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Abstract: In this paper, we study some basic properties of the A-quasi-homogeneous Toeplitz operators

on pluriharmonic Bergman space b of the unit ball, and obtain two symmetric properties of the commu-

tator and semi-commutator consisting of two such operators onb? . Additionally, we obtain the necessary

and sufficient conditions for the finite rank of commutator and semi-commutator of two monomial-type

Toeplitz operators on b7 .
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1 Introduction

Let B, be the open unit ball in C* and dv de-
note the standard volume measure on B,.
Throughout this paper we fix a parameter ¢ >—1
and consider the following weighted volume meas-

ure

TitatD
do, () = D)

which is a probability measure on B,,.

(1—]z|»Hdv(2),

Pluriharmonic Bergman space 67 is the closed

Wi BHR: 2018-12-14

subspace of L* (B, ,dv,) ,consisting of all pluri-
harmonic functions on B,. Given a function f &€
L*(B,,dv,), we define the Toeplitz operator T
bE—0b: by
Tig=Q(fg),g€b;,

where Q is the orthogonal projection from L*(B, ,
dv,) onto bZ. For two Toeplitz operators Ty and
T, on b, we define their commutator and the semi-
commutator, respectively, by [ T, T, =T, T, —
Ty, Ty, and (T Ty, 1=Ty, Ty, — Ty,
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Several classical operators on analytic func-
tion spaces have been widely studied in the past
few decades, including multiplication operators,
weighted composition operators, Toeplitz opera-
tors, Hankel operators, and so on, see Refs. [1-
7] and references there. Particularly, the prob-
lem of determining when the commutator or semi-
commutator of two Toeplitz operators on various
classical function spaces has finite rank was con-
sidered in Refs. [8-12].

In the setting of pluritharmonic Bergman
spaces of the unit ball, the problem is known to
be much more delicate and more challenging. Just
recently, the second author and Zhu in Ref. [ 13]
completely characterized when the commutators
and semi-commutators of two monomial Toeplitz
operators on # have finite rank. In this paper, we
consider more general symbols, namely, the mo-
nomial-type symbols. Recall that the monomial-
type symbol is the function ¢:B,—C given by

o(2) =r'gret 2 =r¢,
for p,q€N",l€R,. Here R denotes the set of
all nonnegative real numbers. In this case, the
corresponding Toeplitz operator T, is called a mo-
nomial-type Toeplitz operator.

The paper is organized as follows. Motivated
by Ref. [13], we first obtain some interesting
symmetric properties of k-quasi-homogeneous To-
eplitz operators on b7 in Section 2. Then we give a
complete characterization of when the commuta-
tors and semi-commutators of two monomial-type
Toeplitz operators on b have finite rank in Sec-

tion 3.

2 Preliminaries

The concept of quasi-homogeneous functions
on the unit disk was first defined in Ref. [ 14 ].
Then, Refs. [15] and [ 16] introduced the notions
“quasi-homogeneous functions” and “separately
quasi-homogeneous functions” on B,. These two
classes of functions together were referred to as k-
quasi-homogeneous functions in Ref. [17]. The
purpose of this section is to prove some prelimina-

ry results about k-quasi-homogeneous Toeplitz

operators on b.

More specifically, if k=(k,,+**,k,) is a tuple
of positive integers with |k| =k, + <+ +£,, =n,
and if we write C' =Ch X +-+ X C%, then every
point z€ C" can be written as 2 = (2 s """+ 2w ) »
where 2 = (214002 2,) €CY for j € {1, -,
m}. For each j we write 2, GBk, in the form z¢;
=r;&; with r; = \zw | and & éSkj. Now, for
p>qEN", a bounded function f(z) on B, is called
k-quasi-homogeneous if it has the form

Sy sz ) =8E8% Gy yr,) =

LY - Bl Y - Elgy o(ry 5 v s1) s

where ¢ =¢(ry,+++,7,) is a function of the m non-
negative real variables r,+**,7,,. Furthermore, if
plqinC", thatis, piq, ++*+p,q, =0, then &,
forec=p —q€Z", is always understood as & =
&€, and the tuple (p,q) is called the k-quasi-
homogeneous degree of f(z). In this case the as-
sociated Toeplitz operator T, is also called a k-
quasi-homogeneous Toeplitz operator.

