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1 Introduction

Let D be the unit disk of the complex plane C
and H(D) be the space of all analytic functions on
D. Denote by S(D) the collection of all holomor-
phic self-maps of D. Every ¢ € S(D) induces the
composition operator C, defined as

Cof () =feplz), fEH(D),z€D.

The theory of composition operator on various
setting has quite a long and rich history. We can
refer to Ref. [1] for various properties on the
composition operators acting on different classical
holomorphic function spaces.

Let 4 be a weight, that is, x is a positive
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continuous function on D. We recall that the x -
Bloch space B, consists of all f€ H(D) such that

|71, =70 supp(z) | f ()| <o,
It is a well-known fact that the x -Bloch space B,
is a Banach space under norm | f| B,- In particu-
lar, when p(2) =(1—]z|") for 0<<a¢<<oo, the in-
duced space B, is « ~Bloch space which can be de-
fined as:

B,={f€HD): | fls =

sup(1— [ 27| f'(2) | <o

It is a Banach space endowed with the norm | ],

=/ JerH B, -
Let g€ H(D). For f€ H(D), the integral
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type operators I, and J, is defined by

Lf(s) = Jo F(©gde

and

Jf() = j [(Og (Ode

The product of composition operator and integral

type operator is first introduced and discussed by
Li and Stevi¢'>*), which can be defined by

(=) ,
CaNH= " f @@

o(2) ,
(C.J o f) () — jo £ (©de,

1N = | (fp @r@de,

or

JCH@ =] (9@ @

For the investigation for difference of composition
operators on p -Bloch space, sometimes called
weighted Bloch space, we can refer to Refs. [4~
8]. With the distinction to the definition of
o (2)5 the 4 -Bloch space changes into different
weighted Bloch space.

In recent years, the Bloch-Orlicz space ap-
peares in the literature motived by the study of
Hardy-Orlicz space and Bergman-Orlicz space’'?!
as a further generalization of the classical Bloch
space in the unit disk. Motivated by the same
spirit, for 0<<q<<oo, the a -Bloch-Orlicz space on
the unit disk is generalized by Liang in Ref. [13]
as follows:

Bf={feH(D):

51615(1—\z|2>a¢</1|f/<z>\><oo}
for some A>>0 depending on f, where ¢ is also a
Young’s function. We can also assume without
loss of generality that ¢ ' is differentiable, and

the Minkowski's functional
-/

1 g =inf (£0:8,., () =1)

defines a semi-norm on B?, where

Sp. () :§gg(l — =) (] f() ).
B¢ becomes a Banach space with the norm
I f s =1L+ f I e

In the past decades, properties including

boundedness and compactness of the difference of

composition operators are studied by many au-
thors, such as Refs. [14 ~18]. For some good
sources of information on much of the develop-
ment in the theory of integral type operators, we
can refer Refs. [19~21].

In this paper, we limit our study on the
difference of products of integral type and compo-
sition operators C,I, and I,C, on a -Bloch-Orlicz
space B¢ on the unit disk. The paper is based on
my study on the difference of composition opera-
tors on Bf in Ref. [ 22].

The paper is organized as follows. Some
background material and lemmas follow in Section
2. Then we characterize the boundedness and
compactness of C,I, —Cyl, and C,I, —I,C, on
the ¢ -Bloch-Orlicz space B with 0 <<q <<co in Sec-
tion 3 and Section 4.

Throughout the paper, C will denote a posi-
tive constant, it’s exact value may vary from one

occurrence to the other.

2 Notions and lemmas

In this section we collect some lemmas and
properties to be used in later sections. To begin
the discussion, we introduce some nations.

The one-to-one holomorphic function which
maps D to itself called the Mobius transforma-
tion, denoted by Aut(D), with the form A¢,
where [A] =1 and ¢, is defined by

a—

@ (2) :liazz,zGD

for a € D. We have the following identities;
=12 | =1 g, () |7,
A—lal>»A— ]z

[1—az]|?

