May 2019 Vol. 56 No. 3

doi: 10. 3969/j. issn. 0490-6756. 2019. 03. 005

α -Bloch-Orlicz 空间复合算子与积分算子乘积的差分

杨琦

(天津大学数学学院, 天津 300350)

要: 本文研究了单位圆盘上的 α -Bloch-Orlicz 空间复合算子与积分算子的乘积 $C_{\varphi}I_{g}$ 和 I_gC_{arphi} 间的差分. 通过构造不同的检测函数,本文给出了判断差分的有界性和紧性的充要

关键词: 差分; 复合算子; 积分算子; α -Bloch-Orlicz 空间

中图分类号: O192 文献标识码: A 文章编号: 0490-6756(2019)03-0404-09

Difference of products of composition operator and integral type operator on α -Bloch-Orlicz space

YANG Qi

(School of Mathematics, Tianjin University, Tianjin 300350, China)

Abstract: In this paper, we study the difference of the products of composition operator and integral type operator $C_{\varphi}I_{g}$, $I_{g}C_{\varphi}$ acting on the α -Bloch-Orlicz space B_{α}^{ϕ} in the unit disk. By constructing different test functions, we present some necessary and sufficient conditions for the boundedness and compactness of the difference.

Keywords: Difference; Composition operator; Integral type operator; α -Bloch-Orlicz space (2010 MSC 47B38, 47B38, 47B37)

1 Introduction

Let D be the unit disk of the complex plane C and H(D) be the space of all analytic functions on D. Denote by S(D) the collection of all holomorphic self-maps of D. Every $\varphi \in S(D)$ induces the composition operator C_{φ} defined as

$$C_{\varphi}f(z) = f \circ \varphi(z), f \in H(D), z \in D.$$

The theory of composition operator on various setting has quite a long and rich history. We can refer to Ref. [1] for various properties on the composition operators acting on different classical holomorphic function spaces.

Let μ be a weight, that is, μ is a positive

continuous function on D. We recall that the μ -Bloch space B_{μ} consists of all $f \in H(D)$ such that

$$||f||_{B_{\mu}} = f(0) + \sup_{z \in D} \mu(z) |f'(z)| < \infty.$$

It is a well-known fact that the μ -Bloch space B_{μ} is a Banach space under norm $||f||_{B_a}$. In particular, when $\mu(z) = (1-|z|^2)^{\alpha}$ for $0 < \alpha < \infty$, the induced space B_{μ} is α -Bloch space which can be defined as:

$$B_{a} = \{ f \in H(D) : ||f||_{B_{a}} = \sup_{z \in D} (1 - |z|^{2})^{a} |f'(z)| < \infty \}.$$

It is a Banach space endowed with the norm $||f||_{\alpha}$ $= f(0) + ||f||_{B}$.

Let $g \in H(D)$. For $f \in H(D)$, the integral

收稿日期: 2018-08-30

基金项目: 国家自然科学基金(11771323, 11371276)

作者简介:杨琦(1995-),女,山西大同人,主要研究方向为算子理论. E-mail: yangqismile@tju. edu. cn

type operators I_g and J_g is defined by

$$I_g f(z) = \int_0^z f'(\xi) g(\xi) d\xi$$

and

$$J_g f(z) = \int_0^z f(\xi) g'(\xi) d\xi.$$

The product of composition operator and integral type operator is first introduced and discussed by Li and Stević^[2,3], which can be defined by

$$(C_{\varphi}I_{g}f)(z) = \int_{0}^{\varphi(z)} f'(\xi)g(\xi)d\xi,$$

$$(C_{\varphi}J_{g}f)(z) = \int_{0}^{\varphi(z)} f(\xi)g'(\xi)d\xi,$$

$$(I_{g}C_{\varphi}f)(z) = \int_{0}^{z} (f \circ \varphi)'(\xi)g(\xi)d\xi,$$

or

$$(J_g C_{\varphi} f)(z) = \int_0^z (f \circ \varphi)(\xi) g'(\xi) d\xi.$$

For the investigation for difference of composition operators on μ -Bloch space, sometimes called weighted Bloch space, we can refer to Refs. [4 \sim 8]. With the distinction to the definition of μ (z), the μ -Bloch space changes into different weighted Bloch space.

In recent years, the Bloch-Orlicz space appeares in the literature motived by the study of Hardy-Orlicz space and Bergman-Orlicz space as a further generalization of the classical Bloch space in the unit disk. Motivated by the same spirit, for $0 < \alpha < \infty$, the α -Bloch-Orlicz space on the unit disk is generalized by Liang in Ref. [13] as follows:

$$B_{\alpha}^{\phi} = \{ f \in H(D) : \sup_{z \in D} (1 - |z|^2)^{\alpha} \phi(\lambda |f'(z)|) < \infty \}$$

for some $\lambda > 0$ depending on f, where ϕ is also a Young's function. We can also assume without loss of generality that ϕ^{-1} is differentiable, and the Minkowski's functional

$$|| f ||_{\phi,a} = \inf \{k > 0: S_{\phi,a}(\frac{f'}{k}) \le 1\}$$

defines a semi-norm on B_{α}^{ϕ} , where

$$S_{\phi,\alpha}(f) := \sup_{z \in D} (1 - |z|^2)^{\alpha} \phi(|f(z)|).$$

 B^{ϕ}_{α} becomes a Banach space with the norm

$$|| f ||_{B^{\phi}_{\alpha}} = |f(0)| + || f ||_{\phi,\alpha}.$$

In the past decades, properties including boundedness and compactness of the difference of composition operators are studied by many authors, such as Refs. $[14 \sim 18]$. For some good sources of information on much of the development in the theory of integral type operators, we can refer Refs. $[19 \sim 21]$.

In this paper, we limit our study on the difference of products of integral type and composition operators $C_{\varphi}I_{g}$ and $I_{g}C_{\varphi}$ on α -Bloch-Orlicz space B_{α}^{ϕ} on the unit disk. The paper is based on my study on the difference of composition operators on B_{α}^{ϕ} in Ref. [22].

The paper is organized as follows. Some background material and lemmas follow in Section 2. Then we characterize the boundedness and compactness of $C_{\varphi}I_{g}-C_{\psi}I_{g}$ and $C_{\varphi}I_{g}-I_{g}C_{\psi}$ on the α -Bloch-Orlicz space B_{α}^{ϕ} with $0<\alpha<\infty$ in Section 3 and Section 4.

Throughout the paper, C will denote a positive constant, it's exact value may vary from one occurrence to the other.

2 Notions and lemmas

In this section we collect some lemmas and properties to be used in later sections. To begin the discussion, we introduce some nations.

