E (o) —E,(p(2) | 5=(1—|a]®) 3

i—o(k+D! T'(n+2)

i I'k+n+2)

A= 1al) 2 G T s

(1—1al®) > altsup(k+1D" || g1 —g 1 | <
k=0 REN
sup G g7 " =g |y =sup | (C,D"—C,DD2 | (5)
J

j=n

‘a‘k H SDkJrl 7¢)Lv+l H =<

\a|"'(k Jrl)i”zg%)(k +1)71 H sDk*l 7¢k+l H IIS
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Hence
sup | (C,D"=C,D") f, I p=
sup | (C,D"—C,D")2 || p.
JEN

a—u
1—au

o0
:af(lf‘a|2)ﬁzakuk}l'
k=0

Analogous to the above discussion, we can

write F, (2) as follows,

Note that
Y — (1 — 2 N wF(kJrnJVZ)fk, k(o (1 _— 2N Nk, k1 _
F,(2)=—al )JO /Z:ok! Dnt2)d (a— (1 —|al )kgoau Ydu
(1 — oz |5 AT U An+2) —k—1_ k _
aB.(=1=]al® Jo S rerrp Jat
— — 2N\2 & 1 kilF(ZJrnJrZ) —h—1 _kF1
aE. ()~ a] )A;Hl(;ou F<n+2>)“ =

Thus

[ (C,D"—=C,D" g, | = llafd(plz)) —afi (P | s+
0 k—1
(1—|a|?)?> 1 (ZF(Z+n+2)>|a‘/ﬁl H@Hli | <

=k +1\ =l T(n+2)

1 (C,D"—C,D f, s+ (1—[a]?)? 5

=1
» {+n+2)

=1k +1

KT U +n+2)

: ~ Lnt2
Since Eoll! NEE)) k"%, k=00, then
®© k—1
(et S L SITUtn+2))

=k +1 =0l T(n+2)

) k71+2
_ 2y2
A=lal* gjl(/eJrl)"Jr

=ol! T'(n+2)

Jlalt gt =gttty (6)

la|*1 | gkarl 7(//:+l | p=

]‘a|k71(k+1)” ” SDIle 7‘//e+l ” Bé

<1—\a|2>2}§1k lal* N RHD | g =gt =

(/Q +1)11 H g0}e~1 7‘/)k+1 H 35_§Upl(j 777)71 H gDj*n fsbf*n ” Bs

J=nT

sup | (C,.D" —C,D") 2 || p.
JEN

Combing last inequality with (5) and (6),
we have

sup | C,D"—C,D"g, Il s =

sup I (C,D"—=C,D")< |l .
This cdmpletes the proof of Lemma 3. 2.

After these lemmas, we are now ready to
complete the proof of our first theorem.

Theorem 3.3 Let nE€N, ¢ and ¢ be analytic
self-maps of D. Then C,D" — C,D": B—> B is
bounded if and only if

716118 | (C,D"—=C,D") || 5<<oo, z€D.

Proof We first prove the necessity. Assume
that C,D" —C,D":B—>B is bounded. When j =2,

” (C‘fDn 7C¢,D”)f:

we have

2):

2 Il g :l’zrleagj [z]7 11—z
)
i+t
Obviously, these maxima form a decreasing se-
quence which tends to 2/e. Then for any j €N,
we have || 2/ || s=~1. Thus
| (C,D"—=CyD")z" || 5=
| C.D" —C,D" || p-p <o,
Taking supremum for any j €N, the necessity is
complete.
Next, we show the sufficiency. Let f € B
with || £ | 5=1. Then we obtain

§l€JI[))(1 =2 [ (@) g (2) = f TV (Gl g (2) | =
%gB| (1 =) ") o (p()IM, (2) — (1 — [ () [P FP (P My () | =
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sup|M, () =M, (=) | [(1—
€D

| () [P)" [P (o)) |+

§1€1L[))|M¢,(z) (=] [ o0 (o)) — (1= [ () [P D () | =

§gg|M¢(z) —M, (=) | +sup\M¢,(z) lo(2) =

=sup I (C,D" —

C,DD S |l s+

sup | (C,D"=C,D"g. |y =sup | (C,D"=C,DD= | u.

where we use the fact that

Sup.ep (1 |z
Lemma 2.1, Lemma 3.1 and Lemma 3. 2. By the
assumption sup I (C,D"—=C,D")< || <o, C,D"

J
—C,D": B— B is bounded. The proof is com-
plete.