1*|90u(2)‘2:

The pseudohyperbolic distance between a, 2
€D is given by p(a,z) =[¢.(2)|. We know that
pCa, z) is invariant under automorphisms (see

Ref. [23]) and

1—pla,2) _1—|a 2<1+p(a32)
1+plas) 12" "1 —pla,2)"

For ¢ € S(D), the Schwarz-Pick Lemma""
shows that p(¢(2),¢(w)) <p(z,w).

Now let us state a couple of lemmas. Some

of which are direct statements of Ref. [10].
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Proposition 2, 1"'*  For ¢ >0,

) =S, (—L =1

o
HfHB 11

holds for each f & B?.

Proof The proof is similar to Lemma 2 in
Ref. [24].

Remark 1 For each f€ B¢, Proposition 2. 1

allows us to observe that

v . 1 .
f @ 1= (e ) 1 1=

1 .
¢ 1(m> I f s sz€D.
In addition, for 2 € D fixed and any f € B?,

we have

|| <] ()] +J0 £ () |ds<

[ (o)

(11208 (o)) 1/ 1
by integrating the aforesaid estimation.
Lemma 2.2 For ¢ >0, the ¢ -Bloch-Or-
licz space is isometrically equal to the p,-Bloch

space, where

1
_ 1 ’
e ]<(1*\z|2)‘1>

In other words,

1f g = LFO | +sup (] £ () |
holds for each f & B?.

Lemma 2.3* Foro>0, f€Bt, for any ¢,
peSD),

e (2) =

£ (=)

|
holds for all z € D.

Remark 2 From the proof of Lemma 2. 3, it

s@”(W) s (G Ty )

=C I f 1 ;.0(p(2)s¢p(2))

is not difficult to see that for any ¢(z),¢(z) €rD
={weD:|w|<r<l},

for any /' € Hoo,, where

£ () £ ()
A SN <C | £, I roCp(2) ()
¢ {Aleom ¢ ‘A

Thus by the above argument and Remark 1,
one has for any f € B¢

<C | £ (=) () =

H f/y [ Hoo,, :Eélr% - L (u{” .
P Tl
[ () [ (g(=))
—1 % L [ —
b ((1—|¢<z>|2>a> ¢ <<1f\¢<z>|2>”>
Csu% PO (g0
(a=Tery

The equivalent condition below is originally
in Ref. [13].

Proposition 2. 4 For >0 , the equivalent con-
dition

Sp (D=1 f1 =1
holds for each f & B?.

The construction in the following is helpful
for the investigation of the boundedness of the
composition operators on the ¢ ~Bloch-Orlicz space
with ¢ >0, where the proof includes the same ar-
guments in Ref. [24].

Lemma 2. 52 For ¢>0 and a fixed point a
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€D, there is a holomorphic function f € H(D) §1€Jg\g(go(z))90# () [plp(2) s p(2)) <o (1)
such that (2)

(| fuu(DD f(ﬁ)
for all z€D.

The following lemma is the crucial criterion
for compactness, whose proof is an easy modifica-
tion of Proposition 3. 11 of Ref. [1].

Lemma 2.6 Suppose that 0<<¢<<oo. Let ¢,¢
€S(D). Then the difference C,I, —C,I, : B!—>DB¢
is compact if and only if when { #,} is a bounded
sequence in B with f,—>0 uniformly on compact
—Cul ) f
I 4.—>0 as n—>o0. (The lemma can also apply to
—1,Cyand C,I, —1,C,)

The Schwarz-Pick type derivative ¢* of ¢ is
defined by

subsets of D as n—>w, then || (C,I,

the operators 1,C,

L (2)
PREEIAS

Lemma 2. 7 Suppose that 0<<a<<oo. Let ¢,¢
€S(D) and g€ H(D). Then
() C,I,:B!—>B¢ is compact if and only if

o7 ()=

#
Elelg\g(go(z))go (2) | <oo
and
lim [g(e())p” ()| =0,
\zp(z)\~>1
(ih 1,C,
Egg\g(z)gﬁ ()] <o

:Bf—>B? is compact if and only if

and

W(l}m lg()p* ()] =0.

