doi: 10.3969/j.issn.0490-6756.2018.05.005

加权 Bergman-Orlicz 空间到有界型 空间上的加权迭代径向算子

邓云辉

(四川工程职业技术学院, 德阳 618000)

要: 设 $B^n = \{z \in \mathbb{C}^n : |z| < 1\}$ 是 n 维复平面 \mathbb{C}^n 中的开单位球, $H(B^n)$ 是 B^n 上的全纯函数 集合.设 $u \in H(B^n), m \in \mathbb{N}$.本文通过在加权 Bergman-Orlicz 空间中构造合适的测试函数,利 用符号函数 u 刻画了加权 Bergman-Orlicz 空间到有界型空间上的加权迭代径向算子 \mathfrak{R}_{ij}^{m} 的有 界性和紧致性.

关键词: 加权 Bergman-Orlicz 空间; 有界型空间; 加权迭代径向算子; 有界性; 紧致性 中图分类号: O177.2 文献标识码: A 文章编号: 0490-6756(2018)05-0929-06

Weighted iterated radial operators from weighted Bergman-Orlicz spaces to bounded-type spaces

DENG Yun-Hui

(Department of Fundamental Education, Sichuan Engineering Technical College, Deyang 618000, China)

Abstract: Let B^n be the open unit disk in \mathbb{C}^n and $H(B^n)$ the class of all analytic functions on B^n . Let $u \in \mathbb{C}^n$ $H(B^n)$ and $m \in \mathbb{N}$. The boundedness and compactness of weighted iterated radial operators from weighted Bergman-Orlicz spaces to a class of bounded-type spaces are characterized by constructing some special functions.

Keywords: Weighted Bergman-Orlicz space; Bounded-type space; Weighted iterated radial operator; Boundedess: Compactness

(2010 MSC 47B38,47B33,47B37)

1 Introduction

Let $B^n = \{z \in \mathbb{C}^n : |z| < 1\}$ the unit ball in \mathbb{C}^n and $H(B^n)$ the class of all holomorphic functions on B^n . Let R be the radial derivative operator on some subspaces of $H(B^n)$, that is,

$$\Re f(z) = \sum_{j=1}^n z_j \frac{\partial f}{\partial z_j}(z).$$

If we consider the Taylor expansion f(z) = $\sum_{\beta,\beta>0} a_{\beta} z^{\beta}$, then

$$\Re f(z) = \sum_{|\beta|>0} |\beta| a_{\beta} z^{\beta},$$

where $\beta = (\beta_1, \beta_2, \dots, \beta_n)$ is a multi-index, $|\beta| =$ $\beta_1 + \beta_2 + \cdots + \beta_n$ and $z^{\beta} = z^{\beta_1} \cdots z^{\beta_n}$.

The iterated radial derivative operator $\Re^m f$ on some subspaces of $H(B^n)$ is defined inductively by $\Re^m f = \Re(\Re^{m-1} f)$, $m \in \mathbb{N} \setminus \{1\}$. We regard that \Re^0 is the identity operator, that is, $\Re^0 f = f$ for every $f \in H(B^n)$.

Let $u \in H(B^n)$ The weighted iterated radial operator on some subspaces of $H(B^n)$ is defined

收稿日期: 2018-04-27

基金项目: 四川省高校重点室开放基金(2017QY501)

作者简介: 邓云辉(1961-), 男, 四川遂宁人, 副教授, 主要研究方向为算子理论. E-mail: dengyunhui_107@163.com

by $\Re_u^m f = u(\Re^m f), m \in N \setminus \{1\}$.

It is interesting to consider when u induces a bounded or compact operator \mathfrak{R}_u^m on or between some subspaces of $H(B^n)^{\lceil 1-10\rceil}$. This kind of operator was introduced and studied by Stevic in Ref. $\lceil 1 \rceil$. Quite recently, products of radial derivative and weighted composition operators from weighted Bergman-Orlicz spaces to weighted-type spaces have been studied in Ref. $\lceil 2 \rceil$. As a continuation of the investigation of concrete operators, here we study the operator \mathfrak{R}_u^m from weighted Bergman-Orlicz spaces to weighted-type spaces.

