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On the estimation for product of covariance matrices and its trace
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Abstract: In many statistical inference problems involving two populations respectively with covariance

matrices 3, and 3, the product 3,3, and its trace tr( 3,3,) need to be estimated. Firstly, we construct

some equivalent estimators of 3,3, and unbiased estimators of 37'3% and (3,3, )" for any positive integers

m and n. Secondly, by using the equivalent estimators of 3,3, , we show that some existing estimators

of tr( 3,3,) are equal. Finally, it is proved that two existing test statistics for testing the equality of two

covariance matrices are asymptotically equivalent.
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1 Introduction

Consider two p-dimensional populations re-
spectively with the mean vector p; and covariance
matrix 3;s ¢ =1, 2. The estimate of tr( 3,3,) is
essential and frequently encountered in multivari-
ate statistical analysis, in particular, in two-sam-
ple covariance matrices testing problem. For ex-

ample, one wants to test the hypotheses

H0:21 =2 'US-H1:Z1 # 3, (D

Wi BHE: 2019-01-13

In the literature, the distance function between
the null and alternative hypotheses is usually giv-
en by
di=tr (3 —3,)° =
tr3f + 135 —2tr( 3,3,),

which indicates that d =0 if and only if the hy-
pothesis H, is true. Therefore, one can construct
the test statistic for the testing problem (1) by
employing the estimators of tr37, tr>} and tr

( 3:3,). The estimators of tr3f have been exten-
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sively studied. For more details, we refer to
Refs. [1-4]. Therefore, we aim to seek some
suitable estimators of 3,3, and then directly ob-
tain the corresponding estimators of tr( 3,3,).
Let {X; }Y, be independent and identically
distributed sample from the i-th population with
sample sizes N;, =1, 2, and XU/s and ng/s are
independent. The intuitive and natural estimators
of 313, and tr (5,3;) are respectively given by
A =SS,, B, =1r(S,S,) (2)

where

=z

ij 75(,) (X,'j 75({)7",

N
X = 1 l .. , =
X, Ni;XU , 1 =1,2.

Note that A, and B, are unbiased and location-in-

variant (i. e., not depending on the mean vec-
tors) estimators of 3,3, and tr (3,3,), respec-
tively, and the latter has been employed to con-
struct the test statistic for the testing problem
(1) in Ref. [3]. We also remark here that com-
puting A, and B, require N, p* +N,p* + p* and
N, p* +N, p* + p* multiplications, respectively.

It is worth pointing out that, for the normal
populations, (N; —1)S; follows the p-dimensional
Wishart distribution with the degree of freedom
N; —1 and covariance matrix 3;, and then we can
obtain some essential properties of S| S, by utili-
zing the properties of Wishart distribution. How-
ever, such results do not hold when the popula-
tions dispense with the normality assumption.
Besides, St

tors of 3733 and (3,3,)™ for some positive inte-

7 and (S;S;)™ may be biased estima-

gers m and n, respectively.

The main results are provided in Section 2:
1) some equivalent estimators of 3,3, are estab-
lished by the basic idea of U-statistics and three
commonly used estimators of tr (3,3,) respec-
tively given in Refs. [5], [3] and [ 6] are found
to be exactly the same but with different compu-
tational complexities; ii) the unbiased and loca-
tion-invariant estimators of 37'3% and (3,3,)™ are
constructed for any positive integers m and n; iii)

the test statistics proposed in Ref. [5] and Ref.

[3] for the testing problem (1) are shown to be
asymptotically equivalent. Section 3 gives a con-

clusion.