Take the monomial 2”z? for example. Obvi-
ously, z” 2% is a special k-quasi-homogeneous
function with &= (n) and () =plrl | In ad-
dition, we can also consider 2”27 as k-quasi-homo-
geneous function with £=(1,+-+,1) and

@(riseeear, ) =ittt
See Ref. [17] for more information about k-quasi-
homogeneous functions.

Denote by z(B,,) the base of B,,, considered

as a Reinhard domain, namely,

T(Bm):{(rl7”.9rm):(‘Z(l)‘ 7”.9‘2(117) ):
2= (2 s 2w ) €B, ).
For each 3= (Bu)+++++Bun ) €N", we write k() =

([ By | s+ | B | ) and then define

g;"/c(,@): J ) @riseee,r,) (1— [ r[?)e

11 o1 d oy (D
=1

This is a natural generalization of the Mellin
transform to higher dimensions"’.
Let p,g €N'and let £&7¢ (ry,

=+, 7, ) be a bounded k-quasi-homogeneous func-

Lemma 2. 1

tion on B,. Then on #; ,for each BEN", we have
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2" (n+|B] +‘P‘ *‘Q‘ tat D (B+p)! (0 k(2B+p—q SBtra . Btp=q
Da+DII (b 148> +pc> D (BFp—)! ’
Ty e, (2F) = 2’”F<n*\ﬁ\*\P\Hq\ﬂzﬂ)q' eok(q—p) s )
T +p<q,
lF(aﬁLl)H’" —1+]g> D! (—p—p+ !~ Brr=q
0, otherwise
and
2'"F(n+‘m +lql —pl tat D) (B! GD k(2B+qg—p) #r, Brg=p,
F(a“‘l)ﬂ”'l(k 1+‘ﬁ<]> "’"Q(])‘)' B—p T
Tyer, (2°) =4 2"T(n—| 8| — \q\HpHaH)p' ek(p=q pa,
‘ +q<<p,
IP(a+1)H’” 1+‘P<1>‘)' (*,BjLP q)' Frasp
0, otherwise.

|

Proof First we assume 8+ p=q. Then for
each A €N" we have
T erlh 2 > = <@ 2P P > =
CHJP o(ry ooy, )& %P (1 — | 2] H)edv(z),
I'nhtat+1)
7 (a+1) "

2 =r;&; and letting dS be the surface measure

where C, = Changing the variables

on SA before normalization, we have
<Tpee, (2P, >=

0,

D s — 2Y)a .
CQJT(B”,> oCriseesr) (1= | r D)

m
]_[ rj‘ By Tag | +2
=1

m

1T | et oo gt o dsce.

I=1 T

kf*ldrj *

Using the notation from (1) and applying (1. 22)
and (1. 23) of Ref. [18], we obtain

<Tper, (2.4 > :1 2T (n+a+1) (B+p) | oox(28+p—q)

INCEEDIIEE
2" (n+ B +\p\

SA=LtTp—q,
1+‘ﬁ(j> "’"P(j)‘)! AZBTPa
lq| +a+1) (B! @k (28+p—q)

F(Q+1)Hm

1+“8q> +pc;> ‘ ) ! (ﬂij*q)!

<Zﬂ‘ P ’ ZA >.

Moreover, for any nonzero AEN", we have <TE/),5‘1¢ (%), 22 > = <F79, 2 > =0 as B+ p=q. There-

fore,

m + +
Tspquo(zﬁ)zz P(?’l ‘B‘ ‘p‘

lgl et D) (B+p) @or(2B+p—¢) e

INCR N 1 F

—1+B> Tpi> D (BHp—g)!

Next we assume g+ p=<q. Just like the previous case, we can qhow that

2"T(n—

ng(:¢(z ) =

*\i)\ +lgl tat1)q! gonl(qg— L) b

INCEPN IS

\

Finally, we assumethat 3+p=*q and g+p =
g. Then g +p; <g; and B +p, >q; for some i,j €
{1,+-+,n}, which implies B+p—A+#q and f+p+2A
#q for any A €N". Consequently,

<Tpee, (29,2 >= <T5/) 0, (%), 2" > =0,
which shows that Ty e, (27) =

The computation for Ty, (zfg) is similar

and we leave the details to the interested reader.

