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Abstract: In this paper, we establish a Pontryagin-type maximum principle for a control stochastic evolu-

tion equation with a random generator and a convex control domain. Given p =2 , the existence and u-

niqueness of mild solution to the control system are obtained by using the Malliavin calculus. To study

the well-posedness of the adjoint system when 1 << ¢ << 2, the transposition method is used. The well-

posedness results for these systems are established. The desired Pontryagin-type maximum principle is

deduced by a standard convex perturbation technique.
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1 Introduction

Let T>0, V be a real and separable Hilbert
space with an orthonormal basis {e;}? ;. Let H
be another real and separable Hilbert space. Let
(Q, F,F,P) be a complete filtered probability
space with the filtration F={F,},c[, 1] being gen-
erated by B( ¢ ), a V-cylindrical Brownian motion
on the time interval [0, T]. For any r €[ 1,0),
denote by L% (Q; H) the Banach space of all F,-
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measurable random variables »: Q—H such that E
|77|£1<oowith the canonical norm. Write Dy ([0,
TT; L7 (Q; H))for the set of all H-valued F-adap-
ted processes ¢( + ):[0, T]—>LE«T (Q; H) being
cadlag, 1. e., right continuous with left limits.
Clearly, Dp([0,T];L"(Q;H)) is a Banach space

with the norm
1
) s = sup (Ele() [5)7.
\90( \DF@.T].L (Q:H) IEEO% |§0( L

Denote by Cr([0,T];L"(Q; H))the Banach space
of all H-valued F-adapted processes ¢( * ):[0,T]
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—LE, (Q; H) being continuous with the norm in-
herited from Dr ([0, T];L"(Q; H)). Write L(X,
Y) for the (Banach) space of all bounded linear
operators from a Banach X to another Banach
space Y. We simply write L (X, X) for L (X).
For any fixed p,g€[1,0], write L0, T;L1(Q;
H)) for the set of all H-valued F-adapted proces-

ses such that

" 1
[ Exo mia] <«
0
with the canonical norm. It is denoted by L# (0,
T;H) if p=q. For any t €[0,T], one can define
the spaces Dp ([t, T ;L7 (Q; H))s Cp([ ¢, T]; L
(Q;H)) and L4 (t, T; L7(Q; H)) in a similar

{dx(z) =AWx@) +alt, 2@ yu(e))dt +b(t, 2 () s u(t))dB@) ,t €[0,T],

x(0) =x,

with a cost functional
JGue)) = EL[ g u()d +

h(x(T)) ] (2
where x, €L (Q; H) for a given p=2, u(+) €
UL 0,T] is a control variable, x( « ) is the corre-
sponding state variable, A(z,w) is a family of un-
bounded random operators on H, a(*, ¢, * ):
[0, TIXHXU—H and b( « , «, «):[0,T]XH
XU—>L3,gCe, s, +):[0,T]XHXU—>R and h
(+): H—>R are given functions satisfying some
conditions to be given later. We are concerned

with the following optimal control problem:

Problem(OP) Find a control u( « ) €U[0,
T] such that
JwC+ )= inf J(+) (3
uC+)€eUlo,T]

{|a(z‘,xl su) —altsaxssw) |y T106Ctsxy su) —bCt a0 su) \19 <Clay —x2 11 »

laCt,0,u) |+ 16Ct,0,u) \Lg <C
(A,) Suppose that g( =, +, «):[0,T]XH
XU—>R and h( » ) : H>R are two functions satis-

fying
(1) For any (x,u) € HXU, g(+ ,x,u) is

way. Denote by L, (V; H) the space of all Hil-
bert-Schmidt operators from V into H with the

inner product

<FaG>1,2<v;11> = 2 <F€_,‘aG€_/>11’
j=1
VF,GeL,(V;H). Write Ly =L, (V;H). LetU

be a convex subset of a real and separable Hilbert
space H;, for which the metric is endowed with
the norm of H,. Define
U0, T]={uC*):[0, T]>U|ul ) is F-a-
dapted) }.
In this paper, we consider the following con-

trolled stochastic evolution equation (SEE) :

oy

Any u( « ) satisfying (3) is called optimal con-
trol, the corresponding state process x ( ¢ ) is
called an optimal state, and (x ( * ), u( * ))is
called an optimal pair.