The one-to-one holomorphic function which maps D to itself called the Möbius transformation, denoted by $\operatorname{Aut}(D)$, with the form $\lambda \varphi_a$, where $|\lambda|=1$ and φ_a is defined by

$$\varphi_a(z) = \frac{a-z}{1-\overline{a}z}, z \in D$$

for $a \in D$. We have the following identities:

$$(1-|z|^2)|\varphi_a'(z)|=1-|\varphi_a(z)|^2$$
,

$$1 - |\varphi_a(z)|^2 = \frac{(1 - |a|^2)(1 - |z|^2)}{|1 - \bar{a}z|^2}.$$

The pseudohyperbolic distance between $a, z \in D$ is given by $\rho(a,z) = |\varphi_a(z)|$. We know that $\rho(a,z)$ is invariant under automorphisms (see Ref. [23]) and

$$\frac{1-\rho(a,z)}{1+\rho(a,z)} \le \frac{1-|a|^2}{1-|z|^2} \le \frac{1+\rho(a,z)}{1-\rho(a,z)}.$$

For $\varphi \in S(D)$, the Schwarz-Pick Lemma^[1] shows that $\rho(\varphi(z), \varphi(w)) \leq \rho(z, w)$.

Now let us state a couple of lemmas. Some of which are direct statements of Ref. [10].

Proposition 2. 1^[13] For $\alpha > 0$,

$$S_{\scriptscriptstyle{\phi,a}}(\frac{f'}{\parallel f \parallel_{B_{\scriptscriptstyle{\rho}}^{\flat}}}) \leq S_{\scriptscriptstyle{\phi,a}}(\frac{f'}{\parallel f \parallel_{\scriptscriptstyle{\phi,a}}}) \leq 1$$

holds for each $f \in B_a^{\phi}$.

Proof The proof is similar to Lemma 2 in Ref. [24].

Remark 1 For each $f \in B_a^{\phi}$, Proposition 2. 1 allows us to observe that

$$|f'(z)| \le \phi^{-1} \left(\frac{1}{(1-|z|^2)^{\alpha}} \right) ||f||_{\phi,\alpha} \le \phi^{-1} \left(\frac{1}{(1-|z|^2)^{\alpha}} \right) ||f||_{B_{\alpha}^{\phi}}, z \in D.$$

In addition, for $z \in D$ fixed and any $f \in B_a^{\phi}$, we have

$$|f(z)| \le |f(0)| + \int_0^z |f'(s)| ds \le$$

$$\left(1+|z|\phi^{-1}\left(\frac{1}{(1-|z|^2)^a}\right)\right)\parallel f\parallel_{B_a^\phi}$$

by integrating the aforesaid estimation.

Lemma 2. 2^[13] For $\alpha > 0$, the α -Bloch-Orlicz space is isometrically equal to the μ_{α} -Bloch space, where

$$\mu_{\alpha}(z) = \frac{1}{\phi^{-1} \left(\frac{1}{(1 - |z|^2)^{\alpha}} \right)}.$$

In other words,

$$||f||_{B_a^{\phi}} = |f(0)| + \sup_{z \in D} \mu_a(z) |f'(z)|$$

holds for each $f \in B_a^{\phi}$.

Lemma 2. 3^[22] For $\alpha > 0$, $f \in B_a^{\phi}$, for any φ , $\psi \in S(D)$,

$$\left|\frac{f'(\varphi(z))}{\varphi^{-1}\left(\frac{1}{(1-|\varphi(z)|^2)^a}\right)} - \frac{f'(\psi(z))}{\phi^{-1}\left(\frac{1}{(1-|\psi(z)|^2)^a}\right)}\right| \leq C \|f\|_{\phi,ap}(\varphi(z),\psi(z))$$

holds for all $z \in D$.

Remark 2 From the proof of Lemma 2.3, it

is not difficult to see that for any $\phi(z)$, $\psi(z) \in rD$ ={ $w \in D$: |w| < r < 1},

$$\left| \frac{f'(\varphi(z))}{\varphi^{-1}(\frac{1}{(1-|\varphi(z)|^2)^{\alpha}})} - \frac{f'(\psi(z))}{\phi^{-1}(\frac{1}{(1-|\psi(z)|^2)^{\alpha}})} \right| \leq C \|f'_r\|_{H_v^{\alpha}\rho}(\varphi(z),\psi(z))$$

for any $f' \in H\infty_v$, where

$$\| f'_r \|_{H_{\infty_v}} = \sup_{w \in rD} \frac{|f'(w)|}{\phi^{-1}(\frac{1}{(1-|w|^2)^a})}.$$

Thus by the above argument and Remark 1, one has for any $f \in B^{\phi}_{a}$

$$\left| \frac{f'(\varphi(z))}{\phi^{-1} \left(\frac{1}{(1 - |\varphi(z)|^2)^{\alpha}} \right)} - \frac{f'(\psi(z))}{\phi^{-1} \left(\frac{1}{(1 - |\psi(z)|^2)^{\alpha}} \right)} \right| \le C \| f'_r \|_{H_v^{\alpha}} \rho(\varphi(z), \psi(z)) = C \sup_{w \in \partial} \frac{f'(w)}{\phi^{-1} \left(\frac{1}{(1 - |w|^2)^{\alpha}} \right)} \rho(\varphi(z), \psi(z)).$$

The equivalent condition below is originally in Ref. [13].

Proposition 2.4 For $\alpha > 0$, the equivalent condition

$$S_{\phi,a}(f') \leq 1 \Leftrightarrow ||f||_{\phi,a} \leq 1$$

holds for each $f \in B_a^{\phi}$.

The construction in the following is helpful for the investigation of the boundedness of the composition operators on the α -Bloch-Orlicz space with $\alpha>0$, where the proof includes the same arguments in Ref. [24].

Lemma 2. 5^[22] For $\alpha > 0$ and a fixed point a

 $\in D$, there is a holomorphic function $f \in H(D)$ such that

$$\phi(|f_{a,a}(z)|) = \left(\frac{1-|a|^2}{|1-\bar{a}z|^2}\right)^{\alpha}$$

for all $z \in D$.

The following lemma is the crucial criterion for compactness, whose proof is an easy modification of Proposition 3. 11 of Ref. [1].