4 Essential norm estimates of C,D"
—_ n
c,D
In this section, we will introduce a sufficient

and necessary condition for the compactness of
(/‘#Dn

few lemmas.

—Cy,D": B—B. For that, we will prove a
Lemma 4.1 Let n €N, ¢ and ¢ be analytic

self-maps of D. Then the following statements
hold.

lim sup | (C,D"

la|—1

C¢D11)g¢1 || Be

Proof For any 2 €D, from LLemma 3.1, we
can obtain the following consequences,
M, () | o) = 1| (C,D" —CuD") fa |l 5+
| (C,D" —=CyD") g |l s
M, (2) |p(2) < | (C,D" —CyD™) fyor | 5+

| (C,D" —=CyD") gy I 5+
and
(M, () —M,(2) | <
| (C,D" —=CyD") fuo | 5+
[ (C¢D7' _C¢D")f¢(z> I+
I (C,D"—C,D") gyor | 5.

Based on the above inequalities, we can get the
assertion as desired.
Lemma 4.2 Let n €N, ¢ and ¢ be analytic

self-maps of D. Suppose that C,D" —C,D":B—>B

(D is bounded. Then the following equalities hold.
111’1]’1‘ sup M, (2) [p(2) = ()
=1 g

lim sup | (CD"=C,D") fu ll s+ lim sup [ (CD" =D f, Il 5=

hr\n\ sup | (C.D" —C,D") g, |l 53 lin}joup I (C,D" —CyD") 2" |l 3
(iD) (i)
hm‘ sup M, () | p(2) = 11m‘ sup | (C,D"—C,D") g, | s =
r—>1 () |a|—1 .

lim sup | (C,D" =C,D") fo Il + lim sup || (C,D" =C,D")2 || 5.

lim sup | (C,D" —C,D" g, |l 53 Proof Since C,D" —C,D" is bounded, by the
(m)m» proof of Lemma 3. 2, it is easy to see
lim sup |M, () —M, ()| = sup(R D" [ o =g |l 5 <o,
n :jﬁ ;‘ - Then for any a €D and each N €N, we have

11r‘n‘ sup | (C,D"—=C,D") f, | s+

n__ ny £ _ N Ikt+n+2) k S R S
ICD"=CDD fo 5=~ [al® )ZO(HD, Tyl e s+
o F(k +n JFZ) 3 1 k1
A=lalD 2 G T @l e =9 =
o > [k +n+2) k —n n kL gkt
A=lal® )hzo(/eJFl)' Tn o el D supCe D" 1"t =gf s+
(1—Tlal® Lk fnr2) lal*(k+1) "k +D" | "t =gt Iy (D

k= \+1(1€ +D! T'(n+2)

Meanwhile,
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. 2 N F(k+n+2)
A=lal 2 G D1 T2

sup G—m" L/ " —¢ " | 5.
o, ¢ ¢ K

Letting |a|—1 in (7) leads to
lim sup | (C,D*—=C,D") f, I s =

[al—1

sup | (C,D"—=C,D")2 || p.

j=N+n+2

Thus

I (Q;D” —CD"M g, [ <<

\a\k(/e-l-l)*”(kﬁ-l)“ H gﬁk‘lfgbk‘l HBi

lim sup || (C,D" ~C,D") £, | n=
lim sup || (C,D" —C,D") 2’ || 5.