—1+lgq> D1 (g—B—p)!

For convenience we will write |/!] =7 |1

. |1 for any multi-index [ = (/;,*,1,) € N
U(—=N)".

Lemma 2.2 Let p,geN',[eN' U(—N)",

and let & &79¢ (ryy -
homogeneous function on B,,.

Toe, (rlihely =

, ) be a bounded k-quasi-
Then
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Proof It follows from Lemma 2. 1 that, if /
+p—qé N UGN, then To.o, (rI'1e) =0,
and if [+p—q€N'U(—N)" then

TE”E”<; (r‘ {] 51 ) :C/,A,L,.ﬂ”u Fp—ql gl Fp—q ,

Cpprrdgrra [+ p—qgeN'U(—N)",
{O, [+p—q&NU(—N)"
for some constant C,,,;,. Moreover,if [ +p —q€
N*U(—N)", then

[Utp—! |

F(n+\l+p*q\ +a+1)
12|

F(nJr\Z\ +a+1)

Cppi= where the constant C,,,, is given by % times

C/?-fh*l*/?*q (2

Cnt 1l +1pl —lgl tat DU+ oore2+p—q)
Hg’Ll(kj71+‘l(j) +pci> ‘ Y! (U+p—g)!

D1 —|p| +]ql at1g! gulqg—p)
1y (k=14 qe; D (—l=p+)!
Tt | —i] +lgl —|pl +at) (14 gou(—20—p+g)
H;']]:l(kj_1+‘ _l(j> +q<_/> ‘ ) ! (_Z_P+Q)!
Pi—| =t —|gl +pl +atDpl gup—q)
I (k=14 ps D1 Ut+p—)!

Observe that

e[=0and [ Tp=g=>—Ll—p+qg<Oand - (—L—p+q) tq=p;
el[=0and [+p<g=—[—p+qg=0and( —[—p+q) +p<q;
*[<0and —[+tq=p=—[l—p+q=0 and( —L—p+q) +tp=q;
*[<Oand —[tq<p=—[—p+q<Oand - (—[—p—+q) +qg<p.

1 =0,l+p=q,

,1=0,l+p<q,
3

9Z<Oa *l+q>j)9

=<0, —[+qg<p

21

So, by (3), the constant C,,,,—; 4+, is given by TJHFD times

Dnt |l tat D UATp)) oor(2+p—q
7 (k=141 Tpa> 1L

Dt i tatl)g! gorlqg—p)
Hy;](/{j*1+‘Q<]> )' l'

Tnt| =1 +at D) (—l+! gox(—2l—p+q)
H}-":](kjfl‘k‘ *Zq) JFC](,‘) (=D

Tt | 1] +a+Dpl oox(p—q
Tk, =1+ peis D1 (=D

9Z>Osl+p>Q9

JA=0,l+p<q,

€Y

JA<0, —l+qg=p,

A comparison of (3) with (4) shows that (2)
holds. The proof is complete.

The next two propositions will be essential
for our arguments in Section 3.

Proposition 2.3 Let p,q,s,t€ N". Suppose
& (ryyesry)and & &'y (11401, ) are two
bounded k-quasi-homogeneous functions on B,.
Then for any I € N" U (—N)" the following state-
ments hold:

(@I —l—(p—q¢) —(G—t) &N'UN)",
then [Ty zr,, » Toer,, 1(r1 11 ED) =05

MM H —I—(p—q) —G—)eNUN",

then [ Tweo, o Teer,, J(r!'1 ey =0 if and only if
[Teesy, » Teery, J(rI 0060l gt —ton
=0.
Moreover, if neither /+p—¢g nor [ +s—¢ is in N
U(—N)",then
[Toeoy s Teery, | (r'theh) =
[Te”s"gcl ’ Te‘f’@ ]
(rl =1 G0l gm0y —q)
() T [—(p— — (s —)]/2 e N U
(—N)", then
[Treo, > Teey, | (r‘ B £ sl
Proof

'y =0,

Since equation (2) is the same as
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Ref. [13, Equation (12) ], the proof is similar to
that of Ref. [13, Proposition 10]. We omit the
details here.