Lemma 2. 6 Suppose that $0 < \alpha < \infty$. Let $\varphi, \psi \in S(D)$. Then the difference $C_{\varphi}I_g - C_{\psi}I_g : B_a^{\phi} \to B_a^{\phi}$ is compact if and only if when $\{f_n\}$ is a bounded sequence in B_a^{ϕ} with $f_n \to 0$ uniformly on compact subsets of D as $n \to \infty$, then $\| (C_{\varphi}I_g - C_{\psi}I_g) f_n \|_{\phi,\alpha} \to 0$ as $n \to \infty$. (The lemma can also apply to the operators $I_gC_{\varphi} - I_gC_{\psi}$ and $C_{\varphi}I_g - I_gC_{\psi}$)

The Schwarz-Pick type derivative φ^{\sharp} of φ is defined by

$$arphi^{\sharp}\left(z
ight) = rac{\mu_{lpha}(z)}{\mu_{lpha}(arphi(z))}arphi'(z).$$

Lemma 2.7 Suppose that $0 \le \alpha \le \infty$. Let $\varphi, \psi \in S(D)$ and $g \in H(D)$. Then

(i) $C_{\varphi}I_{g}:B_{a}^{\phi} \rightarrow B_{a}^{\phi}$ is compact if and only if $\sup_{z \in D} |g(\varphi(z))\varphi^{\#}(z)| < \infty$

and

$$\lim_{|\varphi(z)|\to 1} |g(\varphi(z))\varphi^{\sharp}(z)| = 0,$$

(ii) $I_g C_{\varphi} : B_{\alpha}^{\phi} \to B_{\alpha}^{\phi}$ is compact if and only if $\sup_{z \in D} |g(z)\varphi^{\#}(z)| < \infty$

and

$$\lim_{|\varphi(z)|\to 1} |g(z)\varphi^{\sharp}(z)| = 0.$$

Proof To get this lemma, we only need to change $\mu(z)$, $\mu(\varphi(z))$ in Theorem 5 of Ref. [19] to $\mu_{\alpha}(z)$, $\mu_{\alpha}(\varphi(z))$. We omit the details.

3 Boundedness and compactness of $C_{\omega}I_{\varepsilon} - C_{\omega}I_{\varepsilon}$

In this section, we characterize the boundedness and compactness of $C_{\varphi}I_{g}-C_{\psi}I_{g}$ acting on B_{α}^{ϕ} . We consider the boundedness at first,

Theorem 3.1 Suppose that $0 < \alpha < \infty$. Let φ , $\psi \in S(D)$ and $g \in H(D)$. Then the following statements are equivalent:

(i) $C_{\varphi}I_{g} - C_{\psi}I_{g}: B_{\alpha}^{\phi} \longrightarrow B_{\alpha}^{\phi}$ is bounded;

(ii)

$$\sup_{z \in D} |g(\varphi(z))\varphi^{\sharp}(z)| \rho(\varphi(z), \psi(z)) < \infty \quad (1)$$

$$\sup_{z \in D} |g(\psi(z))\psi^{\sharp}(z)| \rho(\varphi(z), \psi(z)) < \infty$$
 (2)

$$\sup_{z \in D} |g(\varphi(z))\varphi^{\#}(z) - g(\psi(z))\psi^{\#}(z)| < \infty(3)$$

Proof (ii) \Rightarrow (i). Assume that (1) \sim (3) hold. By Remark 1, Lemma 2.2 and 2.3, for every $f \in B_a^{\phi}$,

$$\| (C_{\varphi}I_{g} - C_{\psi}I_{g})f \|_{\phi,a} =$$

$$\sup_{z \in D} \mu_{a}(z) |\varphi'(z)f'(\varphi(z))g(\varphi(z)) -$$

$$\psi'(z)f'(\psi(z))g(\psi(z))| =$$

$$\sup_{z \in D} |\mu_{a}(\varphi(z))f'(\varphi(z))g(\varphi(z))\varphi^{\sharp}(z) -$$

$$\mu_{a}(\psi(z))f'(\psi(z))g(\psi(z))\psi^{\sharp}(z)| \leq$$

$$\sup_{z \in D} |g(\varphi(z))\varphi^{\sharp}(z)| \cdot$$

$$|\mu_{a}(\varphi(z))f'(\varphi(z)) - \mu_{a}(\psi(z))f'(\psi(z))| +$$

$$\sup_{z \in D} \mu_{a}(\psi(z)) |f'(\psi(z))| \cdot$$

$$|g(\varphi(z))\varphi^{\sharp}(z) - g(\psi(z))\psi^{\sharp}(z)| \leq$$

$$C \sup_{z \in D} |g(\varphi(z))\varphi^{\sharp}(z)| \cdot$$

$$\rho(\varphi(z), \psi(z)) ||f||_{\phi,a} +$$

$$\sup_{z \in D} |g(\varphi(z))\varphi^{\sharp}(z) -$$

$$g(\psi(z))\psi^{\sharp}(z) ||f||_{\phi,a} \leq$$

$$C ||f||_{\phi,a}$$

and

$$\begin{split} &|\left(C_{\varphi}I_{g}-C_{\psi}I_{g}\right)f(0)\left|=|\int_{\psi(0)}^{\varphi(0)}f'(\xi)g(\xi)\mathrm{d}\xi| \leq \\ &M|\int_{\psi(0)}^{\varphi(0)}|f'(\xi)\left|d\xi\right| \leq C \|f\|_{\phi,a}, \end{split}$$

where $M = \sup_{z \in K} |g(z)|$ and K is a closed subset of D containing φ (0) and ψ (0). The last inequality obtained from Remark 1 on a compact subset. This shows that $C_{\varphi}I_{g} - C_{\psi}I_{g}$ is bounded.

(i) \Rightarrow (ii). Assume that $C_{\varphi}I_{g} - C_{\psi}I_{g}: B_{\alpha}^{\phi} \rightarrow B_{\alpha}^{\phi}$ is bounded. For every $w \in D$, setting

$$g_{w,1}(z) = \int_0^z \left| f_{\varphi(w),\alpha}(s) \frac{\psi(w) - s}{1 - \overline{\psi(w)} s} \right| ds.$$

It is easy to check that $g_{w,1}\in B_a^{\phi}$ and $\parallel g_{w,1}\parallel_{\phi,a}\leq 1$. Note that

$$g'_{w,1}(\varphi(w)) = \frac{\rho(\varphi(w), \psi(w))}{\mu_{\alpha}(\varphi(w))}$$

and

$$g'_{w,1}(\psi(w)) = 0.$$

Therefore,

$$C \geq \| (C_{\varphi}I_{g} - C_{\psi}I_{g})g_{w,1} \|_{\phi,a} =$$

$$\sup_{z \in D} \mu_{a}(z) |\varphi'(z)g'_{w,1}(\varphi(z))g(\varphi(z)) -$$

$$\psi'(z)g'_{w,1}(\psi(z))g(\psi(z)) | \geq$$

$$\mu_{a}(w) |\varphi'(w)g'_{w,1}(\varphi(w))g(\varphi(w)) -$$

$$\psi'(w)g'_{w,1}(\psi(w))g(\psi(w))| = |g(\varphi(w))\varphi^{\sharp}(w)|\rho(\varphi(w),\psi(w)).$$

For arbitrary w, we get (1).

