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Abstract: Continuous generalized metric spaces are introduced and investigated in this paper. It is shown

that for such spaces, c-Scott topology is equal to the generalized Scott topology, and that a non-expan-

sive map between such spaces is Yoneda continuous if and only if it is continuous with respect to the gen-

eralized Scott topology.
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1 Introduction

As observed in Lawvere!, a generalized
metric space is precisely a category enriched in the
quantale ([0,°]?,+,0). So, they can be viewed
as a metric counterpart of ordered sets. The in-
vestigation of such spaces is the core part the
quantitative domain theory?”™. In particular, as
metric counterpart of dcpo’s and domains, Yone-
da complete generalized metric spaces and contin-
uous Yoneda complete generalized metric spaces
have been introduced and investigated in Refs. [ 3-
4,6].

In this paper, the notion of continuous gen-

eralized metric spaces is introduced. Such spaces

s EHEA: 2019-01-27
E£WA: HRARPAEE (11871358)

are a metric counterpart of continuous posetst) in
domain theory. The difference between such a
space and a metric domain, 7. e. , a continuous
Yoneda complete metric space, is that it need not
be Yoneda complete. Basic properties of such
spaces are investigated in this paper. Particular-
ly, it is shown that, for such spaces, the general-
ized Scott topology is equal to the c¢-Scott topolo-
gy, and that a non-expansive map between such
spaces is Yoneda continuous if and only if it is
continuous with respect to the generalized Scott

topology.
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2 Continuous generalized metric
spaces

By a generalized metric on a set X, we mean
amap d: X XX—[0, o] such that d(x,2) =0 and
dlx,y) +d(y,z) =d(x,2) for all x,y,z€X.
The map d is called a generalized metric, and the
value d(x,y) the distance from x to y.

A generalized metric space (X,d) is symmet-
ric if d(x,y) =d(y,x) for all x,y€ X; separated
if x=y whenever d(x,y) =d(y.x) =0; finitary
if d(x,y)<<co for all x,y€X. A metric in the u-
sual sense is exactly a symmetric, separated and
finitary one. Given a generalized metric d on a set
X, the opposite d” of d refers to the generalized
metric given by d” (x,y) =d(y. x).

Example 2. 1 (The Lawvere metric'))  For
all a,b in [0, =], the Lawvere distance, d; (a
0), from a to b is defined to be the truncated mi-
nus bOa, i.e. ,

di(ash) =bOa =max{b—a,0},
where, we take by convention that o —co=0 and
oo —g=-oo for all a<Ceo. It is clear that ([0, =],
d;) is a separated, non-symmetric, and non-finit-
ary metric space.

The opposite of the Lawvere metric is deno-
ted by dg, i.e., dg(x,y) =xOy.

A non-expensive map f: (X,d)—>(Y,p) be-
tween generalized metric spaces is a map [: X—>Y
such that

dx,y) =p(f(2), f(y)).

For each ordered set (X, <0, let (<) X X
X—[0, o] be given by

0, x<y,
w(<)(x,y) = .
oo, otherwise.
Then (X, w (<)) is a generalized metric space.
The correspondence (X, <O (X,w (<)) defines
a full and faithful functor
w : Ord - GMet.
The functor w has a right adjoint

7: GMet = Ord
that maps each generalized metric space (X,d) to
its underlying order (X, <<,), where

x < uye=d(x,y) =0.

Let (X,d) be a generalized metric space. A
weight of (X, d) is a function ¢: X—>[0, ]
such that

() <¢(y) +d(x,y)
for all x,y € X. A coweight of (X,d) is a func-
tion ¢: X—>[0, o= ] such that

() <¢p(x) +d(xsy)
for all x,y € X. Said differently, a weight of (X,
d) is a non-expansive map ¢: (X,d)—> ([0, = |,
dr) and a coweight of (X,d) is a non-expansive
map ¢: (X.d)—>([0,°0].d). It is easily verified
that for each x € X, d(—,x) is a weight of X and
d(x, —) is a coweight of X.

Let PX be the set of all weights of a general-
ized metric space (X.d). For any ¢,¢€PX, let

d(g.d) :Eggdz,(ﬂx) s ().