Proof To get this lemma, we only need to
change (2), p(¢(2)) in Theorem 5 of Ref. [19]

to 1, (2) s 1, (p(2)). We omit the details.

3 Boundedness and compactness of
Cl,—C,I,

In this section, we characterize the bounded-
ness and compactness of C,I, —C,I, acting on Bf.
We consider the boundedness at first.

Theorem 3.1 Suppose that 0 <<a<<oo. Let ¢,
g€ S(D) and g € H(D).
statements are equivalent;

() C,I, —Cyl,:B!—>B¢ is bounded;

(i)

Then the following

ilelg\g(gb(z))gbt (2) | plp(2) s p(2)) <o
Egg\ng(z))cp# (2) —g(p(2))¢7 ()| <0 (3)
Proof (ii) = (i). Assume that (1) ~(3)
hold. By Remark 1, LLemma 2. 2 and 2. 3, for ev-
ery f€B¢,
| (C I, —ClI ) f .=
fggya(z) | () f (@) g(@(2)) —
§ ) f (PN g (P | =
Egg|)ua(go(z))f/(ga(z))g(go(z))go‘: (=) —
1 (P f (P2 g () g7 ()| <
fgg|g(gp(z))gpi ()]
|t (o) f (0(2)) — g, (@) f () | +
sup a () [ (@) |
—g(P(¢* ()| <
C Elelg\g‘(go(z))gD# ()] -
pCo() s () I f 14+
ggg|g(¢(z))gﬁ (2) —
g™ | I f .=
Cllflly.

lg(p(2)) g7 (2)

and
[(C I, —C, L) fO) | =153 f(©g(&)de| <
Mg [ £ 1del <C Il £ I s
where M:§g£|g(z) | and K is a closed subset of
D containing ¢ (0) and ¢ (0). The last inequality
obtained from Remark 1 on a compact subset.
This shows that C,I, —C,I, is bounded.
(D=(iD). Assume that C,I, —C,I,.B!—>DB¢
is bounded. For every w €D, setting

I Plw) =5
w1 (2) JO f¢(w>a(5)1 g[;(w)s ds.

It is easy to check that g.., € B¢ and || g 4. =
1. Note that

g/w.l(go(w)): (p(w) »p(w))

e (o))
and
g (p(w)) =0,
Therefore,
C=(Cl, —Cyl ) gun Il 4o =

§1€15/1a(z) |50/(z)g/w,1 (p(2))g(p(2)) —

¢ (g wn (YD) g(Pp()) | =
1 (W) [ @ (1) g1 (o)) g (@(w)) —
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¢ () g’ o (Plw)) g (Plw)) | =
lg(p(w)) o™ (w) | plp(w) s plw)).
For arbitrary w , we get (1).

Similarly, if we set

g = | | fuwn ] ds,

then g, €B?, |l guz Il 4. =1. We also get
C=1(C I, —Cil)gus |l 4o=
1 () | @' () g2 (1)) g (@) —
¢ () g o (Pw)) g (Plw)) | =
lg(p(w)) g™ (w) —g(p(w))¢* (w) | —
lg(p(w))e® (w) | -
|1t (o)) g s (@) —1| =
lg(p(w)) g™ (w) —g(glw)) g™ (w) | —
lg(p(w))p™ (w) ] *
|/xa(g0(w))g/w.z (p(w)) —
e (P g (Plw)) | =
lg(p(w)) g™ (w) —g(glw)) g™ (w) | —
Clglp(w)e® (w) | »
0(o(w) s () || g I 4o
Analogously, (3) holds by (1).
Finally, One sees that
| g (gp(w)) ™ (w) | plep(w) , P(w)) =
| g(p(w)) e (w) | plep(w) s glw)) +
| g (plw)) ™ (w) —
g(p(w)) g™ (w) | plp(w) s plw)).
Thus (2) holds by (1) and (3). The proof
is end.