Similarly, if we set

$$g_{w,2}(z) = \int_0^z |f_{\psi(w),\alpha}(s)| ds,$$

then $g_{w,2} \in B_a^{\phi}$, $\|g_{w,2}\|_{\phi,\alpha} = 1$. We also get

$$C \geq \| (C_{\varphi}I_{g} - C_{\psi}I_{g})g_{w,2} \|_{\phi,a} \geqslant$$

$$\mu_{a}(w) | \varphi'(w)g'_{w,2}(\varphi(w))g(\varphi(w)) -$$

$$\psi'(w)g'_{w,2}(\psi(w))g(\psi(w)) | \geqslant$$

$$| g(\varphi(w))\varphi^{\sharp}(w) - g(\psi(w))\psi^{\sharp}(w) | -$$

$$| g(\varphi(w))\varphi^{\sharp}(w) | \bullet$$

$$| \mu_{a}(\varphi(w))g'_{w,2}(\varphi(w)) - 1 | =$$

$$| g(\varphi(w))\varphi^{\sharp}(w) - g(\psi(w))\psi^{\sharp}(w) | -$$

$$| g(\varphi(w))\varphi^{\sharp}(w) | \bullet$$

$$| \mu_{a}(\varphi(w))g'_{w,2}(\varphi(w)) -$$

$$\mu_{a}(\psi(w))g'_{w,2}(\psi(w)) | \geqslant$$

$$| g(\varphi(w))\varphi^{\sharp}(w) - g(\psi(w))\psi^{\sharp}(w) | -$$

$$C| g(\varphi(w))\varphi^{\sharp}(w) - g(\psi(w))\psi^{\sharp}(w) | -$$

$$C| g(\varphi(w))\varphi^{\sharp}(w) | \bullet$$

$$\rho(\varphi(w), \psi(w)) \| g_{w,2} \|_{\delta_{1}a}.$$

Analogously, (3) holds by (1).

Finally, One sees that

$$egin{aligned} &|g(\psi(w))\phi^{\sharp}(w)|
ho(\varphi(w),\psi(w))\geqslant \ &|g(\varphi(w))\varphi^{\sharp}(w)|
ho(\varphi(w),\psi(w))+ \ &|g(\psi(w))\phi^{\sharp}(w)- \ &g(\varphi(w))\varphi^{\sharp}(w)|
ho(\varphi(w),\psi(w)). \end{aligned}$$

Thus (2) holds by (1) and (3). The proof is end.

Now we turn to the compactness. To discuss the compactness on B_a^{ϕ} , we define by $\Gamma(\varphi)$ the set of sequence $\{z_n\}$ in D such that $|\varphi(z_n)| \rightarrow 1$, we also denote by $\Gamma(\varphi)$ the set of sequence $\{z_n\}$ in D such that $|\varphi(z_n)| \rightarrow 1$ and $\varphi^{\#}(z_n)g(\varphi(z_n)) \rightarrow 0$. It is clear that $\Gamma^{\#}(\varphi) \subset \Gamma(\varphi)$.

Theorem 3.2 Suppose that $0 < \alpha < \infty$. Let φ , $\psi \in S(D)$ and $g \in H(D)$, $C_{\varphi}I_{g}$, $C_{\psi}I_{g}: B_{a}^{\phi} \rightarrow B_{a}^{\phi}$ are bounded but not compact. Then the following statements are equivalent:

- (i) $C_{\alpha}I_{g} C_{\phi}I_{g} : B_{\alpha}^{\phi} \rightarrow B_{\alpha}^{\phi}$ is compact;
- (ii) Both (a) and (b) hold: (a) If $\Gamma^{\sharp}(\varphi) = \Gamma^{\sharp}(\psi) = \emptyset$, then $\Gamma^{\sharp}(\varphi) \subset \Gamma(\varphi) \cap \Gamma(\psi)$; (b) For $\{z_n\} \in \Gamma(\varphi) \cap \Gamma(\psi)$,

$$\lim_{n\to\infty} |g(\varphi(z_n))\varphi^{\sharp}(z_n)| \rho(\varphi(z_n),\psi(z_n)) = 0,
\lim |g(\psi(z_n))\psi^{\sharp}(z_n)| \rho(\varphi(z_n),\psi(z_n)) = 0,$$

$$\lim_{n\to\infty} |g(\varphi(z_n))\varphi^{\sharp}(z_n) - g(\psi(z_n))\psi^{\sharp}(z_n)| = 0.$$

Proof (i) \Rightarrow (ii). By assuming that $C_{\varphi}I_{g}$ is not compact, there exists a sequence $\{z_{n}\}\in\Gamma^{\sharp}(\varphi)$ such that $|\varphi(z_{n})|\rightarrow 1$ and $\varphi^{\sharp}(z_{n})g(\varphi(z_{n}))\rightarrow 0$. For such sequence $\{z_{n}\}$, we set

$$h_{n,1}(z) = \int_0^z \left| f_{\varphi(z_n),\alpha}(s) \frac{\psi(z_n) - s}{1 - \overline{\psi(z_n)} s} \right| \mathrm{d}s,$$

$$h_{n,2}(z) = \int_0^z \left| f_{\psi(z_n),\alpha}(s) \right| \mathrm{d}s.$$

It is clear that $h_{n,1}$ and $h_{n,2}$ belong to B_a^{ϕ} and converge to 0 uniformly on compact subset of D as $n \to \infty$. We have the following estimate

$$egin{aligned} & \parallel (C_{arphi}I_{g}-C_{\psi}I_{g})h_{n,1}\parallel_{\phi,lpha}\geqslant \ & \mu_{lpha}(z_{n})\left|arphi'(z_{n})h'_{n,1}(arphi(z_{n}))g(arphi(z_{n}))-arphi'(z_{n})h'_{n,1}(\psi(z_{n}))g(\psi(z_{n}))
ight|= \ & \left|g(arphi(z_{n}))arphi^{\sharp}(z_{n})\left|
ho(arphi(z_{n}),\psi(z_{n}))
ight| \end{aligned}$$

and

By condition (i) and Lemma 2.6, we have

$$\lim_{n \to \infty} |g(\varphi(z_n))\varphi^{\sharp}(z_n)| \rho(\varphi(z_n), \psi(z_n)) = 0 (4)$$

$$\lim_{n \to \infty} |g(\varphi(z_n))\varphi^{\sharp}(z_n) - g(\psi(z_n))\psi^{\sharp}(z_n)| = 0 (5)$$

By assumption $g(\varphi(z_n))\varphi^{\sharp}(z_n)\not\rightarrow 0$ and (4), one sees that

$$\lim_{n\to\infty} \rho(\varphi(z_n), \psi(z_n)) = 0 \text{ for } \{z_n\} \in \Gamma^{\#}(\varphi) \quad (6)$$

Hence for any $\{z_n\}$ such that $|\varphi(z_n)| \rightarrow 1$, we get $\lim_{|\varphi(z_n)| \rightarrow 1} |g(\varphi(z_n))\varphi^{\sharp}(z_n)| \rho(\varphi(z_n), \psi(z_n)) = 0.$

The same is true with the role of φ and ψ interchanged. Notice that (6) implies for $\{z_n\} \in \Gamma^{\sharp}$ (φ) ,

$$\lim_{|\varphi(z_n)|\to 1} |\varphi(z_n) - \psi(z_n)| = 0.$$

For any sequence $\{z_n\}$ with $|\varphi(z_n)| \to 1$, $|\psi(z_n)| \to 1$ and $g(\varphi(z_n))\varphi^{\sharp}(z_n) \to 0$, we will use

 $\lim_{|\psi(z_n)| \to 1} |g(\psi(z_n))\psi^{\sharp}(z_n)| \rho(\varphi(z_n), \psi(z_n)) = 0$ to obtain

 $\lim_{n o\infty}ig|g(arphi(z_n))arphi^{\#}(z_n)ig|= \ ig|\limig|g(\psi(z_n))\psi^{\#}(z_n)ig|=0.$

Consequently we get (b).