Then (PX.d) is a separated generalized metric
space.

Lemma 2.2 (Yoneda lemma') Let (X,d)
be a generalized metric space. Then

dd(—.2).¢) =¢(2)
for all z€ X and ¢ € PX.

Let (X,d) be a generalized metric space and
¢ a weight of (X,d). An element a € X is called a
colimit of ¢ if

g(d;,d( —,y)) =d(a,y)
for all ye X.

Let (X,d) be a generalized metric space. For
each weight ¢ and each coweight ¢ of (X,d), the
tensor product of ¢ and ¢ [Rel. 8] is an element
in [0,<=], given by

¢®¢:Ji‘g)f((¢(1') ().

Definition 2. 3" Let (X,d) be a general-
ized metric space, a weight ¢ of (X,d) is flat if
inf,ex¢ () =0 and ¢ @max{¢; »¢» } =max{$ D¢,
¢, | for any coweights ¢ s ¢ of (X,d).

For each x in a generalized metric space (X,
d)y d(—,x): X—>[0,0] is easily verified to be a
flat weight. Flat weights can be characterized by
forward Cauchy nets. A net {x;}; in a generalized
metric space (X,d) is forward Cauchy™’ if
1r11f}:1}:pl d(z;,x) =0.

An element x € X is a Yoneda limit™ of {x;}; if
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for all ye X,

d(x,y) :i?fS‘gPd(xj s,

A generalizecjl/metric space is Yoneda com-
plete if each forward Cauchy net has a Yoneda
limit.

Yoneda limits are not necessarily unique.
However, if both x and y are Yoneda limits of a
net {x;};, then

d(x,y) =d(y,x) =0.

So, Yoneda limits of a forward Cauchy net in sep-
arated metric spaces are unique.

A non-expansive map f: (X,d)—>(Y,p) is
Yoneda continuous if it preserves Yoneda limits in
the sense that if a is a Yoneda limit of a forward
Cauchy net {x;}; then f(a) is a Yoneda limit of
{f(x) ).

Proposition 2. 4"/ Let (X.d) be a general-
ized metric space and ¢ a weight of (X,d). Then
¢ is a flat weight if and only if there is a forward
Cauchy net {x;}; in (X,d) such that ¢ =inf;sup;-,
d(—,x;).

Proposition 2. 50 For each forward Cauchy
net {x;}; in a generalized metric space (X,d), an
element x is a Yoneda limit of {xz;}; if and only if
2 is a colimit of the weight ¢ =inf; sup;~;d ( —,
;).

As an immediate corollary we obtain that
(X,d) is Yoneda complete if and only if the map

v (X, d)>(FX.,d),x + d(—,1)
has a left adjoint, where FX denotes the set of
flat weights of (X,d).

Given a partially ordered set (X, <), consid-
er the generalized metric space (X,w(<{)). Then
a weight ¢ of (X, (<)) is flat if and only if
there exists a directed lower set D of (X, <0 such
that ¢(x) =0 when x € D and ¢(x) = > when x &
D. Furthermore, ¢ has a colimit if and only if D
has a join. Therefore, (X, (<)) is Yoneda
complete if and only if (X, <) is directed com-
plete. Conversely, the underlying order of each
Yoneda complete generalized metric space is di-
rected complete, see Ref. [10, Proposition 4. 5].

Definition 2. 6 Let (X,d) be a generalized

metric space and let F* X denotes the subset of

FX consisting of flat weights that have a colimit.
We say (X,d) is continuous if the map

colim: (F* X, d)—>(X,d)
has a left adjoint. This means that for every x €
X, there is some ¢, € F* X such that d (&, colim ¢») =
d(g, ) for all g€ F* X,

Definition 2.7 A separated generalized met-
ric space (X,d) is said to be a metric domain if it
is both continuous and Yoneda complete.

Said differently, a separated generalized met-
ric space (X,d) is a metric domain if the map

v (Xod)>(FX.d)s x>d(—,2)
has a left adjoint which is itself a right adjoint.