2 Preliminaries

Let dv be the Lebesgue measure on B^n , $d\sigma$ the normalized surface measure on $S_n = \partial B^n$ (the boundary of B^n). Let $z = (z_1, z_2, \cdots, z_n)$ and $w = (w_1, w_2, \cdots, w_n)$ be points in \mathbb{C}^n , $\langle z, w \rangle = z_1 \overline{w_1} + \cdots + z_n \overline{w_n}$ and $|z|^2 = \langle z, z \rangle$. For $\alpha > -1$, by dv_α we denote the normalized Lebesgue measure c_α $(1 - |z|^2)^\alpha dv(z)$ (constant c_α is chosen such that $v_\alpha(B^n) = 1$).

The following facts come from Ref. [3]. The function $\Phi \neq 0$ is called a growth function, if it is a continuous and non-decreasing function from the interval $[0,\infty)$ onto itself. Clearly, these conditions, among others, imply that $\Phi(0) = 0$. The function Φ is of positive upper type $q \geq 1$, if there exists C > 0 such that $\Phi(st) \leq Ct^q \Phi(s)$ for every s > 0 and $t \ge 1$. We denote by \Re^q the set of growth functions Φ of positive upper type q (for some $q \geq$ 1), such that the function $t \rightarrow \frac{\Phi(t)}{t}$ is non-decreasing on $(0, \infty)$. The function Φ is of positive lower type p > 0, if there exists C > 0 such that $\Phi(st)$ $\leq Ct^p\Phi(s)$ for every s>0 and $0< t \leq 1$. By \mathfrak{J}_p we denote the set of growth functions Φ of positive lower type p (for some 0), such that thefunction $t \to \frac{\Phi(t)}{t}$ is non-increasing on $(0, \infty)$.

Let Φ be a growth function. The weighted Bergman-Orlicz space $A^{\Phi}_{a}(B^{n})$ consists of all $f \in H(B^{n})$ such that

$$\|f\|_{A^{\Phi}_{a}(B^{n})} = \int_{B_{n}} \Phi(|f(z)|) dv_{a}(z) < \infty.$$

On $A_a^{\Phi}(B^n)$ is defined the following quasi-norm

$$\begin{split} & \parallel f \parallel_{A^{\Phi}_{\alpha}(B^{n})}^{hex} = \\ & \inf \Big\{ \lambda > 0 : \int_{B_{\alpha}} \Phi(\frac{\left| f(z) \right|}{\lambda}) dv_{\alpha}(z) < 1 \Big\}. \end{split}$$

If $\Phi \in \S^q$ or $\Phi \in \mathfrak{J}_p$, then the quasi-norm on $A_q^{\Phi}(B^n)$ is finite and call the Luxembourg norm.

The classical weighted Bergman space $A_a^p(B^n), p > 0, \alpha > -1$, corresponds to $\Phi(t) = t^p$ and consists of all $f \in H(B^n)$ such that

$$\parallel f \parallel_{A^p_\alpha(B^n)}^p = \int_{B_\alpha} |f(z)|^p dv_\alpha(z) < \infty.$$

We say that a function $\omega:(0,1] \to (0,\infty)$ belongs to class Ω_1 , if ω is non-increasing, $\frac{1}{\omega}$ is of some positive lower type and the function $t\omega$ is increasing. For example, the function $\omega(t) = \frac{1}{t^{\alpha}}, 0 < \alpha < 1$, belongs to class Ω_1 . We say that a function $\omega:(0,1] \to (0,\infty)$ belongs to class Ω_2 , if $\omega \in \mathfrak{F}_p$ and satisfies the condition

$$\int_{t}^{1} \frac{\omega(s)}{s^{2}} \mathrm{d}s < \frac{\omega(t)}{t}, (0 < t < 1).$$

Let ω be a positive function defined on (0,1]. An $f \in H(B^n)$ is said to be in $H^{\infty}_{\omega}(B^n)$, if

$$\parallel f \parallel_{H^{\infty}_{\omega}(B'')} = \sup_{z \in B''} \frac{\mid f(z) \mid}{\omega(1 - \mid z \mid)} < \infty.$$

It is easy to see that $H^{\infty}_{\omega}(B^n)$ is a Banach space with the norm $\| \cdot \|_{H^{\infty}_{\omega}(B^n)}$. The space $H^{\infty}_{\omega}(B^n)$ with $\omega \in \Omega_1$ is not quite often used in the literature. It seems to first appear in Ref. [4] as far as we know.

Let X and Y be topological vector spaces whose topologies are given by translation invariant metrics dX and dY, respectively. Let $L: X \to Y$ be a linear operator. The operator $L: X \to Y$ is bounded if there exists a positive constant K such that $d_Y(Lf,0) \leq Kd_X(f,0)$ for all $f \in X$. The operator $L: X \to Y$ is compact if it maps bounded sets into relatively compact sets.