Moreover, from (5) and (6) we can observe that if $\{z_n\} \in \Gamma^{\sharp}(\varphi)$, then $|\psi(z_n)| \to 1$ and $g(\psi(z_n))\psi^{\sharp}(z_n) \not\to 0$, which means $\Gamma^{\sharp}(\varphi) \subset \Gamma^{\sharp}(\psi)$. Similarly we can obtain $\Gamma^{\sharp}(\psi) \subset \Gamma^{\sharp}(\varphi)$, which implies $\Gamma^{\sharp}(\varphi) = \Gamma^{\sharp}(\psi)$. From $\Gamma^{\sharp}(\varphi) \subset \Gamma(\varphi)$ and $\Gamma^{\sharp}(\psi) \subset \Gamma(\psi)$ we have $\Gamma^{\sharp}(\varphi) \subset \Gamma(\varphi) \cap \Gamma(\psi)$. Consequently we get (a).

(ii) \Rightarrow (i). To prove $C_{\varphi}I_{g} - C_{\psi}I_{g}: B_{\alpha}^{\phi} \rightarrow B_{\alpha}^{\phi}$ is compact, we suppose it is not true. Let $\{f_{n}\}$ be a sequence in B_{α}^{ϕ} such that $\|f_{n}\|_{\phi,\alpha} \leq 1$ and $f_{n} \rightarrow 0$ uniformly on compact subset of D. Assume that for some $\varepsilon > 0$, $\|(C_{\varphi}I_{g} - C_{\psi}I_{g})f_{n}\|_{\phi,\alpha} > \varepsilon$ for all n. For each n, there exists a sequence $\{z_{n}\} \in D$ such that

$$|g(\varphi(z_n))\varphi^{\sharp}(z_n)f'_n(\varphi(z_n))\mu_{\alpha}(\varphi(z_n)) - g(\psi(z_n))\psi^{\sharp}(z_n)f'_n(\psi(z_n))\mu_{\alpha}(\psi(z_n))| >_{\mathbf{\epsilon}} (7)$$
which implies either $|\varphi(z_n)| \to 1$ or $|\psi(z_n)| \to 1$.

Suppose that $|\varphi(z_n)| \to 1$ and $|\psi(z_n)| \to w$. If |w| < 1, then $\{z_n\}$ is not in $\Gamma(\varphi) \cap \Gamma(\psi)$. By condition (a), we have $g(\varphi(z_n))\varphi^{\sharp}(z_n) \to 0$.

On the other hand, $|\psi(z_n)| < 1$ implies $f'_n(\psi(z_n)) \rightarrow 0$. This contradicts (7). Thus we obtain |w| = 1, which means $|\varphi(z_n)| \rightarrow 1$ and $|\psi(z_n)| \rightarrow 1$. By condition (b), one sees that

$$\begin{split} & \left| g(\varphi(z_n))\varphi^{\sharp}(z_n) f_n(\varphi(z_n))\mu_{\alpha}(\varphi(z_n)) - \right. \\ & \left. g(\psi(z_n))\psi^{\sharp}(z_n) f_n'(\psi(z_n))\mu_{\alpha}(\psi(z_n)) \right| \leq \\ & \left| g(\varphi(z_n))\varphi^{\sharp}(z_n) - g(\psi(z_n))\psi^{\sharp}(z_n) \right| \bullet \\ & \left\| f_n \right\|_{\phi,\alpha} + C \left| g(\psi(z_n))\psi^{\sharp}(z_n) \right| \bullet \\ & \left. \rho(\varphi(z_n),\psi(z_n)) \left\| f_n \right\|_{\phi,\alpha}. \end{split}$$

this contradicts (7). The proof is end.

If we remove the assumption that $C_{\varphi}I_{g}$ and $C_{\psi}I_{g}$ are not compact, we can get the next theorem.

Theorem 3.3 Suppose that $0 < \alpha < \infty$. Let φ , $\psi \in S(D)$ and $g \in H(D)$. Suppose $C_{\varphi}I_{g}$, $C_{\psi}I_{g}:B_{\alpha}^{\phi} \to B_{\alpha}^{\phi}$ are bounded. Then the following statements are equivalent:

(i)
$$C_{\varphi}I_{g} - C_{\psi}I_{g}: B_{\alpha}^{\phi} \rightarrow B_{\alpha}^{\phi}$$
 is compact;

(ii)

$$\lim_{\substack{|\varphi(z)|\to 1\\|\varphi(z)|\to 1}} |g(\varphi(z))\varphi^{\sharp}(z)| \rho(\varphi(z),\psi(z)) = 0 \quad (8)$$

$$\lim_{\substack{|\psi(z)|\to 1\\|\varphi(z)|\to 1,\ |\psi(z)|\to 1}} |g(\psi(z))\psi^{\sharp}(z)| \rho(\varphi(z),\psi(z)) = 0 \quad (9)$$

$$\lim_{\substack{|\varphi(z)|\to 1,\ |\psi(z)|\to 1\\|\varphi(z)|\psi^{\sharp}(z)|}} |g(\varphi(z))\varphi^{\sharp}(z) - g(\psi(z))\psi^{\sharp}(z)| = 0 \quad (10)$$

Proof (i) \Rightarrow (ii). Assume that both $C_{\varphi}I_{g}$ and $C_{\psi}I_{g}$ are compact. Then Lemma 2.7 implies that

$$\lim_{\substack{|\varphi(z)|\to 1\\|\varphi(z)|\to 1}} g(\varphi(z))\varphi^{\sharp}(z) = 0,$$

From $|\rho(\varphi(z), \psi(z))| \le 1$ we obtain (ii).