Now we turn to the compactness. To discuss
the compactness on Bf, we define by I'(¢) the set
of sequence {z,} in D such that [¢(z,) |—>1, we
also denote by I'(¢) the set of sequence{z,} in D
such that [¢(z,) |1 and ¢* (2,) g(¢(z,))—>0. It
is clear that I'" (¢) CT'(¢).

Theorem 3.2 Suppose that 0<<a<<oo. Let ¢,
p€S(D) and g€ H(D) . CI,, C),:B!—>DB¢ are
bounded but not compact. Then the following
statements are equivalent:

(0 CJI, —Cyl,:B!—>DB¢ is compact;

(ii) Both (a) and (b) hold: (a) If T'¥ (¢) =
I'* () =0, then I'" () CT'(p) NT(¢); (b) For
{z,} €T(p) NT(P)»

7111301\g(go(zn))got (z.) | p(p(2,) 5¢(2,)) =0,

lil'n‘g(¢(z,z))¢j (z) | pCp(2,) s ¢(2,)) =0,

}}gj\g(go(z,,))got (z,) —

gz, 9" (2,0 | =0.

Proof (i)=(ii). By assuming that CI, is
not compact, there exists a sequence {z,) €
" (@) such that | ¢(z,) | =1 and ¢* (2,) g (¢
(2,))—>0 . For such sequence {z,}, we set

. NS
fgo(»z”).a(b)l — s ds,

hir () = | () |,

haa (2) = J

0

It is clear that h,., and h,., belong to Bf and con-
verge to 0 uniformly on compact subset of D as n
—o0, We have the following estimate
| (C Iy —CyIl D h, |l 4=
1 () 1@ DR 0 (o(2,)) g(p(2,)) —
§ GO (Pl g(glz, ) | =
lg(p(z,0)07 (2,) [ple(z,) s ¢(2,))
and
| (Cdy —Cylhys 4. =
1 () 1@ DR 0 (0(2,)) g (p(2,)) —
§ GO s (o)) g(glz, ) | =
lg(p(2,)) g™ (2,) —g(P(2,))¢" (2,0 ] —
lg(p(2,)) " (2,)]
|11 CoC2, DR 2 (@(2,)) —
1 (PR 0 (P2 | =
lg(p(2,)) g™ (2,) —g(P(2,))¢" (2,) ] —
Clglp(z,)) ™ (2,)] *
pCoCz) s (20D I s | g
By condition (i) and LLemma 2. 6, we have

lim|g(p(2,)) 0" (z,) |ple(z,) ,¢(2,)) =0 (1)

>0

lim| g(p(z,)) " (2,) —

g(P(z,)¢" ()| =0 (5)
By assumption g(g(z,))¢" (2,)7>0 and (4), one
sees that
},iigp(¢(z,l),¢(z,l)) =0 for {z,} €77 (¢) (6)
Hence for any {z,} such that [¢(z,) |1 , we get
‘¢(£,ilr)1‘1ﬂ|g(go(z,,))goj (z) | ple(z,) s ¢p(2,)) =0.

The same is true with the role of ¢ and ¢ inter-
changed. Notice that (6) implies for {z,} € T'¥
(@),

lim [g(z,) —¢(z,) | =0.

[z, |1
For any sequence {z,} with [¢(z,)[—>1 . [¢(z,) |
—1 and g(p(2,)) " (z,)—>0 , we will use
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Wlim g (P2, ¢% (2) [ple(2,) s p(2,)) =0

()1
to obtain
Illi»norol\g(go(z,,))goﬁ (z,)] =
}’ijg\g‘(¢(z,,))¢t (z,)]=0.
Consequently we get (b).

Moreover, from (5) and (6) we can observe
that if {z,} €7 (¢) » then |¢(z,) |—1 and g(¢
(2,))¢" (2,070 , which means I'* (@) CT'7 ().
Similarly we can obtain I'* () CT'¥ (¢), which
implies I'* (@) =T'7 (¢). From I'" (¢) CI'(¢) and
" () CT' () we have T'7 () CT' (@) NT (.
Consequently we get (a).