Throughout this paper, positive constant C may differ from one occurrence to the other. The notation a < b means that $a \le Cb$ for some positive constant C.

We first have the following compactness criteria. Since the proof is similar to that of Proposition 3.11 in Ref. [5], it is omitted.

Lemma 2.1 The operator $\Re_u^m: A_a^{\Phi}(B^n) \to H_{\omega}^{\infty}(B^n)$ (or) is compact if and only if for every bounded sequence $\{f_j\}$ in $A_a^{\Phi}(B^n)$ such that $f_j \to 0$ uniformly on any compact subset of B^n as $j \to \infty$, it follows that $\lim \|\Re_u^m f_j\|_{H_{\omega}^{\infty}(B^n)} = 0$.

We need the following estimate. For the cases of m = 0 and m = 1, they were obtained in Refs. [8] and [9], respectively.

Lemma 2. 2 Let $\Phi \in \mathbb{S}^q \cup \mathfrak{J}_p$ and $m \in \mathbb{N}$. Then there exist two positive constants C and D independent of $f \in A_a^{\Phi}(B^n)$ and $z \in B^n$ such that $|\Re^m f(z)| \leq$

$$\frac{C}{(1-|z|^2)^m}\Phi^{-1}\left(\frac{D}{(1-|z|^2)^{n+1+a}}\right)\parallel f\parallel_{A^\Phi_a(B^n)}^{lux}.$$

Proof First we consider the case where $\Phi \in \mathbb{S}^q$. We observe that in this case, $A_a^{\Phi}(B^n)$ continuously embeds into $A_a^1(B^n)$. Then for any $f \in A_a^{\Phi}(B^n)$ and $z \in B^n$, we have

$$f(z) = \int_{B^n} \frac{f(w)}{(1 - \langle z, w \rangle)^{n+1+a}} dv_a(w) \tag{1}$$

For any $\beta = (\beta_1, \beta_2, \dots, \beta_n)$, we write $|\beta| = N$. From (1), it follows that

$$\frac{\partial^{N} f}{\partial z^{\beta}}(z) = c \int_{B^{n}} \frac{\bar{w}^{\beta} f(w)}{(1 - \langle z, w \rangle)^{n+1+N+a}} dv_{a}(w)$$
(2)

From (2), we have

$$\begin{array}{l} \frac{(1-\left|z\right|^{2})^{N}}{\parallel f\parallel_{A_{a}^{\Phi}(B^{n})}^{lux}}\left|\frac{\partial^{N}f}{\partial z^{\beta}}(z)\right| \leqslant \\ c \int_{B^{n}} \frac{\left|f(w)\right|}{\parallel f\parallel_{A_{a}^{\Phi}(B^{n})}^{lux}} \frac{(1-\left|z\right|^{2})^{N}}{\left|1-\langle z,w\rangle\right|^{n+1+N+a}} dv_{a}(w) \end{array}$$

Using Proposition1. 4. 10 in Ref. [8], it is easy to see that $\frac{(1-|z|^2)^N}{|1-\langle z,w\rangle|^{n+1+N+a}}dv_a(w)$ is up to a constant a probability measure. Hence from the convexity and Jensen's inequality, we obtain

$$\frac{C}{(1-|z|^2)^{n+1+\alpha}}.$$

Hence

$$\left| \frac{\partial^{N} f}{\partial z^{\beta}}(z) \right| \leqslant \frac{1}{(1 - |z|^{2})^{N}} \Phi^{-1} \left(\frac{C}{(1 - |z|^{2})^{n+1+a}} \right) \parallel f \parallel_{A_{a}^{\Phi}(B^{n})}^{lux} \tag{4}$$

Now we consider the case where $\Phi \in \mathfrak{F}_p$. We recall that in this case Φ is of lower type $0 . Let <math>\gamma > -1$ be large enough. As above, we have

$$\left| \frac{\partial^{N} f}{\partial z^{\beta}}(z) \right| \leqslant C \int_{B^{n}} \frac{\left| f(w) \right|}{\left| 1 - \langle z, w \rangle \right|^{n+1+N+\gamma}} dv_{\alpha}(w) \tag{5}$$