Assume that both $C_{\varphi}I_{g}$ and $C_{\psi}I_{g}$ are not compact. For any sequence $\{z_{n}\}$ with $|\varphi(z_{n})| \rightarrow 1$, if $g(\varphi(z_{n}))\varphi^{\sharp}(z_{n}) \rightarrow 0$, then

$$\lim_{n\to\infty} (\varphi(z_n))\varphi^{\sharp}(z_n)\rho(\varphi(z_n),\psi(z_n))=0.$$

Suppose that $\{z_n\} \in \Gamma^{\sharp}(\varphi)$. By Theorem 3.2, we have $\{z_n\} \in \Gamma^{\sharp}(\varphi) \subseteq \Gamma(\varphi) \cap \Gamma(\psi)$ and

$$\lim_{n\to\infty} |g(\varphi(z_n))\varphi^{\sharp}(z_n)| \rho(\varphi(z_n),\psi(z_n)) = 0.$$

Hence

$$\lim_{|\varphi(z_n)|\to 1} |g(\varphi(z_n))\varphi^{\sharp}(z_n)| \rho(\varphi(z_n),\psi(z_n)) = 0.$$

Similarly, we have

$$\lim_{|\psi(z_n)|\to 1} |g(\psi(z_n))\psi^{\sharp}(z_n)| \rho(\varphi(z_n),\psi(z_n)) = 0.$$

For $\{z_n\}$ such that $|\varphi(z_n)| \rightarrow 1$, $|\psi(z_n)| \rightarrow 1$, by Theorem 3.2 we can obtain

$$\lim_{n\to\infty} |g(\varphi(z_n))\varphi^{\sharp}(z_n) - g(\psi(z_n))\psi^{\sharp}(z_n)| = 0.$$

Therefore, for arbitrary $\{z_n\}$, conditions (8) \sim (10) hold.

(ii) \Rightarrow (i). Suppose that one of the two operators $C_{\varphi}I_{g}$ and $C_{\psi}I_{g}$ is compact, for example, $C_{\varphi}I_{g}$, then from Lemma 2.7 we have

$$\lim_{|\varphi(z)|\to 1} g(\varphi(z))\varphi^{\sharp}(z) = 0.$$

Let $\{z_n\}$ be any sequence in D such that $|\psi(z_n)|$ $\rightarrow 1$ as $n \rightarrow \infty$. If $|\varphi(z_n)| \rightarrow 1$, from (10) we obtain $\lim_{n \to \infty} g(\psi(z_n)) \psi^{\sharp}(z_n) = 0$.

Otherwise, $\rho(\varphi(z_n), \psi(z_n)) \rightarrow 0$. From (9) we get $\lim_{n \to \infty} g(\psi(z_n)) \psi^{\sharp}(z_n) = 0$.

Thus we have

$$\lim_{|\psi(z)| \to 1} g(\psi(z)) \psi^{\sharp}(z) = 0.$$

Using again Lemma 2.7, we know $C_{\psi}I_{g}$ is compact, then $C_{\varphi}I_{g} - C_{\psi}I_{g}$ is compact.

If both $C_{\varphi}I_{g}$ and $C_{\psi}I_{g}$ are not compact, then

(16)

(i) follows from Theorem 3. 2. The proof is end. Similar to the proof of Theorem 3. $1 \sim 3$. 3, we can proof the following theorem. Here we omit the details.

Theorem 3.4 Suppose that $0 < \alpha < \infty$. Let φ , $\psi \in S(D)$ and $g \in H(D)$.

(i) $I_g C_{\varphi} - I_g C_{\psi} \colon B_a^{\phi} \!\!\!\! \to \!\!\!\! B_a^{\phi}$ is bounded if and only if

$$\sup_{z\in D} |g(z)\varphi^{\sharp}(z)|\rho(\varphi(z),\psi(z)) < \infty,$$

$$\sup_{z\in D} |g(z)\psi^{\sharp}(z)|\rho(\varphi(z),\psi(z)) < \infty,$$

$$\sup_{z\in D} |g(z)\varphi^{\sharp}(z) - g(z)\psi^{\sharp}(z)| < \infty.$$

(ii) $I_g C_{\varphi} = I_g C_{\psi} \colon B_a^{\phi} \to B_a^{\phi}$ is compact if and only if

$$\begin{split} &\lim_{|\varphi(z)|\to 1} |g(z)\varphi^{\#}(z)| \rho(\varphi(z), \psi(z)) = 0\,,\\ &\lim_{|\psi(z)|\to 1} |g(z)\psi^{\#}(z)| \rho(\varphi(z), \psi(z)) = 0\,,\\ &\lim_{|\varphi(z)|\to 1, \, |\psi(z)|\to 1} |g(z)\varphi^{\#}(z) - g(z)\psi^{\#}(z)| = 0\,. \end{split}$$

4 Boundedness and compactness of $C_{\varphi}I_{g} - I_{g}C_{\varphi}$

In this section, we characterize the boundedness and compactness of $C_{\varphi}I_{g}-I_{g}C_{\psi}$ acting on B_{q}^{ϕ} .

Theorem 4.1 Suppose that $0 < \alpha < \infty$. Let φ , $\psi \in S(D)$ and $g \in H(D)$. Then the following statements are equivalent:

(i)
$$C_{\varphi}I_{g} - I_{g}C_{\psi} : B_{a}^{\phi} \to B_{a}^{\phi}$$
 is bounded;
(ii)
$$\sup_{z \in D} |g(\varphi(z))\varphi^{\sharp}(z)| \rho(\varphi(z), \psi(z)) < \infty \quad (11)$$

$$\sup_{z \in D} |g(z)\psi^{\sharp}(z)| \rho(\varphi(z), \psi(z)) < \infty \quad (12)$$

$$\sup_{z \in D} |g(\varphi(z))\varphi^{\sharp}(z) - g(z)\psi^{\sharp}(z)| < \infty \quad (13)$$

Proof Notice that

$$\begin{split} & \| \left(C_{\varphi} I_{g} - C_{\psi} I_{g} \right) f \|_{\phi,a} = \\ & \sup_{z \in D} \mu_{a}(z) \left| \varphi'(z) f'(\varphi(z)) g(\varphi(z)) - \right. \\ & \psi'(z) f'(\psi(z)) g(\psi(z)) \right|, \\ & \| \left(C_{\varphi} I_{g} - I_{g} C_{\psi} \right) f \|_{\phi,a} = \\ & \sup_{z \in D} \mu_{a}(z) \left| \varphi'(z) f'(\varphi(z)) g(\varphi(z)) - \right. \\ & \psi'(z) f'(\psi(z)) g(z) \right|. \end{split}$$

To prove this theorem, we only need to change g $(\psi(z))$, $g(\psi(w))$ in the proof of Theorem 3.1 to g(z), g(w). Here we omit the details.