Definition 2, 8"

alized metric space is compact if for every forward

An element a in a gener-

Cauchy net {x;}; with a Yoneda limit x, d(a,x)
=inf; supj=;d (a, x;). A separated generalized
metric space is algebraic if every element in (X,
d) is a Yoneda limit of a forward Cauchy net con-
sisting of compact elements.

Proposition 2. 9" An element a is compact
in a generalized metric space (X,d) if and only if
for each flat weight ¢ with a colimit it holds that
d(a,colim ¢) =¢(a).

It is proved in Ref. [12] that a Yoneda com-
plete and algebraic generalized partial metric
space is continuous. Similarly, we have the fol-
lowing proposition for generalized metric spaces.

Proposition 2. 10  Algebraic generalized met-
ric spaces are continuous.

Proof For each x € X, take a forward
Cauchy net {qa,}; of compact elements in X with x
as a Yoneda limit and let ¢, =inf;sup;~; d ( —,a;).
Then for every flat weight ¢ of (X,d) with a co-
limit,

d(g,.+¢) :a(ir}f?glpd( —aa;) ) =

irl_lfsj}ig)g(d( —sa;) s $)=

infsup ¢ (a;) =

1r11fs71/1§>d (a;scolim ¢)=
d(zjf/, colim ¢).
Example 2. 11 The generalized metric space
(QN[0,=o],d.) is algebraic, hence continuous.

But it is not Yoneda complete.
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In the following, we characterize continuous
generalized metric spaces by a metric version of
the "way below relation" in domain theory.

Definition 2, 12 (way-below distance)

Given a separated generalized metric space
(X,d), the way-below distance on X is the map
w: X X X—>[0, o] given by

w(x,y) = sup ($(2)Od(y,colim ¢)).

$EF" X

Lemma 2. 13 Let (X,d) be a separated gen-
eralized metric space. Then for all x,y,2€ X

(D) d(x,y) <w(x,y);

(D) wlx,y) <w(x,2) +d(z,y) <w(x,2) +
w(z,y).

Consider the generalized metric space (X, w
(<)) induced by a partially ordered set (X, <),
for any x,y € X, it is easy to check that,

0, <<y,

w(x,y) = )

oo, otherwise.

Proposition 2.14 A separated generalized
metric space (X,d) is continuous if and only if for
every x €X, w(—,x) is a flat weight and x is a
colimit of w(—,x).

Proof Let ¢ be a flat weight with a colimit
a. For every y€ X, w(y,x) =¢(y) Od(x,a). It
follows that,

d(xm)?stelg(gb(y) Ow(y,x)) =
2(7@(791)741)-
Since x is a colimit of w(—,2),
d(l‘»a) :g('UJ( - 91’) 961( - 9(1))<

d(w(—,2) ).
Hence (X,d) is continuous.

Conversely, suppose (X, d) is continuous.
Since y is a colimit of d( —,y) for every y € X,
we obtain d(x,y) :g(gb,, ,d(—,y)), x is a colim-
it of .. Next, we show that for every z€X, ¢, =
w( —,x). On one hand, for every flat weight ¢
with a colimit,

d(x,colim ¢) :g(gb,, s )=

ilei);?(gb(y) O ().
it follows that

$. () =¢(y) ©d(x,colim ¢»)
for every y € X. Hence,

$. () =Zw(y,z).

On the other hand,

w(y,x)= sup ($(y) Od(x,colim ¢))=
$EF" X

¢ () Od(xyx2) =¢,.(y).
Proposition 2. 15 (interpolation property)
Let (X, d) be a continuous generalized metric
space. Then for all x,y€ X,
w(x,y) :ig}f((w(x,z) +wlz,y)).
Proof Let ¢:ig)f<(w( —2) twlz,y)), we

show that ¢ is a flat weight and y is a colimit
of ¢.

Firstly, for any € <<0, there exist a,b € X
such that w(a,y) <<e, w(b,a) <e, it follows that
$(b) <2e. We obtain

inf,e x$ (x) =0.