We assume that $\gamma = \frac{n+1+\delta}{p} - (n+1)$ with $\delta > \alpha + p$. Then using Lemma 2.15 in Ref. [9], we obtain from (5) that

$$egin{aligned} \left|rac{\partial^N f}{\partial z^eta}(z)
ight|^{^p}\leqslant & \ C\!\!\int_{_{B^n}}\left|rac{f(w)}{(1-\langle z\,,w
angle)^{^{n+1+N+\gamma}}}
ight|^{^p}\!dv_\delta(w)\,, \end{aligned}$$

which leads to

$$\left| \frac{(1 - |z|^{2})^{N}}{\parallel f \parallel_{A_{a}^{\Phi}(B^{n})}^{lux}} \frac{\partial^{N} f}{\partial z^{\beta}}(z) \right|^{p} \leqslant C \int_{B^{n}} \left| \frac{f(w)}{\parallel f \parallel_{A_{a}^{\Phi}(B^{n})}^{lux}} \right|^{p} \cdot \frac{(1 - |z|^{2})^{Np}}{\parallel 1 - \langle z, w \rangle \parallel_{(n+1+N+\gamma)p}^{(n+1+N+\gamma)p}} dv_{\delta}(w) \tag{6}$$

Also by Proposition 1. 4. 10 in Ref. [8], we see that $\frac{(1-|z|^2)^{Np}}{|1-\langle z,w\rangle|^{(n+1+N+\gamma)p}}dv_{\delta}(w) \text{ is up to a constant a probability measure. Hence using that the function } \Phi_p(t)=\Phi(t^{\frac{1}{p}}) \text{ is convex and Jensen's inequality, we obtain that}$

$$egin{aligned} \Phi_{p}\Big(\left|rac{(1-|z|^{2})^{N}}{\parallel f\parallel_{A_{a}^{\Phi}(B^{n})}^{lux}}rac{\partial^{N}f}{\partial z^{eta}}(z)
ight|^{p}\Big)\leqslant \ C\!\!\int_{B^{n}}\!\!\Phi_{p}\Big(\left|rac{f(w)}{\parallel f\parallel_{A_{a}^{\Phi}(B^{n})}^{lux}}
ight|^{p}\Big)ullet \ rac{(1-|z|^{2})^{Np}}{\mid 1-\langle z,w
angle \mid^{(n+1+N+\gamma)p}}dv_{\delta}(w). \end{aligned}$$

From this and $\gamma = \frac{n+1+\delta}{p} - (n+1)$, it follows that

$$\Phi\Big(\left|\frac{(1-\left|z\right|^{2})^{N}}{\parallel f\parallel}\frac{\partial^{N}f}{\partial z^{\beta}}(z)\right|\Big)\leqslant$$

$$C \int_{B^{n}} \Phi\left(\left|\frac{f(w)}{\parallel f \parallel_{A_{a}^{\Phi}(B^{n})}^{lux}}\right|\right) \bullet$$

$$\frac{(1-|z|^{2})^{Np}}{|1-\langle z,w\rangle|^{(n+1+N+\gamma)p}} dv_{\delta}(w) \leqslant$$

$$C \int_{B^{n}} \Phi\left(\left|\frac{f(w)}{\parallel f \parallel_{A_{a}^{\Phi}(B^{n})}^{lux}}\right|\right) \bullet$$

$$\frac{(1-|z|^{2})^{Np}}{|1-\langle z,w\rangle|^{n+1+\delta+Np}} dv_{\alpha}(w) \leqslant$$

$$\frac{C}{(1-|z|^{2})^{n+1+\alpha}} \int_{B^{n}} \Phi\left(\left|\frac{f(w)}{\parallel f \parallel_{A_{a}^{\Phi}(B^{n})}^{lux}}\right|\right) dv_{\alpha}(w)$$

$$\leqslant \frac{C}{(1-|z|^{2})^{n+1+\alpha}} \bullet$$

Hence, in this case, we also have

$$\left| \frac{\partial^{N} f}{\partial z^{\beta}}(z) \right| \leqslant \frac{1}{(1 - |z|^{2})^{N}} \Phi^{-1} \left(\frac{C}{(1 - |z|^{2})^{n+1+a}} \right) \parallel f \parallel_{A_{a}^{\Phi}(B^{n})}^{lux}$$

$$\tag{7}$$

It is easy to see that the orders of all the possible partial derivatives of f(z) in the expression of $\Re^m f(z)$ are not more than m. From this, (4) and (7), the desired result follows.

The following two results provide examples of useful functions of $A_a^{\Phi}(B^n)$. The first was obtained in Ref. [2].