It follows from Proposition 2. 3 that if r¢! &
belongs to the range of [ T :q, » Ts:,, | for some
deN'U(—N)" then —d+(p—q¢) +(s—1) €EN" U
(—N)" and

Pl D] gdt a0 €

Rﬁn[Té'f"ﬁ ’ Tf‘f%fz 1.
Thus the commutator [ Ty.o, s Teer,, | cannot

have an odd rank, which corresponds to Ref. [ 8,

Theorem 4]. We will call *(p*q)zf(s*z‘) the

symmetry multi-index of the commutator

2
[Ts”quol ’ T*‘$’¢2] on b,.

Proposition 2.4 Let p,q,s,t€ N". Suppose
fpéﬂsm (Frssssry) s EE @2 (rys°=*s7,) . and gﬁﬁ
€ (ryy e+, 1,) are bounded k-quasi-homogene-
ous functions on B,. Then for any /€N"U (—N)"
the following properties hold:

(i) I =1 —(p—¢q) —(s—t)&N U
(—N)", then

(Toey, Tegty, —Totrertty) (rliheh =

(Teety, Torery, —Totsertsy) (rltheh =0;

U —I—(p—q@ —G—eNUN",
then

(Toesg Teety, —Totsertey) (r!they =0
if and only if

(Teety, Trga, —Totegatty)

(r‘ = Cp—q> — (G0 | 5717 Cp—gq> —(G—0) ) =0.

Proof First we assume that —1—(p—¢q) —
(s—1) ¢N"U(—N)". It is then clear from LLemma
2. 2 that

Toe, Tee, (rliheh =Tsety, T ey, (rlthey =

Tovery (rl1heh) =0,

and the result follows.

Next we assume that —[—(p—¢) —(s—1) €
NU(=N)". If [ +s—teN'U(—N)" as well, then
by Lemma 2. 2,

I'gptateatDI(GtbtutatDIGtOT(ntaty) T+ sDIgtutat DT+ +[pD)

o (p—q)—(s—
(TE\{'/‘FZ Tg/){'q?l 7T5/’ + sga b /‘/’ ) ( r‘ p—p— G0 |
Eflf(pftpf(.s*[) ) =0
<:>Cx-,l.*l* Cs—1D Cﬁ.q.*[* Cp—gd>— Cs—1tD>
_C/)+.x',q+t. [— Cptsd+ Cgted =0
<:>Cx.,l.lcp.q.l+s*l
S (Teery, Teety, —Totrertsy) (rl'hehy =o.
Ifl+s—t€N"U(—N)", then Lemma 2. 2 implies
(T6\$r¢2 TE/J%q(pl — Té/)+.\fq+r¢ )

(r‘ —1— Cp—g>— Cs—1> | E*l*(p*q)*(.\’*/) ) =0

o C/ﬁ+.\’.q+l.l =0

<:>C/)+.s.q+i,*l*([)Jr.s)A(zﬁ*t) :O<:>Cp+s-11+t.[ =0
! LN —
S (Teerg, Teery, —Toreerny) (rlHe) =0,

S

The result follows.

3 Monomial-type Toeplitz operators

In this section we will show when the com-
mutators and semi-commutators of two monomial-
type Toeplitz operators on b? have finite rank.
Clearly, the symmetries in previous section are
very useful for the study of the rank of the com-
mutator and semi-commutator of two k-quasi-
homogeneous Toeplitz operators on b%.

Theorem 3.1 let [,k E€ER, p,q,s,t EN".
Then the following statements are equivalent for
Toeplitz operators on bZ.

(a) The commutator[ T, ze, Tteer Jhas fi-
nite rank.

(b) The following two conditions hold.

(bl) For each i € {1,+**,n}, at least one of

the following conditions holds:

(1) pi=q;, =0,
(D) s; =t;, =0,
(i) p; =s; =0,
(iv) g;=t; =0,

(v) p;=q; and s; =1, ,

(vi) p;=s; and q; =1, ;

(b2) There exist some real numbers yx,v and
a=p/2,b=y/2 such that

Tt T tb T +btat DI (gtatyvtat) Tt pDTG Ty tat DTG Fpt]s)

for any € C on some right half-plane.