(in=(1). To prove C,I, —C,l,:B!—>DB! is
compact, we suppose it is not true. Let {f,} be a
pa =1 and f,—>0 u-
niformly on compact subset of D. Assume that
for some ¢ >0, | (C,JI,—C,Ip)f,
For each n, there exists a sequence {z,} € D
such that

lg(p(z,)0" () (o(z,)) p, (@(2,)) —

2N ) f ) (P2 | e (T)
which implies either [p(z,) |1 or [¢(z,) 1.

sequence in B? such that | £, |

e € for all n.

Suppose that |¢(z,) [—1 and [¢(z,) [—>w .
If [w| <1, then {z,} is not in I'(¢) NT'(y). By
condition (a), we have g(¢(z,)) ¢ (2,)—0.

On the other hand, |¢(z,)| <1 implies f, (¢
(z,))—>0. This contradicts (7). Thus we obtain
|w| =1, which means [¢(z,)[—1 and [¢(z,) [—>
1. By condition (b), one sees that

lg(o(2,)) 0% (2,) (o2, p, (0(2,)) —

2P () o (@) pra (Pl | <
lg(p(2,)) 0" (2,) —g(p(2,))¢7 (2,)] *
| £, s TClg(P(2,))¢7 (2,) ]
CIERIIEDDY v P
this contradicts (7). The proof is end.

If we remove the assumption that C,I, and
C,l, are not compact, we can get the next theo-
rem.,

Theorem 3.3 Suppose that 0<<a<<oo. Let ¢,
¢ €S(D) and g € H(D). Suppose C,I,, C,I,:B!
— B¢ are bounded. Then the following statements

are equivalent:
() C,l, —Cyl,:B!—B¢ is compact;

(i)
‘(li)r‘n1|g(g0(z))g0j'(z)|p(g0(z),g[}(z))20 (8)
@[>

W}iﬂll‘g(ﬂb(@)sﬁ (2) [plp(2) s () =0 (9)
| g(p(2)) g™ (2) —

[g(2) | »lliﬂ(z)\ >1

g(P()) ¢ ()| =0 (10)

Proof (1)=>(ii). Assume that both C I, and
C,l, are compact. Then Lemma 2. 7 implies that

lim g(p(x))g” (2) =0,

lg(e) |1
Wj(li)r‘nﬂg(gb(z))(p# (2) =0.
From \p((p(z) .p(2)) [ <1 we obtain Gii).

Assume that both C, I, and C,I, are not com-
pact. For any sequence {z,} with [@(z,)[—>1 , if
g(p(2,)) " (2,)—>0 , then

limg(¢(2,)) 97 (2,)p(ep(2,) ¢(z,)) =0.

n—>o0

Suppose that {z,} € I'* (¢) . By Theorem 3. 2,
we have {z,} €7 (¢) CI'(p) NT'(¢) and
lim|g(p(2,0)¢7 () [p(p(2,) 5 ¢(2,)) =0.

Hence

lim [g(p(z,)0)¢0" (z,)]p(p(z,)s¢(2,)) =0.

[gCz,) |1
Similarly, we have

\¢<~1~ir)n»1 | g(p(z0)¢7 (2,) [p(e(z,) s ¢(2,)) =0.

For {z,} such that |@(z,)[—>1, [¢(z,)|—>1, by
Theorem 3. 2 we can obtain
}Iizg\g(go(z”))gﬁ (z,) —
gz, 9" (2,0 | =0.
Therefore, for arbitrary {z,}, conditions (8) ~
(10) hold.

(iD)=(1). Suppose that one of the two oper-
ators C,I, and C,lI, is compact, for example,
C,I,, then from Lemma 2. 7 we have

W(li)r‘nﬂg(go(z))goﬁ (2) =0.