Lemma 2. 3 Let $\alpha > -1$ and $\Phi \in \S^q \cup \mathfrak{J}_p$. Then for every $t \geq 0$ and $w \in B^n$, the following function is in $A_a^{\Phi}(B^n)$:

$$k_{w,t}(z) = \Phi^{-1}\left(\frac{C}{(1-|w|^2)^{n+1+a}}\right)\left(\frac{1-|w|^2}{1-\langle z,w\rangle}\right)^{2(n+1+a)+t},$$
 where C is an arbitrary positive constant. Moreo-

ver, $\sup_{w \in B^n} \| k_{w,t} \|_{A^{\Phi}_a(B^n)}^{lux} < 1.$

By using the linear combinations of $k_{w,t}$, we obtain the following result.

Lemma 2.4 Let $w \in B^n$. Then for each fixed $k \in \{1,2,\dots,l\}$, there exist constants $c_{k,1}, c_{k,2}, \dots, c_{k,l}$ such that the function

$$f_{w,k}(z) = \sum_{i=1}^{l} c_{k,i} k_{w,i}(z)$$

satisfies

$$\Re^{k} f_{w,k}(w) = \Phi^{-1} \left(\frac{C}{(1 - |w|^{2})^{n+1+\alpha}} \right) \frac{|w|^{2k}}{(1 - |w|^{2})^{k}}$$

and

$$\Re^{j} f_{w,k}(w) = 0 \tag{8}$$

for each $j \in \{1, 2, \dots, l\} \setminus \{k\}$. Moreover,

$$\sup_{w \in B^n} \| f_{w,t} \|_{A^{\Phi}_{\alpha}(B^n)}^{lux} < 1.$$

Proof Let $\beta = 2(n+1+\alpha)$ and $\Phi_{\alpha} = \Phi^{-1}\left(\frac{C}{(1-|w|^2)^{n+1+\alpha}}\right)$. From a direct calculation,

$$\Re k_{w,i}(w) = \Phi_a(\beta + i) \frac{|w|^2}{1 - |w|^2}$$
 (9)

 $\Re^2 k_{w,i}(w) =$

$$\Phi_{a} \left[(\beta + i)(\beta + i + 1) \frac{|w|^{4}}{(1 - |w|^{2})^{2}} + (\beta + i) \frac{|w|^{2}}{1 - |w|^{2}} \right]$$
(10)

and

$$\Re^{s} k_{w,i}(w) =
\Phi_{\alpha} \left[\prod_{j=0}^{s-1} (\beta + i + j) \frac{|w|^{2s}}{(1 - |w|^{2})^{s}} + a_{s,s-1} \prod_{j=0}^{s-2} (\beta + i + j) \frac{|w|^{2(s-1)}}{(1 - |w|^{2})^{s-1}} + \cdots \right. \\
\left. + a_{s,2} (\beta + i) (\beta + i + 1) \frac{|w|^{4}}{(1 - |w|^{2})^{2}} + (\beta + i) \frac{|w|^{2}}{1 - |w|^{2}} \right]$$
(11)

for each $s \ge 3$, where $a_{s,2}, \dots, a_{s,s-1}$ are some positive integers. From (9) \sim (11), it follows that (8) is equivalent to the following system

$$\begin{cases} \sum_{i=1}^{l} (\beta + i) c_{k,i} = 0, \\ \sum_{i=1}^{l} (\beta + i) (\beta + i + 1) c_{k,i} = 0, \\ \dots \\ \sum_{i=1}^{l} \prod_{j=0}^{k-1} (\beta + i + j) c_{k,i} = 1, \\ \dots \\ \sum_{i=1}^{l} \prod_{j=0}^{l-1} (\beta + i + j) c_{k,i} = 0 \end{cases}$$
(12)

Hence we only need to prove that there exist constants $c_{k,1}$, $c_{k,2}$, \cdots , $c_{k,n+1}$ such that the system (12) holds. By Lemma 3 in Ref. [12], the determinant of the system (12) equals to $\prod_{j=1}^{l} j!$ which is different from zero. Therefore, there exist constants $c_{k,1}$, $c_{k,2}$, \cdots , $c_{k,l}$ such that the system (12)

holds. From Lemma 2.5, the asymptotic estimate

follows.

3 Boundedness and compactness of $\mathfrak{R}_n^m : A_n^{\Phi}(B^n) \longrightarrow H_{\infty}^{\infty}(B^n)$

We first characterize the boundedness of \mathfrak{R}_u^m : $A_a^{\Phi}(B^n) \rightarrow H_{\omega}^{\infty}(B^n)$.

