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Weighted iterated radial operators from weighted
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Abstract. Let B" be the open unit disk in C* and H(B") the class of all analytic functions on B". Let u €
H(B") and m € N. The boundedness and compactness of weighted iterated radial operators from weigh-
ted Bergman-Orlicz spaces to a class of bounded-type spaces are characterized by constructing some spe-
cial functions.
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1 Introduction NS ‘;lo\ﬁ\a,ﬂ ;
where 3=(8,,8,+**+f,) is a multi-index, |B| =
B T8 e Jr,@,, and 2f =21 eee b,

The iterated radial derivative operator Rh"f

Let B'={z€C".|z| <1} the unit ball in C"
and H(B") the class of all holomorphic functions

on B". Let R be the radial derivative operator on . ‘ . .
on some subspaces of H(B") is defined inductive-

., Ny ly by R f =RR" fH,m € N\ {1}. We regard
RfCz) = Zz, (;zf (2). that R’ is the identity operator, that is, R° f = f
=1 j
If we consider the Taylor expansion f(z2) = for every f € H(B").
Z 5h et u € H(B") The weighted iterated radial
agz?, then

[ 8] =0 operator on some subspaces of H(B") is defined

some subspaces of H(B") ,that is,
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by Rif = u(R"f),m € N\ {1} .

It is interesting to consider when u induces a
bounded or compact operator R7 on or between
some subspaces of H(B")I' This kind of oper-
ator was introduced and studied by Stevic in Ref.
[1]. Quite recently, products of radial derivative
and weighted composition operators from weigh-
ted Bergman-Orlicz spaces to weighted-type
spaces have been studied in Ref. [2]. As a contin-
uation of the investigation of concrete operators,

here we study the operator R, from weighted

Bergman-Orlicz spaces to weighted-type spaces.
2 Preliminaries

Let dv be the LLebesgue measure on B" ,do the
normalized surface measure on S, = J B" (the
boundary of B").

Let 2=(2,,2,,°*,2,) and w=

(w, ,wy s ,w,) be points in C",{z,w) =z, w; +

<o +2,w, and z\z = {(z,2). Fora >—1, by dv,
we denote the normalized Lebesgue measure
c. (1 —]z]*)*dv(z) (constant ¢, is chosen such
that v, (B") =1).

The following facts come from Ref. [3]. The
function ®#0 is called a growth function, if it is a
continuous and non-decreasing function from the
interval [0, o) onto itself. Clearly, these condi-
tions, among others, imply that ®(0)=0. The
function @ is of positive upper type g =1, if there
exists C > 0 such that ®(st) <Cr’®(s) for every s
> 0andt >1. We denote by 8¢ the set of growth
functions ® of positive upper type g (for some ¢ =
D) .

is non-decrea-

1), such that the functionz—

sing on (0, c©). The function ® is of positive low-
er type p >0, if there exists C >0 such that ®(sz)
<Ct'®(s) for everys >0and 0 <z < 1. By J, we
denote the set of growth functions @ of positive

lower type p (for some 0 << p <1 ), such that the

function r — is non-increasing on (0, <),

Let ® be a growth function. The weighted
Bergman-Orlicz space A? (B") consists of all f &
H(B") such that

I £ 1 o, :J o | f() | v, () < oo
« B

On A?(B") is defined the following quasi-norm
lux
sl A T

inf{/l >0:J @(“fi,{iz)‘)dva(z) <1).
)

If ® € or & €3,, then the quasi-norm on
A?(B") is finite and call the Luxembourg norm.
The classical weighted Bergman space
A?(B"),p>0,a> —1, corresponds to ® () =1¢"
and consists of all f € H(B") such that
£ g = | L7

n

tdv, () < oo,

We say that a function w:(0,1] — (0, <o) belongs
to class Q. if w is non-increasing, — is of some
positive lower type and the function #w is increas-

ing. For example, the function w(¢) = %‘X,O <a <

1, belongs to class Q,. We say that a function w:
(0,1]— (0, =o) belongs to class Q,, if w €S, and

satisfies the condition

1 -
| eas <22 0 < i<,

t S t
Let w be a positive function defined on (0,1].
An f€ H(B") is said to be in H, (B"),if

- =g 7‘f(2)‘ co
HfHHw(l§> ;uﬁw]*‘z‘)< .

It is easy to see that H, (B") is a Banach space
with the norm | < | H B - The space H, (B")
withw € , is not quite often used in the litera-
ture. It seems to first appear in Ref. [4] as far as
we know.