2 Equivalent estimators of 3,3, and
tr (3,3:)

A straightforward calculation shows that

> =E(X,; — X)) (X — XD
and

S, = E(Xy —Xo) (X — X0 D),
which leads to

>3, = E((X; — X)) (X — X7

(X — X)) (Xo — X))
By covering all possible combinations, which is
the essence of the U-statistics formulation, the
second estimator of 3,3, is given as

P3 22<Xh le

sz]/’l\/

(le — X" (Xy

=X (X —XoD" (3

Hereinafter, Z denotes the summation over all
=a(a—1)(a
According to A, given by (3), we can

mutually different indices and P’
—b+1).
obtain an estimator of tr (3,3,) by utilizing the
properties of the trace;

Bg = ‘[I'Ag == 3 22 (Xll Xlﬁ

Ny i,jok Lysit
(Xz[ *sz) (Xz/ *Xz,) (Xli 7X1j)'

Note that A, and B, are unbiased and location-in-

variant estimators of 3,3, and tr( 3,3,), respec-
tively. Obviously, computing A, and B, need N,
(N, —D) (N, —2)p* + N, (N, —1) (N, —2) p* +
pPand Ny (N, —1)(N; —2) p* + N, (N, —1) (N, —
2) p* + p* multiplications, respectively.

Noticing that

E(X)) — X)Xy, *Xlz)T) =22
and
E((Xy — X)) (Xy *Xzz)T) =22,
we also have
55 = FECXy —Xi) (X = Xp)”

(X21 _Xzz) (X21 _Xzz)T).
Hence, the third unbiased and location-invariant

estimator of 3,3, is proposed as



%44 hEI, F. o 24N RARR L 637
Ay = ZZ(XII Xi;) 1 ZZXIJXZﬁXZZXlz P
4P P\7 oy PN? i kil

(X — X)) (X — X)) (X — X7

4
Compatibly with A; given by (4), the third esti-
mator of tr( 3,3,) can be repressed as

_4P 2 ZZ<X11

Ny ij
(X — Xop») (ng —X,)T(Xy; — Xi).
In Ref. [ 6], by virtue of B;, the test statistics

B3 = tI‘A3 le)'l‘

for testing multi-sample sphericity and identity of
covariance matrices are constructed. Note that
computing A; and B; take N, (N; —1) p* + N, (N,
—1D)p? +p* and N, (N, — 1D p* + N, (N, —1) p* +

p* multiplications, respectively.

From
3 =EXn XD 7/11/1{
and
2 :E(XszTl)*/mflzT»
we have
22 =
(ECX XD *#1/1’11‘>(E(X21Xg1) *[12/1;) -
EXu XIHEXx X5 E<X11X11)/JZ/12 -
pipt EQXy X00) +poped poped (5)

By replacing four terms on the right hand side of
(5) with their corresponding U-statistics respec-
tively, the fourth unbiased and location-invariant
estimator of 3,3, can be obtained as

A= 2 Exl,xl,xv,xh

Vozl]l

P 2 DX XTX, X,
Ny

11]}'

P > ZXI,XIJX»X

\>1]/'1

1 ZZXIIXIJX)}'XZI (6)

\7 irj

Pz
Correspondmgly, the compatible estimator of

tr (3,3,) is given as

7

Ny
D1 pl E ZX X21X21X1' -

Ny =1 j=1

P Z ZXI,XZ,Xle, —
Ny

11]}'

P PL ZZX X, X1X0 +

\717/1

B4 = trA4 ==

The estimator B, is proposed in Ref. [5] to con-
struct the test statistic for the testing problem
(1). We mention that computing A; and B,,
which are the linear combination of U-statistics,
need 2N? p> +2N3p* +4p° and 2N% p® +2N3p? +
4p* multiplications, respectively. For easy to
compare, we summarize the computational com-

plexities of different forms of the estimators in
Table 1.

Tab.1 Computational complexity of the estimators

Estimator Multiplication

Ay Ny pz + Ny pz ‘F]);

Ay N1 (N —D (N, *2)‘02 +N3 (N2 —1) (N *Z)PZ +p*

As N1 (Ny —1)p? +N2(Ny —1) p2 +p?
Ay 2N7 p? +2N3§ p? +4p?
By J’lez +ng2 +j)2

By Ni(Ny —1)(Ny —2)p2 +N5(Ny — 1) (Ny —2) p? 4 p?
By N1 (N7 — 1) p2 +Ny (N —1) p? + p?