Let us introduce the following conditions:

(A)) Suppose that a( +, +, «):[0,T]xXH
XU—>H, b( s+, +, «):[0, T]XHXU—->LY are
two maps satisfying

(i) For any (x,u) € H XU, a( * ,x,u) and b
(« ,x,u) are Lebesgue measurable,

(ii) For any (t,2) €[0, T]XH, a(tyx, *)
and b(¢,x, ¢ ) are continuous,

(iii) There exists a constant C>0 such that
for any (tsx1s22,u) €0, T | XHXH XU,

€Y

Lebesgue measurable,

(it) For any (¢t,2) € [0, T XH, g(t,z, *)
is continuous, and for any (z,2,,x2,u) €[0,T]
XHXH XU,

gty su) —g(tyasu) | +h(xy —h(a)) | <C |21 —x5 |1 s

(A;) The maps a( e+, *, ) and b( =, -,

), the functional g+, «, «) and h( + ) are

(5)

C! with respect to x and u, and for any (¢,x,u) €
[0,T]xXH XU,



% 34 K

F . ERAUA R I Z A AUE R 77 42 89 Pontryagin A ;g X8R 22 379

la, (tsxsw) [ + 10, Loz s | L + |g1-(t»x,u) |+ h () [ n =C,
la,(tyxsu) |L<H1;H) 16,5 u) ‘L(Hl;m Jf‘gu(/fal"u) ‘ H, =C

When {A(®) },er0,77 is a family of determinis-
tic operators, the well-posedness of (1) in the
sense of mild solution is well-understood""’.

When {A(#) }er0.17 1s a family of random op-
erators, the corresponding random evolution sys-
tem S(z,s) is also random and F-adapted with re-
spect to ¢. In this case, the well-posedness of (1)
is usually understood in the sense of weak solu-
tion'?). Note that the usual mild solution based on
Ito integral does not make sense. Indeed, the sto-
chastic process S(¢,5)0(s,2(s) ,u(s)) may not F,-

measurable, and therefore the stochastic integral
Jr S(t,s)b(s,x2(s),u(s))dB(s) is anticipative and
0

the stochastic integral is interpreted as a Skoro-
hod integral®™. From Ref.[4], we know that the
corresponding mild solution is not necessarily the
weak solution of the SEEs, because a new com-
plementary term appears. Hence, one introduces
a new stochastic integral called “forward inte-

gral”. The “forward integral” is defined as the

(6)

limit of Riemann sums taking values of the
process on the left point of each interval (see Ref.
[5]) and one can show that the corresponding
mild solution is the weak solution to (1). When
{A() },er0,17 18 a family of random operators, we
can get the mild solution to (1) for p =2 (see
Ref. [ 6] for the estimation for the stochastic inte-
gral).

In our paper, we will show the well-posedn-
ess of the corresponding BSEE, and the desired
maximum principle, which is first order necessary
conditions for the optimal control of the above

Problem (OP).
2 Preliminaries

For o=a,b,g, put o1 (1) =@, (t,xsu) s, (1)
:(Pu(lvi'va).
First, we need the following backward sto-

chastic evolution equation (BSEE) :

dy() =—A" Dy dt—(a; Dy +b (DY) dt +g, (At +Y()dB) ,t €[0,T],

y(T) =—h, (z(T))

Here y(T) € Lt (Q; H) for g€ (1 ,2]]. The study
of BSEEs is stimulated by the classical works (see
Refs. [7~97]), and it plays an important role in
stochastic controls (see Refs. [10~15]). When A
is an unbounded operator and the filtration is nat-
ural, one can get the well-posedness of the BSEEs
by using the Martingale Representation Theorem
(see Ref. [9]). When the filtration is the general

N

filtration, we also get the well-posedness of
BSEEs with random generators in the sense of
mild solution is an unsolved problem at the mo-
ment, we adopt the method introduced in Ref.
[16] to get the well-posedness of (7) with natural
filtration.