For any coweights ¢ s¢» on (X,d),

$@max{¢ sy} = ig£(¢(x)+max{¢1 (1) () )=
inf (inf (w(x,2) +w(z,y)) Fmax{g () +¢n(2)})=

reX 2€X

infw (z,y) +max{inf (wlz,2) ¢ (), inf (wlx,2) +¢p (1)) )=
z€X x€X xzeX

max{¢ ¢ » ¢ Dy |
For any a € X,

(D

J(gbd( —,a))=sup(d(zx,a)Oinf (wlx,2) twlz,y)))=
x€X 2€X

sup(sup(d(x,a) Owlx.2)) Owlz,y))=
€X eX

x€

§g}1{)(d(1‘,a) Cwlx,y)) =
J(w< 7’)}) 7d( *,a)):d(y,a)

(2)
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Then by the definition of way-below dis-
tance,

wlx,y) =¢(2) Od(y,y) =¢(x).

It follows that

w(x,y) :jgi(uﬂ(l‘,z) +w(z,y)).

Let (X, <0 be a partially ordered set. It is
not hard to see that (X, <0) is a continuous poset
if and only if (X,w(<0)) is a continuous general-
ized metric space. So, the functor w preserves and
reflects continuity. But, the following example
shows that the functor ¢ does not preserves conti-
nuity.

Example 2.16 Let X=[0,1]U{a}.
a generalized metric on X as follows:

max{x—v,0},2,y€[0,1],
dx,y)=<x,2€[0,1],y=a,
llfx,xia,yGEO,lj.

Since every element in (X,d) is compact, (X,d)

Define

is algebraic, hence continuous by Proposition
2.10. It is easily verified that (X,d) is Yoneda
complete, hence (X,d) is a metric domain. But

(X,<) is not continuous.

3 Topologies on continuous general-
ized metric spaces

For every generalized metric space (X, d),
there is a natural topology for (X,d), namely,
the open ball topology on (X,d). The open ball
topology" on (X,d) is the topology generated
as a basis by the open balls in (X,d), where, for
each x € X and >0, a point lies in the open ball
B(x,r) with center x and radius r if the distance
d(x,y) from x to y is less than r, i.e. ,

B(x,r) ={yeX|d(x,y)<r}.

One easily sees that, for an ordered set (X,
<), the open ball topology on (X,w (<)) is e-
qual to the Alexandroff topology on (X, <0).
Hence, the open ball topology is an extension of
the Alexandroff topology to generalized metric
spaces. As for Scott topology, in the literature
there exist three ways to extend it to the metric
setting.

Definition 3. 1/

ized metric space (X,d) is generalized Scott open

A subset U of a general-

d(.r’y) -

if for every forward Cauchy net {x;}; and every
Yoneda limit x of {x;};, if x €U then there is
some ¢ >0 and some index i such that the open
ball B(xj,e) is contained in U for all j =i, The
generalized Scott open subsets of (X,d) form a
topology, called the generalized Scott topology on
(X,d).

Proposition 3. 2 Let (X, <) be a poset,
then the Scott topology on (X, <0) and the gener-
alized Scott topology on (X,w(<0)) coincide.

The generalized Scott topology on a general-
ized metric space (X, d) and Scott topology on
the underlying order of (X,d) are incomparable
in general. Take [0, 1] with the usual metric.
Then the generalized Scott topology is strictly
coarser than Scott topology on its underlying or-
der. The following example shows that not every
generalized Scott open subset of a generalized
metric space is open with respect to the Scott to-
pology on its underlying ordered set.

Example 3.3 Let X=[0,1]U{a}.
map d: X XX—>[0, ] as follows:

0,x,y€[0,1] and 2 <<y,
JZ,IG[O,l),_’yaa
13 wax=1,y=a,
co,2,y€[0,1] and y<x,or x=a,y€[0,1].
Then (X.d) is a generalized metric space and {1}

Define a

is generalized Scott open. But {1} is not Scott
open.

Remark In the definition of the generalized
Scott topology, we require that there exists a
fixed ¢ such that the open ball B(x;,¢) is con-
tained in U whenever j =i. It is natural to ask
whether this requirement can be relaxed to “for
any j =i, there exists an ¢; such that the open ball
B(x;.¢;) is contained in U". The answer is nega-
tive, as we now see.