By 2Ni p2 +2N3 p? +4p?

Theorem 2.1 A, =A, =A;
B; =B; =B,.

Proof It is sufficient to prove A; = A,
A Let X, =X, —X,, i=

=A, and then B, =

—A, =
1.2, j=1,-N.. Re-
placing X, in (6) with X, and using the property
of location-invariance of A,, we can rewrite A, as

Nl NZ
A D ID P b /b b ¢

Ny 4Ny =1 j=1
1 e
Y YT Vv ¥T
1 p2 EEXUXUXZJXM*
N 4Ny =1 .k

*

2 E Xlz Xl; qu Xz&

PZ \]2 i,j k=1
ST EZXI,XUXM (8)
Ny isj

On the other hand, fromel1 X, =0,i=1,2, we
=

have

N, N,
2 2 XliX?,-ij XZT, =

=1 j=1
(N; —D(N;, — DS, S, €))
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*

N,

T
§: 2/X2k =
=1

jok

‘NZ
E X],X1,<E X77 sz - XZ;X;]>:
Jek=1 j=1
*(Nl DN, —1)S5,S, (10
* 1\2
SIS X, XT X XL =
i,j k=1
Ny N,
(3 X X0 - 2 X XT) 2
i,j=1

szlle/ XZﬁXzz =
isj
Zx,,x >(2 Xy X —

i,j=1 k=1

Ny —D(N, —DS, S,

12

Substituting (9),(10) into (8) yields A, =A,.
Some straightforward calculations indicate
that A, =A, and A,
pletes the proof of this theorem.

=A,, respectively. This com-

Remark 1 We recall that the matrix estima-
tors Ay, A; and A, are constructed by the idea of
U-statistics. It particularly indicates that some
desirable properties such as consistency of A;, i =
2, 3, 4,can be obtained conveniently based on the
theory of U-statistics which does not depend on
the underlying distributions.

Remark 2 Note that the estimators By, B;
and B, have been directly utilized by Refs. [3],
[6] and [ 5] respectively. However, to our best
knowledge, there do not exist literatures presen-
ting the relationship among these estimators.
Theorem 2.1 asserts that these estimators, though
having different forms and computational com-

plexities, are exactly the same as tr(S;S,).

3 Unbiased estimators for more gen-
eral case

Usually, the test statistic for testing problem
(1) is based on an unbiased estimator of some
given function d that is employed to distinguish
We would

like to mention that there are many candidates for

the null and alternative hypotheses.

d to distinguish H, and H, , for instance,

671 = tr(21 722)2 7672 = tr(El *22)49
dy = (S log>; — 35 logSe — 3 +32)

+ det(Z,) 1 -
ord, = log det(s)) +tr (') — p,

where, d; is employed in Ref. [5] and Ref. [3],
d, is motivated by Ref. [8], and d; and d,are Von

Neumann divergence and LogDet divergence re-
spectively, which are given in Ref. [9]. Some
straightforward calculations show that, whenever
we design the test statistic based on d,.d; or d,
we need to estimate tr (3,35), tr( (3,3,)%), etc.
This motivates us to establish the unbiased esti-
mators of 334 and (3,3,)” for both theoretical
and practical purposes.

Note that, for any given positive integers m
and n, S7'S% and (S, S;)™ may be biased estima-
tors of 37'>% and (3,3,)™ respectively. Fortunate-
ly, we can obtain the unbiased estimators of 3733
and (3,3,)" along the lines of the constructed
methods of A;, =2, 3, 4.