Let {z,} be any sequence in D such that |¢(z,) |
—1 as n—>oo. If [¢(z,) [—1, from (10) we obtain

,IHE g(P(z,)) ¢ (2,) =0.

Otherwise, p(p(z,)¢(z,))0. From (9) we get

lim g(¢(z,))¢" (z,) =0.

Thusu we have
Wli)r‘nﬂg(gb(z))gb# (2) =0.

Using again Lemma 2. 7, we know C,I, is com-

pact, then C,I,

If both C,I, and C,I, are not compact, then

—Cyl, is compact.
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(1) follows from Theorem 3. 2. The proof is end.

Similar to the proof of Theorem 3. 1~3. 3,
we can proof the following theorem. Here we o-
mit the details.

Theorem 3.4 Suppose that 0<<a<<oo. Let g,
$€S(D) and g€ H(D).

(» 1,C, —1,C,:B!—>B¢ is bounded if and on-
ly if

sup 1827 (2) [ple(2) s ¢(2)) <oo,

sup | g(2)¢7 (2) [ plp(2) s () <oo,

Egg\g(z)gﬁ (2) —g(2)¢* (2) | <o,

(v I,C, —I,C,: B —>B¢ is compact if and
only if

lim |g(2)¢” (2)]p(p(2),¢(2)) =0,

[(2) [—>1

lim [g(2)¢" () [plp(2),¢(2)) =0,

[g(=) |1

lim 1g(¢7 (2) —g()¢7 ()| =0.

[g(2) [ 1. |g() |1
4 Boundedness and compactness of
C,,—1.C,

In this section, we characterize the bounded-
ness and compactness of C,JI, — I,C, acting
on BY.

Theorem 4.1 Suppose that 0 <<a<<oo. Let ¢,
€ S(D) and g € H(D). Then the following
statements are equivalent:

() C,I, —1,C,:B!—>DB¢ is bounded;

(i)

Egg\g(go(z))go‘i (2) [plep(2) () <o (11)

Elelg\g(z)gﬁ (2) | plp(2) s p(2)) <o (12)

ilell}))\g(gﬁ(z))go# (2) —g(2)¢" ()| <o (13)

Proof Notice that

| (C Iy —=CuI ) f Il goa =
ilelgpa(z) \gﬁ(z)f(gp(z))g(gp(z)) -
¢ ) [ (P g(P) |,
| (Cy —ICOf |l goa =
Eggya(z) | () f (@) g(e(2)) —
J D f (g ].
To prove this theorem, we only need to change g
(p(2)) 5 g(p(w)) in the proof of Theorem 3.1 to
2(2), g(w). Here we omit the details.

Theorem 4.2  Suppose that 0<<a<<oo. Let ¢,

¢ €S(D) and g € H(D). Suppose C,I,, 1,C,:B!

—B¢ are bounded. Then the following statements
are equivalent;
() C,I, —1,C,:B!—>DB¢ is compact;
(iD)
W(li)r‘nﬂ\g(gp(z))go# () [ple(2) s p(2)) =0
1
W(li)r‘nﬂ|g(z)¢t () [ plp(2) s p(2)) =0 (15
W(z)‘ﬁlli’r‘r}b(z)‘%] | g(p(2)) g™ (2) —
g(x)¢" ()| =0 (16)
Proof (i)=>(1). Assume that C, I, —I,C,is
bounded on Bf and (14) ~ (16) hold. Then by
Theorem 4. 1, conditions (11)~(13) hold. From
(14)~(16), it follows that for any € >0, there
exists 0<r<C1 such that
|g(p()) g™ ()| p(p(2) s p(2)) e

for [p(2) [ >r a7
|g(2)¢7 (2) [ple(2) () <e

for [¢(2) | >r (18)
[g(e(2) 0™ (2) —g(2) §7 (2) | <e

for [@() [ =r, [¢p(2) | >r (19

Let {f,} be a sequence in B¢ with || f, st <1
and f,—0 uniformly on compact subsets of D. By
Lemma 2. 6 we only need to show that | (C,I, —
LC Y fo | 4.e=>0 as n—>o0. In fact,
[ (CI, —ICO Sy |l g =