Theorem 4. 2 Suppose that $0 < \alpha < \infty$. Let φ , $\psi \in S(D)$ and $g \in H(D)$. Suppose $C_{\varphi}I_{g}$, $I_{g}C_{\psi}:B_{a}^{\phi}$

 $\rightarrow B_a^{\phi}$ are bounded. Then the following statements are equivalent:

(i)
$$C_{\varphi}I_{g} - I_{g}C_{\psi} : B_{\alpha}^{\phi} \to B_{\alpha}^{\phi}$$
 is compact;
(ii)
$$\lim_{|\varphi(z)| \to 1} |g(\varphi(z))\varphi^{\#}(z)| \rho(\varphi(z), \psi(z)) = 0$$
(14)

$$\lim_{\substack{|\psi(z)| \to 1 \\ |\varphi(z)| \to 1, |\psi(z)| \to 1}} |g(z)\psi^{\sharp}(z)| \rho(\varphi(z), \psi(z)) = 0$$
 (15)

Proof (ii) \Rightarrow (i). Assume that $C_{\varphi}I_{g} - I_{g}C_{\psi}$ is bounded on B_{α}^{δ} and (14) \sim (16) hold. Then by Theorem 4.1, conditions (11) \sim (13) hold. From (14) \sim (16), it follows that for any ε >0, there exists 0 < r < 1 such that

 $g(z)\psi^{\sharp}(z)|=0$

$$|g(\varphi(z))\varphi^{\sharp}(z)|\rho(\varphi(z),\psi(z)) \leq \varepsilon$$
for $|\varphi(z)| > r$ (17)
$$|g(z)\psi^{\sharp}(z)|\rho(\varphi(z),\psi(z)) \leq \varepsilon$$
for $|\psi(z)| > r$ (18)
$$|g(\varphi(z))\varphi^{\sharp}(z) - g(z)\psi^{\sharp}(z)| \leq \varepsilon$$
for $|\varphi(z)| > r, |\psi(z)| > r$ (19)

Let $\{f_n\}$ be a sequence in B_a^{ϕ} with $\|f_n\|_{B_a^{\phi}} \leq 1$ and $f_n \to 0$ uniformly on compact subsets of D. By Lemma 2. 6 we only need to show that $\|(C_{\varphi}I_g - I_gC_{\psi})f_n\|_{\phi,a} \to 0$ as $n \to \infty$. In fact,

$$\begin{split} & \| \left(C_{\varphi} I_{g} - I_{g} C_{\psi} \right) f_{n} \|_{\phi,a} = \\ & \sup_{z \in D} \mu_{a}(z) \left| \varphi'(z) f_{n}'(\varphi(z)) g(\varphi(z)) - \right. \\ & \psi'(z) f_{n}'(\psi(z)) g(z) \right| = \\ & \sup_{z \in D} \left| \mu_{a}(\varphi(z)) f_{n}'(\varphi(z)) g(\varphi(z)) \varphi^{\sharp}(z) - \right. \\ & \mu_{a}(\psi(z)) f_{n}'(\psi(z)) g(z) \psi^{\sharp}(z) \right| = \\ & \sup_{z \in D} \left| I_{n}(z) + J_{n}(z) \right|, \end{aligned}$$

where

$$\begin{split} I_{n}(z) &= \mu_{\alpha}(\psi(z)) f'_{n}(\psi(z)) \bullet \\ & (g(\varphi(z)) \varphi^{\sharp}(z) - g(z) \psi^{\sharp}(z)) , \\ J_{n}(z) &= g(\varphi(z)) \varphi^{\sharp}(z) \bullet \\ & (\mu_{\alpha}(\varphi(z)) f'_{n}(\varphi(z)) - \mu_{\alpha}(\psi(z)) f'_{n}(\psi(z))). \end{split}$$

In what follows, we divide the argument into 4 cases.

Case 1. $|\varphi(z)| \le r$ and $|\psi(z)| \le r$. By the assumption, $\{f_n(z)\} \to 0$ uniformly on $E = \{w \in D: |w| \le r\}$ as $n \to \infty$. By (13) and Cauchy's integral formula, it is easy to check that $|I_n(z)| \to 0$ uniformly for all z with $|\psi(z)| \le r$ as $n \to \infty$. On the

other hand, it follows from Remark 2 that

$$|\mu_{\alpha}(\varphi(z))f'_{n}(\varphi(z)) - \mu_{\alpha}(\psi(z))f'_{n}(\psi(z))| \leq C\rho(\varphi(z),\psi(z)) \sup_{|\omega(z)| \leq r} \mu_{\alpha}(\psi(z))|f'_{n}(\psi(z))|.$$

Together with (1) and the fact that $\{f_n(z)\} \rightarrow 0$ uniformly on E, we have

$$|J_n(z)| \leq C|g(\varphi(z))\varphi^{\sharp}(z)|\rho(\varphi(z),\psi(z))$$

$$\sup \mu_a(w)|f'_n(w)| \leq C\varepsilon.$$

Case 2. $|\varphi(z)| > r$ and $|\psi(z)| \le r$. As the proof of Case 1, $|I_n(z)| \to 0$ uniformly as $n \to \infty$. On the other hand, using Lemma 2. 3 and (17) we have

$$|J_n(z)| \leq C \|f_n\|_{\phi,\alpha} |g(\varphi(z))\varphi^{\sharp}(z)| \bullet$$
$$\rho(\varphi(z),\psi(z)) \leq C\varepsilon.$$

Case 3. $|\varphi(z)| > r$ and $|\psi(z)| > r$. By (19) we obtain that

$$ig|I_n(z)ig| \le \|f_n\|_{\phi,a} |g(\varphi(z))\varphi^{\sharp}(z) - g(z)\psi^{\sharp}(z)| \le \varepsilon$$

for *n* sufficiently large. Meanwhile, $|J_n(z)| \rightarrow 0$ uniformly as $n \rightarrow \infty$ as the proof of Case 2.

Case 4. $|\varphi(z)| < r$ and $|\psi(z)| \ge r$. We rewrite

$$\mu_{a}(z) | \varphi'(z) f'_{n}(\varphi(z)) g(\varphi(z)) - \\ \psi'(z) f'_{n}(\psi(z)) g(z) | = | P_{n}(z) + Q_{n}(z) |,$$

where

$$\begin{split} P_{n}(z) = & \mu_{a}(\varphi(z)) f_{n}'(\varphi(z)) \bullet \\ & (g(\varphi(z))\varphi^{\sharp}(z) - g(z)\psi^{\sharp}(z)), \\ Q_{n}(z) = & g(z)\psi^{\sharp}(z) \bullet (\mu_{a}(\varphi(z))f_{n}'(\varphi(z)) - \\ & \mu_{a}(\psi(z)) f_{n}'(\psi(z))). \end{split}$$

The desired result follows by an argument analogous to the proof of Case 2.