Theorem 3.1 Let $\alpha > -1$, $u \in H(B^n)$, $\Phi \in \S^q \cup \S_p$, and ω a positive function defined on (0,1]. Then $\Re_u^m : A_a^{\Phi}(B^n) \to H_{\omega}^{\infty}(B^n)$ is bounded if and only if

$$M_{:} = \sup_{z \in B^{n}} \frac{|u(z)|}{\omega (1 - |z|) (1 - |z|^{2})^{m}} \bullet$$

$$\Phi^{-1} \left(\frac{D}{(1 - |\omega(z)|^{2})^{n+1+a}} \right) < \infty$$
(13)

where D is the positive constant in Lemma 2.2.

Proof Suppose that $\mathfrak{R}_{u}^{m}: A_{a}^{\Phi}(B^{n}) \to H_{\omega}^{\infty}(B^{n})$ is bounded. Since Lemma 2. 4 holds for an arbitrary positive constant, here we take D the positive constant in Lemma 2. 2. Then by Lemma 2. 4, we have

$$\begin{split} & \frac{\left| \; \Re^{m}_{u} f_{\; w,m} \left(\; w \right) \; \right|}{\omega (1 - \left| \; w \; \right|)} = \Phi^{-1} \left(\frac{D}{(1 - \left| \; w \; \right|^{\, 2} \,)^{\, n + 1 + \alpha}} \right) \\ & \frac{\left| \; u(z) \; \right| \; \left| \; w \; \right|^{\, 2m}}{\omega (1 - \left| \; z \; \right|) (1 - \left| \; z \; \right|^{\, 2} \,)^{m}} \leqslant \\ & \parallel \; \Re^{m}_{u} f_{\; w,m} \left(\; w \; \right) \; \parallel_{H^{\infty}_{w} \left(B^{n} \right)} \leqslant C \; \parallel \; \Re^{m}_{u} \; \parallel_{H^{\infty}_{w} \left(B^{n} \right)} \; , \end{split}$$

from which it follows that

$$\sup_{|z|>\frac{1}{2}} \Phi^{-1} \left(\frac{D}{(1-|z|^{2})^{n+1+a}} \right) \cdot \frac{|u(z)|}{\omega(1-|z|)(1-|z|^{2})^{m}} \le C \|\Re_{u}^{m}\|_{H_{\infty}^{\infty}(B^{n})} < +\infty$$
(14)

On the other hand, it is easy to see that

$$\sup_{|z| \leq \frac{1}{2}} \Phi^{-1} \left(\frac{D}{(1 - |z|^2)^{n+1+\alpha}} \right) \cdot \frac{|u(z)|}{\omega (1 - |z|) (1 - |z|^2)^m} \leq C \max_{|z| = \frac{1}{2}} |u(z)| < +\infty$$

$$(15)$$

where

$$C = \Phi^{-1}\left(\left(\frac{4}{3}\right)^{n+1+\alpha}\right)\left(\frac{4}{3}\right)^{m} \frac{1}{\omega(1)}.$$

Hence from (14) and (15), (13) follows.

Suppose that (13) holds, that is,

$$M = \sup_{z \in B^{n}} \frac{|u(z)|}{\omega(1 - |z|)(1 - |z|^{2})^{m}} \bullet$$

$$\Phi^{-1}\left(\frac{D}{(1 - |\varphi(z)|^{2})^{n+1+a}}\right) < \infty.$$

Then for every $f \in A^{\Phi}_{a}(B^{n})$, from Lemma 2. 2 we have

$$\begin{split} & \| \ \mathfrak{R}^{\scriptscriptstyle m}_{\scriptscriptstyle u} f \ \|_{H^{\scriptscriptstyle \infty}_{\scriptscriptstyle w}(B^{\scriptscriptstyle n})} = \sup_{z \in B^{\scriptscriptstyle n}} & \frac{|\ u(z)\ |}{\omega(1-|\ z\ |)} \, \big| \, \mathfrak{R}^{\scriptscriptstyle m} f(z) \, \big| \leqslant \\ & CM \ \| \ f \ \|_{A^{\Phi}(B^{\scriptscriptstyle n})}^{\;\; lux} \ , \end{split}$$

which shows that $\mathfrak{R}_u^m: A_a^{\Phi}(B^n) \to H_{\omega}^{\infty}(B^n)$ is bounded.