Now, we define the transposition solution to
(7). Consider the following SEE.

dz(s) =(A()z(s)v, (s))ds +v,(s)dB(s) ,s €[, T],

(1) =y

where g€ LE (Q; H)» v, eLLG, T;LP(Q; H)),
v, €L, T L7 (Q;13)). The solution to (8) is

understood in the weak sense.
Definition 2. 1 Let p=2, 1<¢=2. and %

+%:1. We call (y(+).Y( ) €Dp([0.TT;L0

8

(Q; H)) XL%(0,T;LY) a transposition solution to
(3) if forany t €[ 0, T],r}ELf.«/ (Q:;H), v, €Lk
(¢, T;LP(QsH))y v, €LEG,T;LP(Q;18)), then

T
EJ <o) (0> de+

T
E| <o Y©> de -
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E <Z(T> ,y'r>u —E <77ay(f)>11 +
T
EJ <20 f(O> de 9

In this paper we have assumed that the filtra-
tion is natural. When {S(2)},e0,17 is a Cy-semig-
roup generated by an unbounded operator A, it is
deterministic and therefore the well-posedness of
the corresponding BSEE follows from the Martin-
gale Representation Theorem. However, when
{A(s,w)} is a family of random operators, the
corresponding random evolution system {S(z,s),
0<<s<<t<T} is a family of random processes. Al-
though F={F,},cro, is a natural filtration gener-
ated by B, we cannot simply use the Martingale
Representation Theorem obtain the mild solution
to (7). This is why we use the transposition
method (introduced in Ref. [16]), which avoids
the use of the Martingale Representation Theo-
rem.

In this paper, we will prove the well-posedn-
ess of the SEEs only for p €[2,0). We cannot
get BDG-type inequality with respect to Skorohod
integral for p €(1,2), the main reason is that the
Skorohod integral is not the martingale. So ac-
cording to duality, we only get the well-posedn-
ess of linear BSEEs for 1<<¢g<C2.

We begin with some knowledge on Malliavin
Calculus (see Ref. [17]).

Definition 2. 2 An H-isonormal process on
Q is a mapping W.: H—>L* (Q) with the following
two properties;

(1) For all h€ H, the random variable W (h)
is Gaussian;

(i1) For all Ay h, € H, we have E(IW (h )W
(hy)) =<hy shy >q.

Definition 2. 3 An L? (0, T; H)-isonormal
process is called an H-cylindrical Brownian mo-
tion on [0, T].

If V| and V, are two real and separable Hil-
bert spaces, we will denote its tensor product by
V1 ®V, which is isometric to the space L, (V,;V)
of Hilbert-Schmidt operators from V, to V.

Let K be a real and separable Hilbert space

and W( « ) be a V-cylindrical Brownian motion on

[0,T]. For any p=2 we can introduce the Sobo-
lev space D'? (K) of K-valued random variables
in the following way. If F is a smooth K-valued

random variable of the form

F=>) f{(W(v,),W(v,))b (10)
i=1

where v; € L* (0, T;V), b, €K and f; € Cy (R™)
(f; is an infinitely differentiable function such
that f; is bounded together with all its partial de-
rivatives ), then the derivative of the F is

defined as

DF=33 %(W(vl),'-'W(Um))bl»®vj
=1 j=

gl

an
So DF is a smooth random variable with values in
L20, T;LY(V;K)). Then D"*(K) is the com-
pletion of the class of smooth K-valued random
denoted by Sk,

variables, with respect to

the norm
|Flt, =E|F|%+

T 2
E(J 'DF| AL (12)
0 L, (ViK) 2

The derivative operator D is closable from Sk
€L?(Q;K) into the space L*(Q;L*(0,T;L, (V;
K))) for each p=>1.

For any n=>1, the Sobolev space D"* (K) is

defined as the completion of Sk by the norm

P — eoe
Fl2, Z,E(Jm D,
D, F |}, 0k dey ++di) g +E|F|f (3

Given two real and separable Hilbert spaces
H and G, we can consider K=L,(H;G), and in
this case, for any F in the space D"” (L, (H;G)),
we have

DF €L’ (Q;L*(0,T;L,(H;L,(V3;G)))) s
since

L,(V;L,(H;G)) =L, (H;L,(V;G)).

Definition 2.4 Let FEL*(Q;L(H;G)), we
say that F belongs to the Sobolev space D'? (L,
(H;G)) if the following conditions hold:

(1) For any h€ H, F(h) belongs to D"*(();

(i1) There exists an element DF € L? ([0, T]
XQ3L(H; L, (V3;G))), such that for every h €
H, we have D,(F(h)) =(D,F) (h) for almost all
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(tyw) €10, T]XQ.