(5)

Proof Observe that #/£7£¢ is a k-quasi-hom-
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ogeneous function with £ =(n). Thus for any A€

To prove that (a) implies (b), we simply write

N*, (1) becomes p=lpl —lalw=1s| —lel,
r/[\°/c(/1):Jl (1— | r|2)ep 14l Foro1 e 7L+‘P‘ lql ‘
0 2 2 2
Dat+ DT +2L5 p=t Lol Ll
2 2 2 2
REY (6)
2(n+-—"5— 5 +a+1) and define
D> G +p+nta+r D) G +a+w [[ TG +p +D
HPV‘I’“(g) - n = — — (7)

F(E ¢+ pl +’7)F(E ¢ +atn +O(+1)HF(§[ +p—q+D
i=1 i=1 i=1

|
Then, for each peEN",
0, —piT4qi»
for each i € {1, -+, n}.
Lemma 2. 1 that
[Tpepen s Tree (D) =[H,, ,(®Hp,.(3+ts—1) —
Hy i (O H, 0 (BFHp—g) ]P0
Assume [ Te.0,Ttset | has finite rank.

with 3=y, where
—s; ttiy —pitqi —si i)
It follows from (6) and

Y;=max {

Then, by the same argument as in the proof of
Ref. [13, Theorem 5] we see that
H,..,(DH,) . (¢ts—0 —H, . (OH, ., ({Hp—¢) =0
for all g€ C* with Re & =y:,1<i<n. Combining
this with Ref. [19, Proposition 2. 1], we obtain
(5) holds on {p€C:Rep=|y+1|} and
LGy +p) DGy +s; —t)DT Gy +ps —qi +s:)
Dy +sOTCy +pi —q) TG +si —t +pi)
on {p€C:Re 5=y, +1} for ecach i € {1,+++,n},
which implies that (bl)holds. This completes the

=1

proof that (a) implies (b).
Next, we assume that Condition (b) holds.
If BEN" and p=y, it is clear that
[Tierers T J(27) =0 (3
If BEN" and ,82—}/, where ;" =min{0, —p;
+qi, —s; +tis —p; +q; —s; tt;} for each 1 € {1
“.n}, theny =—y—(p—¢) —(s—1t) and B—(p
—q) —(s—1t) =Y. Therefore, from Condition (b)
of Proposition 2. 3 and (8) we obtain
[TyerersTreer J(2°) =[Tirer s Theer J(r! Ple#)=
[Tugrer Treer J (P o> g om0y =,
If BEN", £y, and f%£y, then §;<<y; and 3
>y, for some i,j € {1,
(a) of Ref. [13, Lemma 1] and the definition of

,n}. From Condition

¥; we deduce that
Bi<<—piTq —s; ;5> —p; Tq; —s; t;.
Consequently, —p—(p —¢) — (s =) € N' U
(—N)", Thus Condition (a) of Proposition 2. 3
implies [ Tzt co s T et (%) =0, If BEN", B£Y,
and ,8;15)/ » then g << —7v," and B = —y,” for some
1,7 E€{1,,m).
Ref. [13, Lemma 1] and the definition of 7,” that
Bi<<pi —q: Ts; —tis5; >p; —q; Ts; s
which gives [ Tyerea, Treer [ (2%) =0.

It follows from Condition (b) of

R _q;_(‘g_t) € N U (—N)", then
Condition (c) of Proposition 2. 3 shows that
R T O e e
Thus we arrive at the conclusion that

Ran[ Tyepea s Tzt ] =

Span{ [ Tyerse s Trwer J(r111ED)
ZEN” U (_N)n\m} ’)/ ;_{:Ziy}.

2
This together with LLemma 2. 2 yields that the
commutator [ Tyree, Treer ] has finite rank, and
hence condition (a) holds.

Theorem 3.2 let [LEER,, p.qg,s,tEN".
Then the following statements are equivalent for
Toeplitz operators on b’.

(a) The semi-commutator ( T,z ce , Tke 2t Jhas
finite rank A.

(b) The semi-commutator ( Ttz gt s Tigreo ]
has finite rank k.