For mutually different indices 71, ***s 7,5 j1 s

=+, 7. and different indices &y s+ k, 15241, we
have
E( H (Xl,'“ - leu ) (le“ - leu )T> -
a=1
(2 El )m
and
E( H (XZL’,) - XZ[/) ) (XW% - Xz/h )1> =
b=1
(23,)".
Therefore,
Zm n — 2”’+”E ( H (Xlz Xl_/a )
Xy, —Xy)" H Xy, — X)) KXoy, — X7
b=1

An unbiased and location-invariant estimator

of 37">% can be constructed as

Em u _ 1 .
2171 } 11P AZ\qu P;\Z

22 (1 e,
H (XZk/;
b=1

*X]]“) ()(],‘u *X]]‘a )T‘

— Xz, (Xoy, — X07) (13)
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Compatibly with 3% 2

is

the estimator of tr (Z7'3%)

A 1 * *
s =
1<z 2117( IIP?\IVI]Z PAZ\I‘I_) 2 Z

Xy, =X, (] Xy, — X))

(Xli“ _leu)T)<H(X2/e/) _Xzz,))
b=1
(X, *Xzz,))T)(Xli, —Xy;,) aH

Similarly, we can obtain the unbiased and loca-
(21 22 )m ’
tr ((3,3,)") and (tr (3,3,))" as follows.

tion-invariant estimators of

A
(ZIEZ)W - 4mPZmP2m Z 2 (H(X]I X]ja) (X]iu 7X]]‘a)T(X2/\,“ 7X2[a) (XZL’“ 7X2[(,)T>’
A = .
tr((Z2)™) :ﬁE E (Xy, — X )" (X — X)) (X, — Xy )7 e
4 PNI PNZ 1 1 1 1 1 1
(1] X, — X0 (Xi, — Xy )T (Ko, — Xo) (X, — Xo 0T )Xy, — X0 s
a=2
A * * m
(tr(3,3))" = ﬁz ST X, =X )T (X, — X ) (X, — Xo )T (X, —X3,)).
N+ Ny a=1

Remark 3 When m=1 and n =0, it is clear
that 2’“2’ given in (13) reduces to the sample co-

A

variance Sy, and tr(Z7'33) given in (14) arrives at
trS; as well as the unbiased estimator of tr 3, pro-
posed by Ref. [2] (see equation (2. 3) in Ref.
[2D.

4 Relationship between two existing
test statistics

For the testing Problem (1), Ref. [5] con-

structed the following test statistic:

A A
_ tr21(lt) + S ao *234
T = s

N trEl(u) +]\2[ tl‘Euu)

where B, is given by (7) and

LSvexix,? -

N; ko

A
2 _
tr 3iae =

Zx X, XIX, +

\/r/

LoSsyxax,xt

N; borydys

D
Moreover, Ref. [5] showed that T,,(—>N(0,1)
under H, as min{N, ,N,, p}—>c=.

zlv’izl, 2-

Later, for same testing problem, another

test statistic was proposed in Ref. [3] as

A A
T tl”zfm +13f s — 2B,
S )

2
U‘El S) + trE; S

where n;, =N, —1, B, is given by (2) and

1 s
7((N, *2) (N, *1)0 .
A
trS? — N (N; — DtrD? + (N; — D* (1rS)?)
with f=N,;(N;, =1 (N, —2)(N; —3) and
Dz:dlag(XEX,l ""75(&,)?[.‘\”)9 1:19 2.

Under the a%sumption

trzl S =

N;=00p*), - <s<1,z 1, 2 (15)

Ref. [3] proved that T —D>N(O,1) under H, as
min{N,;,N;,p} tends to infinity.

Next, we show that the test statistics Ti¢
and Ts are asymptotically equivalent.

Theorem 4.1 Ts<<T;c for a fixed pair (N,
N,), and Ts —T >0 as min{ N, , N, }—>co,

un
= tr3i (s

=D, given In

A
Proof From the fact that tr3%
for i=1,2 given in Ref. [7] and B,

Theorem 2. 1, a straightforward derivation shows

that Ts=pTc, where
5o ]\2,2 trzlm JF]\Z] tr22<9>
tl’zlm JF 2 trsz

It is easy to see that ﬁ<1 due ton;, =N, —1, =

1, 2, which leads to Ts<<T¢.
Moreover, § can be rewritten as
trEl(@) JFU‘E)(S)

nm tl’Zub) + ny tr22(5>

o (14
F= NN,
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which indicates that $~1 and then Ts —T;—>0 as
min{N,,N;} tends to infinity,

As a consequence, the fact that Ts —T ;—0
as min{N,, N, } — <o in Theorem 4. 1 also indi-
cates that the test, proposed by Ref. [ 3] under
the assumption (15), can be justified under the
assumptions in Ref. [5], in which no relationship
between p and N, is imposed.