(i) \Rightarrow (ii). Let $\{z_n\}$ be a sequence in D such that $|\varphi(z_n)| \rightarrow 1$ as $n \rightarrow \infty$, we define the following function

$$h_{n,1}(z) = \int_0^z \left| f_{\varphi(z_n),a(s)} \frac{\psi(z_n) - s}{1 - \psi(z_n)s} \right| ds.$$

When $\{z_n\}$ is a sequence in D such that $|\varphi(z_n)| \rightarrow 1$, $|\psi(z_n)| \rightarrow 1$ as $n \rightarrow \infty$, we define the function

$$h_{n,2}(z) = \int_0^z |f_{\psi(z_n),\alpha}(s)| ds.$$

Let $\{z_n\}$ be a sequence in D such that $|\psi(z_n)| \rightarrow 1$ as $n \rightarrow \infty$, we define the function

$$h_{n,3}(z) = \int_0^z \left| f_{\psi(z_n),\alpha(s)} \frac{\varphi(z_n) - s}{1 - \overline{\varphi(z_n)} s} \right| ds.$$

It is easy to check that $\{h_{n,k}: k=1,2,3\}$ converge

to 0 uniformly on compact subsets of D as $n \to \infty$ and $h_{n,k} \in B_a^{\phi}$ with $\|h_{n,k}\|_{\phi,\alpha} \le 1$ for all n. Similar to the proof of Theorem 3. 2, a direct calculation shows that

$$\begin{split} & \parallel (C_{\varphi}I_{g} - I_{g}C_{\psi})h_{n,1} \parallel_{\phi,a} \geq \\ & | g(\varphi(z_{n}))\varphi^{\sharp}(z_{n})| \rho(\varphi(z_{n}), \psi(z_{n})), \\ & \parallel (C_{\varphi}I_{g} - I_{g}C_{\psi})h_{n,2} \parallel_{\phi,a} \geq \\ & | g(\varphi(z_{n}))\varphi^{\sharp}(z_{n}) - g(z_{n})\psi^{\sharp}(z_{n})| - \\ & C| g(\varphi(z_{n}))\varphi^{\sharp}(z_{n})| \bullet \\ & \rho(\varphi(z_{n}), \psi(z_{n})) \parallel h_{n,2} \parallel_{\phi,a}, \\ & \parallel (C_{\varphi}I_{g} - I_{g}C_{\psi})h_{n,3} \parallel_{\phi,a} \geq \\ & | g(z_{n})\psi^{\sharp}(z_{n})| \rho(\varphi(z_{n}), \psi(z_{n})). \end{split}$$

By the compactness of $C_{\varphi}I_{g} - I_{g}C_{\psi}$ and Lemma 2. 6, (14)~(16) hold. The proof is end.

References:

- [1] Cowen C C, Maccluer B D. Composition operators on spaces of analytic functions [M]. New York: CRC Press, 1995.
- [2] Li S X, Stević S. Products of composition and integral type operators from H[∞] to the Bloch space [J]. Complex Var Elliptic, 2008, 53: 463.
- [3] Li S X, Stević S. Products of Volterra type operator and composition operator from H^{∞} and the Bloch space to Zygmund spaces [J]. J Math Anal Appl, 2008, 345: 40.
- [4] Chen C, Zeng H G, Zhou Z H. N-differentiation composition operators from weighted Banach space of holomorphic function to weighted Bloch space [J]. J Comput Anal Appl, 2014, 16: 486.
- Zhang L, Zhou Z H. Differences of products of the extended Cesaro and composition operators from F (p,q,s) space to μ-Bloch type space on the unit ball
 [J]. Publ Math Debrecen, 2015, 6051: 1.
- [6] Krishan R, Sharma M, Sharma A K. Essential norm of difference of composition operators from weighted bergman spaces to Bloch-type spaces [J]. J Funct Spaces, 2018, 2018; 4670904.
- [7] Zhang L. Differences of generalized composition operators form F(p,q,s) to B_{μ} space [J]. Acta Mathematica Sinica, Chin Ser, 2015, 58: 815.
- [8] Liang Y X. New characterizations for differences of weighted differentiation composition operators from a Bloch-type space to a weighted-type space [J]. Period Math Hung, 2018, 77: 119.
- [9] Charpentier S. Composition operators on Hardy-Orlicz spaces on the ball [J]. Integr Equat Oper Th,

- 2011, 70: 429.
- [10] Lefevre P, Li D, Queffelec H, et al. Composition operators on Hardy-Orlicz spaces [M]. Providence; AMS, 2010.
- [11] Jiang Z, Cao G. Composition operators on Bergman-Orlicz space [J]. J Inequal Appl, 2009, 1: 1.
- [12] Sharma A K, Sharma S D. Composition operators on weighted Bergman-Orlicz spaces [J]. B Aust Math Soc, 2007, 75: 273.
- [13] Liang Y X. Volterra-type operators from weighted Bergman-Orlicz space to β-Zygmund-Orlicz and γ-Bloch-Orlicz spaces [J]. Moantsh Math, 2017, 182: 877.
- [14] Fang Z S, Zhou Z H. Differences of composition operators on the Bloch space in the polydisc [J]. Bull Aust Math Soc, 2009, 79: 465.
- [15] He Z H, Deng Y. Composition operators on Bloch-Orlicz type Spaces of the unit ball [J]. J Sichuan Univ: Nat Sci Ed(四川大学学报:自然科学版), 2018, 55: 237.
- [16] Liang Y X, Zhou Z H. Weighted differentiation composition operator from logarithmic Bloch spaces to Bloch-type space [J]. Math Nachr, 2016, 1.

- [17] Song X J, Zhou Z H. Differences of weighted composition operators from Bloch space to H^o on the unit ball
 [J]. J Math Anal Appl, 2013, 401: 447.
- [18] Zhou Z H, Zhang L. Differences of the products of integral type composition operators from H^{∞} to the Bloch space [J]. Complex Var Elliptic, 2013, 58: 1125.
- [19] He Z H, Cao G F, He L. Products of integral-type operator and composition operator on Bloch-Orlicz type spaces [J]. Acta Sci Nat Univ Sunyatseni, 2016, 55: 44.
- [20] Li S X, Stević S. Products of integral-type operators and composition operators between Bloch-type spaces [J]. J Math Anal Appl, 2009, 349: 596.
- [21] Stević S. Products of integral-type operators and composition operators from the mixed norm space to Blochtype spaces [J]. Siberian Math J, 2009, 50: 726.
- [22] Yang Q. Differences of composition operators on the α -Bloch-Orlicz space on the unit disk [J]. Preprint,
- [23] Zhu K H. Spaces of holomorphic functions in the unit ball [M]. New York: Springer-Verlag, 2005.
- [24] Fernández J C R. Composition operators on Bloch-Orlicz type spaces [J]. Appl Math Comput, 2010, 217; 3392.

引用本文格式:

中 文: 杨琦. α -Bloch-Orlicz 空间复合算子和积分算子乘积的差分 [J]. 四川大学学报: 自然科学版, 2019, 56: 404.

英文: Yang Q. Differences of the products of composition operators and integral type operators on the α -Bloch-Orlicz space [J]. J Sichuan Univ: Nat Sci Ed, 2019, 56: 404.