Jj>o
Similar to (7), we can get the following inequali-

ty by the proof of Lemma 3. 2:

~Tyn ™ Ty _ IR AT U +n+2) r—1 (S Y S| _
1D =CDD fu i+ alD 2 (S s ) lal ' e s
N 1 AATUAR DN | ,
no__ n _ 232 k=1 k1 gkt1
1(CD=CDO Lt A=l B (S ro o ) el e It
o 1 (KIDUAnt2)
— 232 k—1 [ St Ny = o |
A-lal 2 (S raon ) el e s )
Since
5 1 (KAITUARFD |
— 232 k=1 k1 gkt1 n k __ gk
Al 2 (X o)l e o= sup e =g s =
< . n jmon _— gj—n
j})mp”)vz(] DL ¢ g

Combining the last inequality with (8), and let-
ting |a|—1, we get
lim sup | (C,D" —C,D") g, Il =

lal—1

lim sup | (C,D" —C,D") f, || s+

|a|—>1
. n j—n __ qj—n =
j:;i}ﬂ,,)fz(] ZOL ) Jrls=
lir‘n‘ sup I (C,D"—C,D") f. | 5+
n o__ n J —
SSup I (C,D"—C,D"% | p=
lim sup | (C,D* —=C,D") 2’ | p.
Jj—>o©
Based on the above results, we are now ready to
estimate the essential norm of C,D" —C,D": B
—B.

Theorem 4.3 Let n €N, ¢ and ¢ be analytic
self-maps of D. Assume that C,D",C,D": B—B
are bounded, then

H c.D"—C,D" [P
lim sup M, () =M, (=) | +
r>1 () [>r
[¢(2) [ =>r
lanlq‘(jl)JgJM?(z) lo(2) +
l}gﬁﬁg@r\ M, (=) |p(z) ~
lir‘n‘ sup | (C,D"—C,D") f. | s+

lim sup [ (C, D'—C,D"g, g~

la|—>1

lim sup [ (C,D*—=C,D")2’ | g,z €D.

o

Proof First, we prove

I C,D"—=CyD" || .- =
lirrj1)iup | (C,D"—=C,D") |l .
For any positive integer j, we have | 2/ |l 5~1.
It is easy to see that | 2 | s is bounded and 2/
converges uniformly to O on compact subsets of D
in B, as j—>o. We assume that K is any compact
operator from B to B. By LLemma 2. 3, we obtain
}ig} | K2/ || 5=0. Thus
|C,D"—C,D" =K |l g =
lim sup | (C,D" —C,D" —K) 2’ || =

lim sup | (C,D* ~C,D" .
Then we ]obtain
I C,D"—=C,D" || .5-5=
limﬁiup | (C,D"—C,D") || 4 (9
For 7]’6[0,1) , set K,: H(D)—>H(D). Then
for any f€ H(D), we define
(K. () =f(2)=f(r=).
It is clear that f — f,—0 uniformly on compact
subsets of D as 1. Moreover, K, is compact on
B and [ K, [[g.s <1. Let r; C(0,1) be a se-
quence such that r;—1las j—>o. Then for each
positive integer j, the operator (C,D" —C,D")
K,j :B—>B is compact. Then we have
| C,D"—=C,D" || ,.pp=
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lim sup || C,D" —C,D" —

Jw

(C,D" —C,DDK, | ien =
lim sup | (C,D" ~C,D") (T =K, ) |l yop =

Jw

hm 1SUp sup ICD —CDOU—K D f 5=

(s!

l1rn sup sup. supQ/(z),

o Sl g=1

where
Q) = —[=z]H]T—
K)oV (ple)g(2) —
(I-K, ) fY () (=) .
For any r€(0,1), define

D, ={z€D:|p(x)| <r,[¢()| =r},

D,: ={z€D:|p()| =r, ()| >r},

D;: ={z€D:|gp(x)| >r,[¢()| =r},

D, : :{ZGD:\gp(z)\>r,\gb(z)\>r}.
Taking

Ji=supj p=1SUP:eD, \Quf(Z) >
we can write Qf (2) as follows

lim sup sup supQ/(z) =

jro [l p=l=

max{lim supJ ,

Jw

lim supJ. ,hm sup]g ) hm sup]4}

Jw

Setting the funcnon f(z) =2""" € B. By the
boundedness of C,D" and C,D", we can easily ob-
tain