We use the notation A={(z,s) €[0,T]*:t=>
st. Let us recall the notion of random evolution
system'®,

Definition 2. 5 A random evolution system
is a family of random operators {S(s,z),0<{s <t <<
T} on H verifying the following properties:

(i) S(z,s) is F-adapted with respect to ¢ for
each t=>5;

(i1) For each w€Q, {S(t,5),(t,5) €A} is an
evolution system in the following sense;:

(a) S(s,s)=I and S(¢,r) =S(t,s)S(s,r) for
any 0<r<<s<t<<T,

(b) Forany h€ H, (¢,5)—>S(t,s)h is contin-
uous from Ainto H.

Let us introduce the following hypothesis on
a given random evolution system:

(H,) For each (¢,s) € A, S(z,5) € D** (L

(H;HD) andf | SCtas) [2,ds < o for all p=2;
0

(H,) There is a version of D,S (t,s) such
that for all w€Q and 7 € H, the limit
D S(t,s)(h) =1limD.S(t,s —¢)(h) (14)

e>0

exists in LY and D7 S(¢z,s) belongs to D"?(L(H;
L))

(H;) There is a constant M >0 such that the
following estimates hold for all t=s>r

(Hs) [SCa) | Lo <M,

(Hs) [DS ) ‘L(H:Lg) =M,

(Hs) 2374 [D, (D7 Ss9)e; | Farng =M™

Definition 2. 6 We denote by 8y the adjoint
of the derivative operator D acting on D"* (H).
That is, the domain of §y is the space of proces-

ses u in L2([0, T]XQ;LY) such that
-
|E| <DFu>ud [<CIF |
VE € Sy

and
.
E | <DF >yt = E<Fbu(w >,

VF € DV (H) (15
The operator §y is called the H-Skorohod in-

.
tegral, write Sy (u) = Jou(s)dB(s) .

Definition 2. 7 Let Y:[0,T]XQ—>L} be a

measurable process such that Y(v) € L'(0,T; H)
a.s. for each v € V. We say that Y elongs to
Dom¢g ™ if
T o0
Y =] YOO B+ A D) -
(=1

B(s)(e;))ds (16)
converges in probability as n tends to infinity.

The limit of the sequence {Y"}7, is denoted by
T

J Y(s)dB (s) and is called the forward integrals
0

of Y with respect to B.
Form Ref. [6], the

Skorohod and forward integrals are as follows.
Lemma 2.8 Fix p=>2. Let ={®(2),r €

[0,T]} be a Ly-valued adapted process such that

relationship between

T
EJ | ®(s) [fods<<oo. Let S(z,s5) be a random evo-
. ;

lution system satisfying the hypothesis (H; ),
(H,) and (H;). Then for each 1 €[0,T],{S(z,s)
() Ir0,71(s),s€[0,T]} belongs to Dom§ ™ and

J’ S HD(HAB () = j S, dBG) +
0 0

|33 s erae)dr a7

i=1

Next, we need the following result.

Lemma 2. 9% Let H be a separable Hilbert
space. Then, for any §€ Lk (Q;H).r=1and t €
[0,T), it holds that

E?E'E(E‘F*)_E(S‘F’)|1‘;'T(“‘H> =0 18

Remark From Ref. [13], we not only get
the right continuity of the conditional expectation
with respect to the filtration, but also its left lim-
it.

Let us recall the 1t6 formulas about the antic-
ipating H-valued processes'™. We use the nota-
tion L**(H) =L? (0, T; D** (H)) for any k&, p
>1.