Let X and Y be topological vector spaces
whose topologies are given by translation invari-
ant metrics dX and dY, respectively. Let L:X —
Y be a linear operator. The operator L: X — Y is
bounded if there exists a positive constant K such
that dy (Lf,0) <Kdx (f,0) for all f € X. The
operator L ;X — Y is compact if it maps bounded
sets into relatively compact sets.

Throughout this paper, positive constant C
may differ from one occurrence to the other. The
notation a < b means that a << Cb for some positive
constant C.

We first have the following compactness cri-

teria. Since the proof is similar to that of Proposi-
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tion 3. 11 in Ref. [5], it is omitted.

The operator R”: A? (B") —
H; (B") (or ) is compact if and only if for every
bounded sequence { f;} in A?(B") such that f,—

Lemma 2. 1

0 uniformly on any compact subset of B" as j —
e, it follows that lim [l R/ [l s =0.

We need the fi)llowing estimate. For the ca-
1, they were obtained in
Refs. [8] and [ 9], respectively.
Let € X US, and m € N.
Then there exist two positive constants C and D
independent of f€A?(B") and 2 € B" such that
R f() | <

C - D o
(17‘2‘2>m < 17‘ “_ 7,+1 a> Hf HA;D(B”W

Proof First we consider the case where ® €
83¢. We observe that in this case, A?(B") contin-
uously embeds into A! (B"). Then for any f €
A2(B") and z € B",we have

o £ (w)
s =

(1 — (zyw))"tHe
For any B = (B1: B2+
From (1), it follows that

sesof m = 0 and m =

Lemma 2. 2

dv, (w) @D)

B s we write |B| =

N f J w? f (w) y
’)z,? (Z) B (1 _ <29‘LU>)”+]+NAQJPUQ(U/)
(2)
From (2), we have
— |52 9
A-LelD%)9 | <
(v AP <
| fG) | (1—|=]|HN
: dv, (w
(Jf“ I £ f:;(B”) ‘1 — (g ) |"THNTa v, (w)
(3)
Using Propositionl. 4. 10 in Ref. [8], it is easy to
(1—|=z|HN .
see that T (e —— v dv, (w) 1s up to a

constant a probability measure. Hence from the

convexity and ]en%en’s inequality, we obtain
(1—1z|* N
®( ‘ lux P {: (
(gl A% <
. (w)
(/J 11 ®< ‘ f lux ‘ )’
B v A"

(1 — ‘z‘z)N
‘ 1 —<(z,w) 1+ N+

)=

dv, (w) <

| f(w) | )

s J (
— o | L@l e ) du(w) <
A= T e VT e,

C
(1 _ ‘z‘2>ﬂ+]+a'
Hence
NS
P (2) ‘

1 - C .
(lf‘Z‘Z)Nq) ((1*‘2‘2)”+1+“> Hf“Af(B”)

€Y)
Now we consider the case where ® €J,. We re-
call that in this case @ is of lower type 0 << p < 1. Let
y >—1 be large enough. As above, we have
2V
728 (2) ‘ <
. | f(w) |
(,J“” Lo, o) (5)

n+1+¢

We assume that y = —(n+1) withgy >

a + p. Then using Lemma 2. 15 in Ref. [9], we
obtain from (5) that

s
0 () g
[ (w) »
(/J B" (1 — <£,w>)”+l+;\"+y d?)s(w) .
which leads to
_ N AN ,
A— =109 | <
I S l A% (B dz!
o s
g A A
(1 — |z 2)'\"1’
‘ 1 — <Z,u‘1> ‘(71+l+;\"+y)/)d7)§(w) (6
Also by Proposition 1. 4, 10 in Ref. [8], we see
(1 — |z ‘ 2 )\P