sup.ep (1 —[2|*) [g(2) [ <oo
and

sup.ep (1 —[z|*) [¢i(2) | <on,
Meanwhile, (I =K, ) "V (2)—0 uniformly on
compact subsets of D. Thus we get

lim supJ, —l1m | Sup, sup SupQ/(z) <

e I £ g=1=€D,

P A—|=z|H|UT—

lim sup sup
o L fl p= 1\¢<>

K, )f(”ﬂ)(go(z))go(z)\Jr
P A—]z|H |~

lm%up sup_
o L fl p= 1\¢<>

K,.J ) forrh (P ¢(2) | =0.
On the other hand, we can get the following

estimates by LLemma 2. 1,

Qf () =1— |<p(z) |2y (I—K,j ) foD (p(2)) \ IM, () —M,(2) | +

|M,(2) || (I*K,,) ) () (1 —

[p() D" =T =K, ) "V (g (1= g || =

(1) [ [ (T —K, ) £ (o) | [M, (2) =My () | + M, ()| o).

Meanwhile, we get

Q) =0 —|¢gp) )] (I—-K, ) V() [ [M, (2) =M, () | +[M,(2) | p(2).
By assumption, C,D" —C,D" is bounded, we have sup.ep, |M,(z) =M, (2) | <. Hence

lim sup/, l1m L Sup sup
s 171 =

suga((l—\¢<z>| YU =KD S (e [ IM, (2) =My () | + M, (2) [ o(2)) =

lim sup sup \¢<>P (1*|50(z)\ W (I—K, )f(”ﬂ)(go(z))\ M, (2) =M, (2) | +

o =t

\¢<:>E~»r|M‘b(z) lo(2) 7\;3@»“\/["’(2) lo(2) s

where we used (I —K, ) f@P (2)—>0 uniformly

on compact subsets of D as j—>o0 again in the last

inequality. Due to the arbitrary of , we have

lim sup/, Shm L sup sup
- 171 p<1

lim supJ, Shm suP (M, (2) | p(2).

Jr

Similarly,
lim sup/; Shm‘ (suP M, (2)|p(2).
e o=z

In addition,

sup((l*\sb(zﬂ UK ) P (@) [ M () =M, () | [ M (2) [ p(2)) =

11m sup sup su
i I p=lgta [

[¢p() | =>r

\wﬁz‘M @M1+ R, M, ()| p(2).

[g() | =>r

H =KD f | 5IM, () =M, ()| +‘ sup M, (2) [p(2) =
([ >r

Here we used the fact that lim sup;... | (I =K, ) f |l5=2 in the last inequality. Thus
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lim supJ,=<lim  sup IM, (z) —M,(2) | +lim sup IM, (=) |p(2).

oo r>1 () [ >r|g() | =>r
Then we have

lim sup sup_ %up\Q/(z)
jo ‘f‘ =1z€D

math sup sup. supQ/ (z) =
<i<4 Jj—>© Al B= ~ED

1lg(o)

max {lim sup/i,lim supJ.,lim sup/;,lim supJ,} =

Jro Jw Jre J®

lim sup. M, () =M, (2) | +lim sup M, ()| p(2) +11m su

r>1 |g() [ > r>1 |e(2)
[¢p() | =>r
which together with Lemma 4. 1 and 4. 2 imply
I C.D"—=CD" || .5-5=
lim sup M, () =M, (2) | +lim sup |M, ()| p(2) Jrhm sup
r—>1 \(;(z) =r r>1|e(2)
[ [=>r
hr‘n‘ sup | (C,.D"—=C,D") f., |l -Hir‘n‘ sup | (C,D"
hrr/lﬂ:jup I (C,D"—C,D")2 |l 4

Combining (9) with (10), we complete the
proof.

Corollary 4.4 Let nE€N, ¢ and ¢ be analytic
self-maps of D. Suppose that C,D",C,D": B—>B
are bounded, then C,D"
only if lim sup || (C,D"

J®o

—C,D" is compact if and
—C,D"2 || p=0,z€D.
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