Finally, the numerical simulations are de-
signed to interpret our theoretical results as well
as their implications and to further evaluate the
of T, and Ts. Let Y,
(i1 s+ syy,) fori=1, 2 and j =1,+++,N;, where

performance i
{y,]‘u }1':l42;j:1-"'NI-:a:le"'-l) are independent and iden’
tically distributed random variables with yj;, +2~
T'(4,2). To investigate the empirical sizes of T
and T, without loss of generality, we generate

the first sample { Xy, } 1, by X;; =Y}; and the sec-

ond sample { X, } 2, by X, =Y, ; to discuss the

empirical powers of T and Ts, we take
{XU }j\vzll by le :Ylj and {Xg] }]\]:2 by X2j -
9

@Yzj.

Tab. 2 provides the empirical sizes and pow-
ers of T and Ts by 1000 Monte Carlo replica-
tions with N; =N, =N and the nominal signifi-
cance level @ =0. 05. As showed in Table 2, when
N is small, T possesses larger power than T,
while T's has smaller size than T ; the difference
of sizes or powers between T and Ts decreases
gradually as N increases; particularly, when N =
640, the sizes or powers of T and Ts are almost
the same. Therefore from the above statements,
we may conclude that T} and Ts are asymptoti-

cally equivalent.

Tab. 2 Empirical sizes and powers of T and T's

N N
b 20 40 80 160 320 640 20 40 80 160 320 640
Size Power
20 Tic 0.070 0.070 0.066 0.079 0.067 0.075 0.113 0.18 0.314 0.631 0.953 1.000
Ts 0.061 0.067 0.062 0.078 0.067 0.075 0.100 0.168 0.312 0.629 0.953 1.000
40 Tic 0.066 0.074 0.060 0.058 0.058 0.056 0.092 0.167 0.312 0.681 0.980 1.000
Ts 0.054 0.067 0.057 0.056 0.056 0.056 0.072 0.156 0.303 0.678 0.979 1.000
80 Tic 0.045 0.046 0.045 0.059 0.051 0.048 0.085 0.143 0.303 0.687 0.986 1.000
Ts 0.036 0.041 0.044 0.058 0.051 0.048 0.067 0.132 0.296 0.683 0.985 1.000
160 Tic  0.059 0.057 0.063 0.043 0.059 0.045 0.067 0.134 0.315 0.702 0.993 1.000
Ts 0.047 0.053 0.062 0.042 0.058 0.045 0.052 0.124 0.306 0.699 0.993 1.000
320 Tie  0.057 0.062 0.061 0.053 0.046 0.052 0.072 0.128 0.303 0.700 0.994 1.000
Ts 0.042 0.054 0.060 0.053 0.046 0.052 0.061 0.118 0.299 0.697 0.994 1.000
640 Tie  0.045 0.045 0.041 0.062 0.038 0.046 0.081 0.118 0.287 0.707 0.997 1.000
Ts  0.030 0.043 0.041 0.061 0.038 0.046 0.067 0.109 0.279 0.705 0.996 1.000
find that three commonly used estimators of

5 Conclusions

Some equivalent estimators of product of two
population covariance matrices 3, and 3, have been
derived in this paper by taking the advantage that
the U-statistics do not depend on the underlying
distributions. This derivation is extendable and
can be employed to construct the unbiased and lo-
5 and (313,)"

for any positive integers m, n. Furthermore, we

cation-invariant estimators of 37

tr (3,3,) respectively given in Refs. [5], [ 3] and
[6] are exactly the same, whereupon two test
statistics proposed in Ref. [5] and Ref. [3] for
testing the equality of two covariance matrices are

asymptotically equivalent.
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