that | arTiNi;dvs (w) is up to a con-

1—<{z,w>

stant a probability measure. Hence using that the

. 1.
function ®, (1) =®(¢7) is convex and Jensen’s

inequality, we obtain that

(1* p Z)NEJN . »
| e 10 )<
Il e g 9%
’
cf ol H T )
B" (vl AP e
(1 — > 2>N[,
11— <z,zl,y> ‘<n+1+;\v+y>pdv5(w).
prom thisandy = %M —(n+1), it follows
that
(11— PR
<I)< ‘73 {:( ) )
s AT B dz
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Cj q)( f(w) ) N f o (w) =0 (8)
B (Al Z§<1;'1> for eachj € {1,2,++,l}\{k}. Moreover,
]2y luz
‘ 1 —(1<Z ’Ll,j ‘ (uzrlJrNJrr)pdvs(W) < ::II; H f o H A(D(B ’ <1
) Proof Letp = 2(n +1 + o) and o, =0 !
o u’
CJB”CD< LI, ) <%) From a direct calculation,
A, (lf‘w‘z)” 1+a
_ 2y Np
K i1<z Li‘ ”)AHHNPJ"U&(w) < we have
’ L Jw]?
C g (w) %ku,(w) :®a(ﬁ+l)77 9
e ‘2‘2)”+H"J1;”¢)< 7‘“{“ e )do, (<o) ‘ 1= [w[?
A‘X(b) %ka.l(w> —
<€ . . | w]!
\(1— ‘Z‘Z)WLHW. @n[(ﬁ+l)(ﬁ+l+l)m+
Hence, in this case, we also have | w]|?
N f (ﬁJrl)il*‘w‘z} (10
727 ()
and
1 C e s DN —
a=T=® (a=Temem) 1/ 1 Tl ()

D)
It is easy to see that the orders of all the possible
partial derivatives of f(2) in the expression of
N” f(2) are not more than m. From this, (4) and
(7), the desired result follows
The following two results provide examples
of useful functions of A? (B"). The first was ob-
tained in Ref. [2].
Lemma 2.3 Letg >— land ®€ ' US,.
Then for every t = 0 and w € B", the following
function is in A2(B")
ke (2) =
@

2 2nt+1+a) +1

(1- ‘wc“z)”““)(11:<‘;;Uw>> ’

where C is an arbitrary positive constant. Moreo-

ver. sup I ew., |l e <1,

A (B™)
we B"

By using the linear combinations of %,,. we
obtain the following result.

Lemma 2.4 lLet w & B". Then for each fixed
ke {1,2,-

«+,c;.; such that the function

.1}, there exist constants cx.is Cp.z s

!
For(2) = D) ek (2)
=1
satisfies
R f ok () =
o C | w |
o ((17‘w2>71+1+n)(1_‘w‘2)k

and

[H(ﬂ+z+])7( [ | ZS‘ 3

(s—1)

[w]®

u\-,\-flj:HO(.B_._l +7) a— ‘w 2).\71+'“

+as,z(ﬂ+i)(ﬁ+i+l)%

(ﬁ+i)¢} an
1 — ‘w‘z

for each s = 3, where a,.,,***»a,.,—; are some posi-
From (9) ~ (11), it follows that

(8) is equivalent to the following system

tive integers.

14
DUB+ D =0,
i=1

!
DB+ DB i+ D =0,
i=1

1 k—1
S @+i+iew =1,

i=1 j=0

(12)

1 -1

ST @+i+iews =0

i=1 j=0

Hence we only need to prove that there exist con-
stants Cpis Cras ***s Crar1 such that the system

(12) holds. By Lemma 3 in Ref. [12], the deter-

l
minant of the system (12) equals to H]‘ which
=1

is different from zero. Therefore, there exist con-
stants Cp.q sCra s *** s Cpy such that the system (12)

holds. From Lemma 2.5, the asymptotic estimate
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follows. Then for every f € A? (B"), from Lemma 2. 2

3 Boundedness and compactness of
Ni:AZ(B")—>H; (B")

We first characterize the boundedness of Rh” .
A (BY)—>H_ (B").

Theorem 3.1 leta>—1,u€ H(B"),® €
R? U3, and w a positive function defined on
(0,17]. Then Ry . A2(B")—>H_ (B") is bounded if
and only if

(2) |
M. =s ‘u .
F A =D =] D"

D

—1

o (= (o) [
where D is the positive constant in Lemma 2. 2.
A;D(B”)"H; (B")

is bounded. Since Lemma 2. 4 holds for an arbi-

><m (13)

Proof Suppose that R .

trary positive constant, here we take D the posi-
tive constant in Lemma 2. 2. Then by Lemma 2.