‘?gg/“(z) ¢ () 1, (@) g(@(2)) —

J ) g g) | =

21615|/ua(gp(z))f:,(go(z))g(go(z))got (2) —

1 () [ () g ()¢ () | =

§gg| L) +], ()],
where

L,(2) =p, (p()) fr (p(2))

(glp(2)) g™ (2) —g(2)¢7 (2)),

J.(2) =g(p(x)) g (2) *

(e (@(2) f1, (@) =, (P fr (P
In what follows, we divide the argument into 4
cases.

Case 1. |o(2) | <rand [¢(2) | <r. By the as-
sumption, {f,(z)}—0 uniformly on E={w€D: |
w| <r} as n—>ow. By (13) and Cauchy’s integral
formula, it is easy to check that |I,(z)|—0 uni-

formly for all x with |¢(2) | <r as n—>o00. On the
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other hand, it follows from Remark 2 that
| 1ta CoC) 1 (0(2)) — 1, (P £, (P2 | <
Colp(2) 1¢(2)) Sup_ g () FACENIR
Together with (1) and the fact that { f, (z)}—>0
uniformly on E, we have
[ . () [ =Clglep()) g™ () |ple(2) s p(2))
‘iu_gpa(w) | fr(w) | =<Ce.
Casei. lo(2) | >r and [p(2) | <r. As the
proof of Case 1, |I,(2)|—0 uniformly as n—>oo.

On the other hand, using Lemma 2. 3 and (17)

we have
[T, =C Il fi | gsalglelx))e® ()] -
oCe(2), p(2)) =Ce.

Case 3. [¢(2) | >r and |¢(2) | >r. By (19)
we obtain that
L= fu el glep(2)) o™ (2) —
g(x)¢" ()] <e
for n sufficiently large. Meanwhile, |J,(2)|—0
uniformly as n—>ow as the proof of Case 2.
Case 4. |o(2) [ <r and [¢(2) | =r. We re-
write
1 () ¢ () f1,(p(2)) g () —
J D (g g() ] =P, () +Q, ()],
where
P,(2) =p,(p(2)) f1(g(2)) ¢
(glp()) g™ (2) —g(2)¢7 (2)),
Q. () =g()¢" (2) » (;xa(go(z))f,’,(go(z)) -
1 (YD) [ (D)),
The desired result follows by an argument analo-
gous to the proof of Case 2.
(1))=(ii). Let {z,} be a sequence in D such

that [p(z,) |1 as n—>00, we define the following

function
[, P(z,) —s .
hn.,l (Z) JO f‘#(zl,).a(.s) 1 *(/}(Z”)S d.S.

When {z,} is a sequence in D such that |gp( 2,) | —

1, [¢(z,) |1 as n—>00, we define the function

b = || ()] ds.

Let {z,} be a sequence in D such that [¢(z,)|—1

as n—>w, we define the function

hn.,.'i (2’) - J: f</)(1,,)'0((~‘) A‘(Dizni ds.
0 1 —e(z,)s

It is easy to check that {h,,:#=1,2,3} converge

to 0 uniformly on compact subsets of D as n—>o0
and h,,, € B! with |l h,; || 4. =<1 for all n. Similar
to the proof of Theorem 3. 2, a direct calculation
shows that
| (CIy —1,COhyy || goa=
lg(p(2,0) 07 (2,) [ple(z,) s ¢(2,))
| (CIy —1,COhsy || goa=
lg(p(2,)) 0™ (2,) —g(z,)¢" ()| —
Clgle(z,))e” ()] *
pCo(z,) s p(2,)) e |l o s
| (Cdy —I1,COhys || goa=
lg(z)¢" (2 | p(p(z,) s ¢p(2,)).
By the compactness of C,I, —I,C, and Lemma 2.
6, (14)~(16) hold. The proof is end.
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