From the fact $H^{\infty}_{\omega}(B^n) \rightarrow \Lambda_{\omega}(B^n)$ when $\omega \in \Omega_2$, and Theorem 3.1, we can obtain the following result.

Proposition 3.2 Let $\alpha > -1$, $u \in H(B^n)$, $\Phi \in \mathbb{S}^q \cup \mathfrak{J}_p$, and $\omega \in \Omega_2$. If $M < \infty$, then $\mathfrak{R}^m_u : A^{\Phi}_{\alpha}(B^n) \to H^{\infty}_{\alpha}(B^n)$ is bounded.

Theorem 3.3 Let $\alpha > -1$, $u \in H(B^n)$, $\Phi \in \S^q \cup \S_p$, and ω a positive function defined on (0,1]. Then $\Re^m_u : A^{\Phi}_a(B^n) \to H^{\infty}_\omega(B^n)$ is compact if and only if

$$\lim_{|z| \to 1} \frac{|u(z)|}{\omega (1 - |z|) (1 - |z|^{2})^{m}} \bullet$$

$$\Phi^{-1} \left(\frac{D}{(1 - |\varphi(z)|^{2})^{n+1+a}} \right) = 0$$
(16)

where D is the positive constant in Lemma 2.2.

Proof Suppose that $\mathfrak{R}_{u}^{m}: A_{\alpha}^{\Phi}(B^{n}) \to H_{\omega}^{\infty}(B^{n})$ is compact. Consider a sequence $\{z_{j}\}$ in B^{n} such that $|z_{j}| \to 1$ as $j \to \infty$. If such sequence does not exist, then (16) obviously holds. Using this sequence, we define the functions $f_{j}(z) = f_{z_{j},m}(z)$. Then the sequence $\{f_{j}\}$ is uniformly bounded in $A_{\alpha}^{\Phi}(B^{n})$ and uniformly converges to zero on any compact subset of B^{n} as $j \to \infty$. Similar to the proof of Theorem 3.1, we have

$$\frac{|u(z_{j})| |z_{j}|^{2m}}{\omega(1-|z_{j}|)(1-|z_{j}|^{2})^{m}} \bullet$$

$$\Phi^{-1}\left(\frac{D}{(1-|z_{j}|^{2})^{n+1+\alpha}}\right) \leqslant \|\Re_{u}^{m}f_{j}\|_{H_{w}^{\infty}(B^{n})}$$
(17)

From (17) and Lemma 2.1, (16) holds.

Now suppose that (16) holds. We first check that $\mathfrak{R}_{u}^{m}: A_{a}^{\Phi}(B^{n}) \to H_{\omega}^{\infty}(B^{n})$ is bounded. For this, we observe that (17) implies that for every $\varepsilon > 0$, there is an $\eta \in (0,1)$ such that

$$\frac{\left|u(z)\right|}{\omega(1-\left|z\right|)(1-\left|z\right|^{2})^{m}} \bullet$$

$$\Phi^{-1}\left(\frac{D}{(1-\left|z\right|^{2})^{n+1+a}}\right) < \varepsilon$$
(18)

for any $z \in K_{\eta} = \{z \in B^n : |z| > \eta\}$. Write

$$I(z):=rac{|u(z)|}{\omega(1-|z|)(1-|z|^2)^m}$$
 • $\Phi^{-1}\Big(rac{D}{(1-|z|^2)^{n+1+a}}\Big).$

Then from (18) we have

$$\begin{split} M &= \sup_{z \in B^n} I(z) = \sup_{z \in B^n \setminus K_\eta} I(z) + \sup_{z \in K_\eta} I(z) \leqslant \\ &\frac{1}{\omega (1 - \eta) (1 - \eta^2)^m} \Phi^{-1} \bullet \\ &\left(\frac{D}{(1 - \eta^2)^{n+1+a}}\right) \max_{|z| = \eta} |u(z)| + \epsilon. \end{split}$$

From this and Theorem 3.1, it follows that \mathfrak{R}_u^m : $A_a^{\Phi}(B^n) \rightarrow H_m^{\infty}(B^n)$ is bounded.

To prove that $\mathfrak{R}_{u}^{m}:A_{a}^{\Phi}(B^{n})\to H_{\omega}^{\infty}(B^{n})$ is compact, by Lemma 2.1 we just need to prove that if $\{f_{j}\}$ is a sequence in $A_{a}^{\Phi}(B^{n})$ such that $\|f_{j}\|_{A_{a}^{\Phi}(B^{n})} \leqslant M$ and $\{f_{j}\}$ uniformly converges to zero on any compact subset of B^{n} as $j\to\infty$, then $\lim_{j\to\infty}\|\mathfrak{R}_{u}^{m}f_{j}\|_{H_{\omega}^{\infty}(B^{n})}=0$.