Lemma2. 10 let FEC?(H) and X ={(X
(t),t € [0, T]} be the stochastic process
defined by

X=X+ | gods+ | e 19
where we have the following conditions:

(1) X, €D"?(H);
(i) g€ L"*(H);
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(i) @ €L (L)),
then
F(X®) =

F(X) + | <P (X)) uds +
| Fexendse +
T <F ) 030,000 >1ds 20)
with
(VX), = 2DX, +2 | Dg()ds +
0

ZJ;D,qD(s)dB(s) o) 21)

3  Well-posedness of the vector-val-
ued SEEs with random generators
In this section, we present the well-posedn-

ess result for the semi-linear SEEs.
Condition 3.1 Suppose that F:[0,T]XQ X

H—>H and F:[0,T] xXQ X H—LJ are two given
functions satisfying

(1) Both F( * yx) and F( *» ,x) are F-adap-
ted for any x € H;

(i1) There exist a C=0 and for any x,y € H
such that

|F(tya) —F.y) |n=Clx—yl|u-

|F(t,2) —F(t,y)hg <Cla—ylu (22)

{AGssw)ss€[0, T],w € Q} is a family of un-
bounded random operators on H such that H, €
Dom A*(s) where H, is a dense subset of H.
Then exists a random evolution system S (¢, s)
satisfying the hypotheses (H,), (H;) and (Hj)
such that

S* (1 A" (t)y:£5* (t.s)y

for all y€ H,.

Consider the following semi-linear SEEs;

dX@®) =[AWX () +F, X @) ]dt +F(&, X(@))dB(#),t€[0,T],

X(0) =X,

Definition 3. 2 An adapted and continuous
H-valued process X ={X(t),t €[0,T]} is called
a mild solution to (23), if for any t €[0,T],

X = SG0X, +J")s<z,s>F<s,X<s))ds +
J.;S(z‘,s) F(s.X()dB ()", P—a.s (24)

denotes the forward inte-

whereﬁ (+)dB (s)

0
gral.
We recall the following known result (see

Ref. [11]).
Lemma 3.3 Fix p=>2. Let d={d(1),t €
[0,T]} be a Ly-valued adapted process such that

T
EJ | D(s) Hfg ds<<eco. Let S(¢,s) be a random evo-
0

lution system satisfying the hypotheses (H;),
(H,) and (H;). Then for each t €[0,T], {S(z,
)P Ir9.1(s),s€[0,T]} belongs to Dom§  and

sup E| J S OB (7 4=

e[0T
T
CE| 1o If;ds (25)

where C>0, which depends on T and the random

(23)

evolution system S(z,s).

The main result in this section is as follows.

Theorem 3. 4 Fix p=>2. Let S(z,s5) be a
random evolution system satisfying (H;), (H,)
and (H;), Condition 1 hold, X, € L (Q; H), I
(*,0)€LEO0,T; L7 (Q; H)) and F(» ,0) €L$
(0, T;LY.
nique mild solution, and X( + ) € Cp ([0, T];L?
(Q;H)). Moreover,

[ XCe ) |ep(LO, T] L (Qs HD) =

C( X, |1/F’O<Q;11> +HIFCs,0) ‘L}(o.’l‘;lﬁ(n;ln) +

Then the equation (23) admits an u-

[FCe 50 g9 (26)

Proof The proof will be divided into two
steps.

Step 1. We claim that the equation (23) ex-
ists a mild solution when F (¢, X)) = f(1) €L}
0, T;L*(Q: H)), F(t, X (1)) =f() €L§(0,T;
L%). Clearly,

X (1) :S<z,o>XO+f S(tss) f(s)ds +
0

JO St F()dB (5) 27
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is a mild solution to the equation (23). Now, we
prove that X( ) € Cr ([0, T]; L?(Q; H)). In-
deed, some computations can yield that

[ XC) |L;([0,T];L/’(Q;H)> =C(| X, ‘Lfi(}(n;m +

| fCe >‘I,}:((),T;L/'(Q;H>) +
[FC+) | 20,112y (28)

Since S(¢,0) X, + J: S(tys) f(s)ds is H-valued

continuous with respect to ¢, and it suffices to

{dX(t) =[AWXW)+F, X)) ]dt +F, X@))dB(),t €[0,T, ],

X(0) =X,

Let J:Cp([0,T];L2(Q; H))—>Cr ([0, T]; L7 (Q;
H)), and J(Y) =X. By some lengthy and tech-
nique computations, one can show that J is a con-
tractive map when T is small enough. By means
of the Banach fixed point theorem, there exists a
unique X( + ) €Cp([0,T, ];L?(Q; H)) such that
J(X) =X. So we can see that X( * ) is a mid so-
lution to the equation to (23). The uniqueness of
such solution to (23), and (26) holds when T
=T.