We call a subset U quasi-generalized Scott
open if for every forward Cauchy net {z;}; and ev-
ery Yoneda limit x of {z;};, if x €U then there is
some index 7 such that for all j =i, there exists ¢;
>0, B(xj,¢;) contained in U. It is readily veri-
fied that quasi-generalized Scott open subsets

form a topology on X, called the quasi-general-
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ized Scott topology. The following example
shows that the generalized Scott topology and the
the quasi-generalized Scott topology are different
in general.

Let X={a} U{a,|n€Z } U{b, | n€Z"}.
Define d: X XX—>[0, =] as follows.

O,x=y,
1
2*; YT =AY =,
2,x=a,y=b, or x=a,,y=b, ,n>m,

d(xay) =4 p X @Y =a or x=a,y=b, ,n<m,
)

27% s =y sy ~ Ay ’n>m’

1 1
T, X T A, Y T Ay s N,
n m

oo, x =0, ,yF0D,.
Then the open ball B (a,2) is not generalized
Scott open, but it is quasi generalized Scott open.

Proposition 3.4 A subset U of a generalized
metric space (X,d) is generalized Scott open if
and only if for every flat weight 4, and every co-
limit @ of ¢, a €U implies that there exist 56>0
and z € X such that ¢(z) <<b and B(z,b) <U.

Proof Necessity. Suppose a is a colimit of a
flat weight ¢ and @ €U. Then there exists a for-
ward Cauchy net {z;},c; such that

¢ =infisup;—d ( —,x;)
and a is a Yoneda limit of {x;};c;. Since U is gen-
eralized Scott open, there exist 1 € I and 6 >0
such that for all j =i, B(x;,0) U. Since {x;}e;
is forward Cauchy. there exists i' €I, ¢(x;) <<b
for all j=i’. Let z=max{i,i'}, we obtain

$(2)<<b
and

B(z,b) <U.

Sufficiency. Suppose a is a Yoneda limit of a
forward Cauchy net {x;};c; and a €U, Let

¢ =inf;supj~d ( —.z;),
there exist 5>>0 and z € X such that ¢(z) <) and
B(z,0) =U. We can find an >0, such that ¢(z)
<b—¢. Then there exists 1 €I, for all j =i, d(z,
;) <<b—e. Hence

B(xj,e) &B(z,b) <U.

For a continuous poset X, ) x is always open

in its Scott topology for every x € X. There is an
analogy of generalized Scott topology on continu-
ous generalized metric spaces. For any x € X, ¢ >
0, let B'(z,e) ={y€X | wlx,y) <e}.

Let (X,d) be a continu-

. . / .
ous generalized metric space. B" (x,e) is general-

Proposition 3, 5'%

ized Scott open for all x € X,e>0. Furthermore,
the set {B'(x,e) | € X,e>0}.
forms a basis for the generalized Scott topology.
The c-Scott topology is another way to gen-
eralize Scott topology to the metric setting.
Definition 3. 6"
ized metric space (X,d) is a Scott weight if ¢:
(X,d)—>([0,°°],dg) is Yoneda contunuous.
The set of all Scott weights of a generalized
metric space (X,d) is denoted by SX.
Definition 3, 7"
sets are given by {¢ ' (0) | $€SX} on a general-

A weight ¢ of a general-

The topology whose closed

ized metric space (X,d) is called the c-Scott to-
pology on (X,d).

Lemma 3.8 For every continuous general-
ized metric space (X,d), rOw(x, —) is a Scott
weight for all r €X,r€[0, 0.

Proof It is easy to verify that 4 =rOw(x,
—) is a weight of (X,d), we only need to check
that, for any forward Cauchy net {q;}; which has
a Yoneda limit a,

rOw(x,a) <infsupr Owlx,a;).

i =i
For any b € X,
w(x,b) Twlb,a) Zwlx.b) +
infsupd (b,a;) Zinfsupw(x.a;).
i i =

Since (X.,d) is continuous,
w(x,a) :/igf((w(x,b) +w(b,a)) =

infsupw(x,a;).

ij=i

Hence,

rOw(x,a) <rOinfsup w(x,a;)<

ir}fS_gP rOw(x,a jj)/.