For any $\varepsilon > 0$ and the associated η in (18), by using Lemma 2.2, we have

$$\| \Re_{u}^{m} f_{j} \|_{H_{\omega}^{\infty}(B^{n})} = \sup_{z \in B^{n}} \frac{1}{\omega(1 - |z|)} |u(z) \Re^{m} f_{j}(z)| = \sup_{z \in B^{n} \setminus K_{\eta}} \frac{|u(z)|}{\omega(1 - |z|)} |\Re^{m} f_{j}(z)| + \sup_{z \in K_{\eta}} \frac{|u(z)|}{\omega(1 - |z|)} |\Re^{m} f_{j}(z)| \le \frac{1}{\omega(1 - \eta)} \max_{\{z: |z| \le \eta\}} |u(z)| \sup_{\{z: |z| \le \eta\}} |\Re^{m} f_{j}(z)| + C \sup_{\{z: |z| > \eta\}} \frac{|u(z)|}{\omega(1 - |z|)(1 - |z|^{2})^{m}} \cdot \Phi^{-1} \left(\frac{D}{(1 - |z|^{2})^{n+1+a}}\right) \le \frac{1}{\omega(1 - \eta)} \max_{\{z: |z| \le \eta\}} |u(z)| \sup_{\{z: |z| \le \eta\}} |\Re^{m} f_{j}(z)| + C \varepsilon$$

$$(19)$$

It is easy to see that, if $\{f_j\}$ uniformly converges to zero on any compact subset of B^n , then $\left\{\frac{\partial^N f_j}{\partial z^\beta}\right\}$ also

does as $j \to \infty$. This shows that $\{ | \Re^m f_j | \}$ uniformly converges to zero on any compact subset of B^n as $j \to \infty$. Since $\{z \in B^n : |z| \le \eta\}$ is compact subset of B^n , by letting $j \to \infty$ in (19) we have

 $\lim_{j\to\infty}\|\mathfrak{R}_u^m f_j\|_{H^\infty_\omega(B^n)}=0.$

This shows that $\mathfrak{R}_{u}^{m}: A_{\alpha}^{\Phi}(B^{n}) \rightarrow H_{\omega}^{\infty}(B^{n})$ is compact.

References:

- [1] Stevic S. Weighted iterated radial operators different weighted Bergman spaces on the unit ball [J]. Appl Math Comput, 2012, 218: 8288.
- [2] Jiang Z J, Wang X F. Product of radial derivative and weighted composition operators from weighted Bergman-Orlicz spaces to weighted-type spaces [J]. Oper Matrices, 2018, 12: 301.
- [3] Sehba B, Stevic S. On some product-type operators from Hardy-Orlicz and Bergman-Orlicz spaces to weighted-type spaces [J]. Appl Math Comput, 2014, 233: 565.
- [4] Janson S. Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation[J]. Duke Math J, 1980, 47: 959.
- [5] Cowen C C, MacCluer B D. Composition operators on spaces of analytic functions [M]. London: CRC Press, 1995.
- [6] Sehba B. Duality for large Bergman-Orlicz spaces and boundedness of Hankel operators [EB/OL]. https://arxiv.org/pdf/1501.03416v1.
- [7] Sehba B. Derivatives characterization of Bergman-Orlicz spaces and applications [EB/OL]. https://arxiv.org/abs/1610.01954.
- [8] Rudin W. Function theory in the unit ball of Cⁿ [M]. New York Berlin; Springer-Verlag, 1980.
- [9] Zhu K. Spaces of holomorphic functions in the unit ball [M]. New York; Springer, 2005.
- [10] Stevic S. Weighted differentiation composition operators from H[∞] and Bloch spaces to n th weighted-type spaces on the unit disk [J]. Appl Math Comput, 2010, 216: 3634.

引用本文格式:

中 文:邓云辉.加权 Bergman-Orlicz 空间到有界型空间上的加权迭代径向算子[J].四川大学学报:自然科学版,2018,55:929.

英文: Deng Y H. Weighted iterated radial operators from weighted Bergman-Orlicz spaces to bounded-type spaces [J]. J Sichuan Univ: Nat Sci Ed, 2018, 55: 929.