(c) The following two conditions hold:

(eD) bi =i »5;, =t; =0, p; =s; =0,0r q;, =t;
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=0 for all 1</ <<n;

(¢2) There exist some real numbers 4, v and

I+ T (nptytat+tDT'(nta+v)

a?é‘* ,b}%such that both (5) and

I'yptatb)

T(p+sDDGFbtat+ DT G+v+| p DT (p+atv+at 1) T+ pl +[sDTGFa+b+atD

hold for any € C on some right half-plane.
Proof
that (a) is equivalent to (b).

It is obvious from Proposition 2. 4

To prove that (a) implies (¢), we consider
each pEN" with =8, where

0y =max{0, —s; tt;, —p; Tq;: —s; Tt }.
Then we deduce from Lemma 2. 1 and the nota-
tion of (7) that

(Trepea s Treer 1(2°) =

reg

Pt T (gtyvtat+ DI (pt+a+y)

€))

[H,., (®H, ..(B+s—1)—
Hyogtvars (B) J(2FP70070),
By the same argument as in the proof of Theorem
3.1, we get(9) holds on {n€C:Rep=|5+1|} and
Ly ts =)Dy +ps +s:)
Dy +s) DGy +si =1+ pi)
on {5 €C:Re 5 =68, 1} for each i € {1,+++,n},
which implies either p, =0 or t; =0

=1

I'(nptatb)

Tt [sDTGrbta+ DTG+ [ pDT(+ratvta+1) TG+ pl +IsDTGFatbtatD)

Moreover, it follows from Ref. [ 13, Corol-
lary 14] that the commutator [ Ty za s Tipet | al-
so has finite rank. Then, by Theorem 3. 1, we
have that Condition (c¢) holds. Thus Condition
(a) implies (c).

Conversely, if Condition (¢) holds, then for
each fEN" with =6, it is clear that

(Tygeay, Treer 1(2#) =0 (10)
Next, we consider (T ge0, T oot J(27) for each B
€ N with g = — o', where 8 = min

{0, —s;, +t;s —p; Tq; —s; Tt;} for each i € {1, -,
n}. Obviously, B—(p—q) — (s —1) =¢"" with 8"
=max{0, —p; tq;» —p; Tq;: —s: +t:}.
dition (c1) holds, it is easy to check that
y=6=0"=max{0, —p, tq; s, +t,}  (AD
Combining this with Condition (¢), we obtain
TugreaT et (21707702
=The et T heppa (2P L7070,
This together with ( 10 )
(Tpreer s Thepea ] (2P 27927 <72y =0 for each B €
N with 8= —¢’. Then from Condition (b) of
Proposition 2. 4 we deduce that
(Trgrers Treer J(27) = (Tpgrens Tree J(r 767
=(Tpee s Treren ]

(r‘ﬁ*(p*q)*(x71) ‘ é,@*(p*q)*(.\’*l) ) :O.

Since Con-

implies  that

Now consider fEN" with %6 and f%£6. Then
<0; and B >¢; for some 7,j € {1,
(11) and the definition of §; we deduce that
B <<—piTq —si Tt 5> —p; Tq; —s; Tt
By Condition (a) of Proposition 2. 4, we have
(Tyeress Threer 1(2%) =0. Finally, if BEN" with B
#6 and [9358/, a similar argument shows that
(Tyerens Treer 1(2F) = 0.
clude that
Ran( T, zay Tre ot |=
Span{(Twee s Trzet ] (r!!] £):
LEN'U(=N)"}.8"£150)
which shows that (T,r.0, Tz ] has finite rank
and Condition (a) holds.
Remark Jiang, Zhou and the second author

-yn}. From

Therefore, we con-

completely characterize the finite rank commuta-
tor and semi-commutator of two monomial-type
Toeplitz operators on the un-weighted Bergman
space of certain weakly pseudoconvex domains in
Ref. [19]. The case a =0 in (5) is just the same
as Ref. [19, Equation (1.1)], which have many
nontrivial solutions. Thus that there exist too
many cases for the tuple (| p|,|s] spsvsash) sat-
isfying (5) or (9). In this case, |gq| =|p| —u.
l2| =|s| —vil=2a—p and k=2b—v.
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As a direct consequence of Theorems 3. 1 and

3.2, one can easily get the corresponding results

for monomial Toeplitz operators in Ref. [13]. Tt

is also worth to mention that the technique and

discussion here are different, which simplify the

proof even though the symbols seems complicated

than the monomial.
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