4, we have

R f o (w0 |
w(l— [w])

lu() | |w -
w(l—|zHA—[=z[H"
[ %z:’fuum(w) [ H_ (B <C | ER::I [ H_ (B") »

from which it follows that

—o ! (T

w

2m

o D .
o, 0 ()
lu(2) | <
w(l— ]z —]z]"
C IR H;(I}”)<+O@ (14)
On the other hand, it is easy to see that
D
. S
“:1‘1}3%@ ((17‘2‘2)u+1+q>
| u(2) | <
w(l— =D —]z|H"
C max |u(z)| <+ (15)
|l =%
where
nt1+a

e (L N
c=o'((3)  )5) s
Hence from (14) and (15), (13) follows.
Suppose that (13) holds, that is,

|u(2) |
M=s .
Tre =D A~ =[*"
- D
@ ((1—\¢<z>

Zyntita ) < oo,

we have

[ %“f [ H(B" ?;Bw(l _ ‘ Z‘ )

|R" ()| <
CM | f I o, »

which shows that R/ . A? (B") - H, (B") is

bounded.

From the fact H, (B")—>A,(B") when o €
Q. , and Theorem 3.1, we can obtain the follow-
ing result.

Proposition 3.2 Leta>—1,u€ H(B"),d€
NUS,andw € Q.. M < oo, then R : AZ(B")
—H (B") is bounded.

Theorem 3.3 leta>—1,u€ H(B"),® €
N? U, and @ a positive function defined on
(0,17]. Then Ky :A2(B")—H; (B") is compact if
and only if

lim lu(2) | .
el =1w(1— 2D —]z])"
D
1 =
® ((1—\50@)\2)"*‘“) 0 (16)

where D is the positive constant in Lemma 2. 2.
Proof Suppose that R :A*(B")—H. (B")
is compact. Consider a sequence {z;} in B" such
that |z, |—>1 as j — <o. If such sequence does not
exist, then (16) obviously holds. Using this se-
quence, we define the functions f;(z) =fzj,,,,(z).

Then the sequence {f;

.} is uniformly bounded in

A®?(B") and uniformly converges to zero on any
compact subset of B"* as j — co, Similar to the

proof of Theorem 3.1, we have

2m

‘“(Zﬂ‘ ‘Zj

wll =]z, D~z [ )

qa‘( D

(1 . ‘2_/ ‘ 2)/1+1+a

)< H %Zlf, H H_ (B")

an
From (17) and Lemma 2. 1, (16) holds.

Now suppose that (16) holds. We first check
that R : A®(B")—H_ (B") is bounded. For this,
we observe that (17) implies that for everye >0,
there is an y € (0,1) such that

lu(2) | .
wl =]z —]z][H"

- D
o ((17‘2‘2)”+1+a><€ (18)




934 Il K FFRCE KA F R

%55 %

for any 2 €K, = {2 €B": |z | >y}. Write

‘ lu(2) | .
It = w(l—]z)—]z[H)"
. D
D ((17‘2‘2)n+1+a)

Then from (18) we have
M—%up[(z) = sup I(2) +Supl(z)

z€B" ~els“\K
1
w(1 *77)(1 *772 )"

o !

((177]%) m‘ax ‘u(z) ‘ +e.
From this and Theorem 3. 1, it follows that R,
A?(B")—H, (B") is bounded.

To prove that R : A*(B")—>H_ (B") is com-
pact, by Lemma 2.1 we just need to prove that if
{f;} is a sequence in A? (B") such that
I fi M a2y <M and {f;} uniformly converges to
zero on any compact subset of B" as j — <o, then

JILm IR S5 1 b ey =0
For any e > 0 and the associated in (18), by u-

sing Lemma 2. 2, we have

[ %Z'f,' Il H (B —
sup% lu(DOR"f, () | =
e B"W ‘ Z‘ )
|u(2) | :
sup —5—r—~ |N"f; ()| +
1615”?’\'7(1}(17‘2‘)‘ filz ‘
supM R f. () | <
ZEI(V(U(I_‘Z‘) !
1 m
= D <~'r‘lr}a‘x\q7 | u(2) | . \SUF\w |R"f. (| +
. | u(2) |
S e e Y e P R
) D e
> (a=Tee) <
1 o
w(lfrj) \Mr‘nfq)iv lu(2) | s | R £ () | +
Ce a9y
It is easy to see that, if {f;} uniformly converges to

f’ } also

zero on any compact subset of B", then {

does as j — ==, This shows that { | R"f; |} uniform-
ly converges to zero on any compact subset of B" as j
— co. Since {z€B":|z| <y} is compact subset of
B",by letting j — <= in (19) we have

lim || %Z'fj I H. (B =0.

jomoo
This shows that Ry : A? (B")—>H_ (B") is com-

pact.
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