Propojsition 3.9 For a continuous general-
ized metric space (X,d), the cScott topology is
equal to the generalized Scott topology.

Proof Since for each x € X and ¢ >0,

(eOwlx, —)) 1 (0,00]=

{y | wlzsy)<e} =B (xe),
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then by Lemma 3. 9, B’ (x,e) is open in the c-
Scott topology. By Proposition 3. 6, the c-Scott
topology is finer than the generalized Scott topol-
ogy. Hence, they are equal.

It is known (Ref. [ 3, Proposition 6. 9 ]) that
a non-expansive map between Yoneda complete
generalized metric spaces is Yoneda continuous if
and only if it is continuous with respect to the
generalized Scott topology, this is also true for
continuous generalized metric spaces.
Let (X,d) be a general-

ized metric space and (Y,p) be a continuous gen-

Proposition 3. 10

eralized metric space, a non-expansive map f:
X—Y is Yoneda continuous if and only if f is con-
tinuous with respect to the generalized Scott to-
pology.

Proof The necessity is contained in Ref. [ 3,
Proposition 6. 9], it remains to show that, if f is
non-expansive and continuous with respect to
generalized Scott topology, then for every for-
ward Cauchy net {z;}; with a Yoneda limit x and
yvey,

d(f(x),y) :irilfsjgg)d (f(x;) ..

On one hand, since f is non-expansive,

d(f(2) .y Zinfsupd (F(x;) ).

i oj=i

On the other hand, for every forward Cauchy net
{a,}, with a Yoneda limit a,
irklfslg%)d(y,a;) Od(f(x),a)<
infsup(infslgg d(ys,a)Od(f(x;),a)).

P =ik
It follows that
w(y, f(x))<infsup (w(y, f(x;))).

i =i

If
w(y, f(x))<<infsup (w(y,f(x;))),

i j=

then there exists e >0,
w(y, f(x))<infsup (w(y, f(x;))) —2e.

i j=

Because Y is continuous, A=DB"(y,w(y, f(x)) +
¢) is generalized Scott open in Y. Since f is con-
tinuous, then f~ (A) is generalized Scott open in
X. It is a contradiction. Hence

w(y, f(x))=infsup (w(y, f(x;))).

1 =1

Since (Y, p) is continuous, f(x) is a colimit of

the flat weight w(—, f(2)),

d(f(x),y) :Zi(infs_gp w(—, f(2;)),d(—,y))<

ioj=

g(infs_gpd(*,f(xj)),d(*,y)):

i
ir}fsjgg)d (fx;) .
This completes the proof.

In Ref. [4], Goubault-Larrecq introduced an-
other topology, the d-Scott topology, for general-
ized metric spaces and showed that a non-expan-
sive map between Yoneda complete generalized
metric spaces is Yoneda continuous if and only if
it is continuous with respect to the d-Scott topolo-
gy, see Ref. [4, Proposition 7. 4. 52]. But, this
is not true for continuous metric spaces, as we see
now.

For a generalized metric space (X, d), let
(BX,<0) be the underlying order of the general-
ized metric space (BX,Bd) of formal balls in (X,
d). Explicitly,

BX={(x,r) | x€X,r€[0,0)}

(x,r) <(y,s)r=st+d(x,y).
The d-Scott topology-"’ on a generalized metric
space (X,d) is defined to be the topology on X
inherited from the Scott topology on the ordered
set (BX, <) via the embedding : X—BX that
sends each x to (x,0).

Example 3. 11  Let X =[0,1], define two

maps d, sdz : X XX—[0,°0] on X as follows:
Jl <y,
di(x,y) =<x—y,x=y,y7#0,
10 ,y=0.
|z =y 2,370,
dy(x,y)=<1,2=0,y>0,
0,y=0.
(X,d ), (X,dy,) are both continuous metric
spaces, the identity map 1x is non-expansive and
continuous with respect to the d-Scott topology,

but it is not Yoneda continuous.
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