Repeating the above argument, we obtain a
mild solution to the equation (23). The unique-
ness of such solution to (23) and (26) are obvi-

ous, The poof of this theorem is complete.

4  Well-posedness of the vector-valued
BSEEs with random generators

In this section, we present the well-posedn-
ess result for the BSEEs.

Before proving the well-posedness of the
BSEEs, we recall the following known result (see
Ref. [10]).

Lemma 4.1 Assume that r€ (1, +o0),

r/:r_iils 0(,6[19 +o0),

, { O i g€, o],

o =<a—1
o if a=1,

[LELF0.T; L (Q; H)) s f, €Ly (0, T; LY (Q;

H)). Then there exists a monotonic sequence

{h, }— of positive numbers such that limh, =0,

and for almost all t€[0,T],

prove the continuity of Jf S(tys) f(s)dB (s) in
0

L, (Q; H). We can obtain that
111’1’1‘ X(t) 7X(Zfo) |LIP‘,T(Q:H) :oat() GEO,T](ZQ)

=1,

Hence, there have X( + ) €Cr([0,T];L?(Q; FD).
Step 2. Choose T, € (0,T]. For any Y( +)
€Cr([0,T];L2(Q;H)), we consider the follow-

ing equation:

(30)

] . . B

lim Jt Fhy E< F1() s fo () > ds =
E<F() s fo() > (31)

Let us consider the following linear BSEE.
The equation is as follows:

Theorem 4.2 Assume ¢ € (1,2]. Then the
equation (8) admits one and only one transposi-
tion solution (y( +),Y(+)) €D ([0, T];L1(Q;
H)) XL$(0,T;L%). Further,

[ (yC+),Y () |DI,.<Lo.,T,;L"<Q;H>>x1f1{.<o.T;L§> <

C(lyr| L (QitD H1FC b)) (32)

Proof We borrow some ideas from Ref. [ 8].
The proof is divided into four steps.

Step 1. For any t €[ 0,T], we define a linear
functional / on the Banach space L} (¢, T;L? (Q;
H)) XL#(t, T5LY) XLk (Q;H) as follows:

(o Ce )y Ce )y =E <z(D),yr>pn+

.
EJ < 2(s) s f() >pds.
where z( ) €Cp ([, T];L?(Q;H)) is a mild so-

lution to (9). Then, some lengthy computations
yield that ¢ is a bounded linear functional on L}
(¢, T5LP(Qs H)) XLEC, T5Ly) XLE (Qs H). Ac-
cording to a representation theorem in Ref. [ 7],
there exist(y C « ), Y' (+),&) € L$(0,T;L1(Q;
H)) XL%(0,T;L%) XLt (Q; H)such that

,
E<2(T) sy >y +EJ Ca(s) s f() > pds =
T
EJ <“01 €] ’yl‘(‘t)>ud‘£'Jr

.
EJ Ly (1), Y! (r)>z‘g de+
E<77,(§’>11 (33)
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Further, there is a positive constant C=C(T),

independent of ¢, such that

| (y’( . ),Y’ (- ),E/) ‘L?(O.T;L(’(Q;H))><L}’;(0.T;L3>><lf,’,- (Q:H) =
- t

C(lyr ‘L‘,{T(n;m H1C) oo ) s tE [0.T] 34

Step 2. According to the Step 1, (y'(*),Y’
( *)) may depend on . We further show that (y'
( *),Y"( »)) is independent on ¢ by some length-
y computations, that is, for any ¢, and #;, with 0=<<
<t =T, and a. e. (tyw) €[, T] X Q, it
holds that

(Y1 Ce), Y1 (o)) =(y2(C*),Y2(*)).

Step 3. In this step, we need to prove that &
is cadlag with respect to z in Lt (Q; H). We can
show that

T
& —E(S (T,t)yT+J S* (5.0 f()ds|E) (35)

Firstly, we start to prove the right continuity of
(35) with respect to ¢t. For any fixed t €[ 0, T)
with £ <s. According to LLemma 2. 7, we can
get that

\1in+1|gf1 —&" ‘L%T @ =0 (36)

>t

Simiiarly, we can get that ¥ e>0, there exists a §
>0 such that V.6, € (¢ —6.1),

lgh —g |1f,’,—T(Q:H) =e (37
Hence, &' is cadlag with respect to ¢ in Lt (Q;
H).

Step 4. Let 0<<¢t; <t, <T, we have

E<y.g* >y = E<S(T.t,)y,yr>n +

T
EJ St s £ Sude +

1
Lt

-
EJL <yt 7 5 y(0) >pde —

{dIz ) =[A@Dx: () tar (D, () Fa, (DSult) |de +[ b1 () x5 (2) +by () Su(t) JdB(2) st €U0, T,

) (O) =0

In order to get the pointwise-type maximum prin-
ciple, similar to Ref. [8], we need the following
result,

Lemma 5.1 Assume that H;, is a Hilbert

space, p=>2 and 1<<g=<2 meet %+% =1, and U

is a nonempty subset of H,, If F( « ) €Lt (¢, T;
H,), and @( « ) €U[0,T] such that

T
EJO<F(-),u(t, D —ults > dr =0 (42)

1

ty — b

1 T T
—L tEj <j Sty (DYrs (D> de

E<| (T @rdesy> —
]

(38)
Then, &2 =vy(z;),P—a. s. Furthermore,

T
E <z(D),yr>u JrEJ Lz($), f(s) >pds =
-
EJ <vl(f),y(r)>de+

T
E| <@ Y@> de+t

E <y, >y (39
Finally, we get that (y(*),Y (<)) is a
transposition solution to (8), and (32) holds.

The proof of this theorem is complete.

5  Necessary condition of optimal
controls for the case of convex
control domain

In this section, we shall give a necessary
condition for optimal control problems. The main
methods come from the Ref. [8].

For the optimal pair (z( + ),u( *)), fixa

u( «) eUL0, T]with

ouC ) =uC+)—u( ) ELLO,T; Hy)) (40)

Consider the following equation:

4D

holds for any «( « ) € U[0, T] satisfying (40),
then for any point u €U, the following pointwise
inequality holds:

LF(tsw) su—ultsw) >y =0,

a.e. (tyw) €10, T]XQ (43)

Theorem 5.2  Suppose that p =2, z, € Lf,
(Q; H), and U is convex. Let the assumptions
(A, (Ay) and (A3) hold. If (C+),uC+)) is

an optimal pair, then
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La, (tyxCe)yuC =)  y(o)+
b, (tyxCe)yuC )" Y(@) —
gu(tszCe)ulC o)) yu—ult) >y =0,
a.e. (t,w) €[0,T]XQ, YucU 44
Proof We use the convex perturbation tech-
nique and divide the proof into two steps.
Step 1. For u( + ) given by (40), since U is

convex, we see that u*( « ) =(1—e)u( ) teu

(«)eulo,T].
Let °( ¢ ) be the state of (1) with the control be-

ing usC * ), and

25 - ):%(1‘5( )=z ),
Putas( ) =25C) —a,C+). Then, a5+ )

solves the following equation;

Jdl) W) =[AWE) +a3 (D) (@ () —ar () as (1) a3 (1) —a, (DSult) ]dt +
l (62 (D)2 () + (B () —by (D)) (1) + (B () — by () Su(t) |dB() ,t €[0,T ], 45)

x5(0) =0
where

1
@5 (1) = Jo o (t,2(1) Foexs () ,u* (1)) do,

. (46)
s (1) = Jo 0. (t,2(1) su—+oedu(t))ds
Further,
lirr+1 |Iﬁ( o) —ax () |L°I~g((J.,T;I,/’(Q:H)):(J 47
e>0

Step 2. Since (z( * ),u( +)) is the optimal
pair of Problem (OP), we find that
Oghm](ue( ) —J@C))

+ S

e>0

|
EJ (< g1 Gz (D) st (D) s 2y (D) gy +

g (2@ u() s du() >y de +

E <h, (2(T)) 2, (T) >y (48)
Since (y( *),Y (¢ )) is a transposition solution
to (7), for any u( + ) €U[ 0, T] satisfying (40),
we deduce that

T
EJO <a; Dy b (DY @) —

g (s () s u(o) sult) —ule) >y de =0
(49)

Hence
las Wy +bs DY) —
g (6, 2() ,u(t)),
u*ﬁ(t)>Hl <0,
(t,w) €[0,T]
XQ,YueU (50)

The proof is complete.
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