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An augmented mixed finite element method for nonlinear elasticity problems

ZHANG Tian-Tian, ZHANG Bai-Ju
(School of Mathematics, Sichuan University, Chengdu 610064, China)

Abstract: This paper introduces and analyzes a full augmented mixed finite element method for the non-
linear elasticity problems with strongly imposed symmetry stress tensor. The mixed method includes the
strain tensor as an auxiliary unknown, which combines with the usual stress-displacement approach a-
dopted in linear elasticity. By introducing different stability terms., we obtain an augmented mixed finite
element variation formulation and a full augmented mixed finite element variation formulation. In order
to obtain the well-posed of the two schemes, we adopt different finite element spaces to approximate the
unknowns and derive the optimal error estimate. Finally, a numerical example is presented to confirm
the theoretical analysis.
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. ess of a partially augmented Galerkin scheme is
1 Introduction .
ensured by any finite element subspace for the

Stable mixed finite elements for linear elas-
ticity, such as PEERS of order 0, also leads to
well-posed Galerkin schemes for the nonlinear
problem. In Ref.[1], the authors extend the re-
sult from Ref. [ 2] and show that the well-posedn-
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strain tensor together with the PEERS space of
order £>>0 for the remaining unknowns. Howev-
er, the stress tentor in the two papers is asym-
metrical, which leads to introduce a further un-

known named rotation. So they both have four
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variables, that is, the strain tensor and the usual
stress-displacement-rotation,

In this paper, we attempt to deal with
strongly imposed symmetry strain in the nonlin-
ear elasticity problem, which makes the un-
knowns less than that of Refs. [2] and [ 3] and
lets the expression of equations much briefer.
Moreover, we employ the £ —1 degree piecewise
polynomial finite element space to approximate
the strain tensor ¢ and the k£ degree piecewise pol-
ynomial finite element space to approximate the
stress tensor ¢ and the displacement u. An advan-
tage of this method is that these elements can
keep the S space same accuracy with R-T spaces
of order % for the stress tensor while substantially
decrease the number of degrees of freedom under
the same convergence degree. Finally, we apply
classical results on nonlinear functional analysis
to prove the well-posedness of the resulting con-
tinuous and utilize the usual Ce’a estimate to de-

rive the optimal order error estimation.

2 Problem statement

Here we introduce some notations and func-
tion spaces. Firstly, let R*** be the space of
square matrices of 2 X2 order with real entries,
I'=(§;) be the identity matrix of R***, S be the
space of symmetric tensors of R**?. In addition,

given r:=(z;), {=(§;), we use

2
tr(z) ==Z tis ! =1 *%tr(r)l,
i=1

=), : = ZZ‘,}C]‘]

i,j=1
to denote the transpose, the trace, the deviator of

a tensor 7 and the tonsorial product between 7 and
& Then, we use H” (Q) to denote the Hilbert

spaces on Q, | ¢ | . to be its norms. When m =
0, we write L*(Q), | + | o instead of H"(Q) and
I+ Il... We introduce the divergence spaces:

Hdiv;Q)={weL*(Q):divweL*(Q)},
H(div; Q;S)={z in H(div; Q).rin S}.
The Hilbert norms of H(div;Q), and H(div; Q;

S) are denoted by || * [lavand I * || Haivas .

Let Q be a bounded and simply connected po-

lygonal domain with Lipschitz-continuous bound-
ary '=9Q. Given a body force f€L*(Q))and g€
H? (D), we try to find the displacemeng u and
the symmetric stress tensor g, such that
o=AClle G [HdivI+zuC [le GO | eCw
dive=—finQ, u=gonT (D

where Iaﬁ:R+ —R are the Lam’e non-linear func-
tion, e(u)==%(Vu +(Vu)")is the strain tensor of

small deformations, || « || is the euclidean norm.
Then, we set

A= XCI 1D s puGr=amC Il 1D
for all €L*(Q) and introduce the new unknown
t=e¢(u) €L*(Q). Problem (1) adopts the equiva-

lent form

t=e(u) 1in Q.
c=AWtr(OI+u(Dt inQ, (2)
dive=—f inQ,u=g onl

Next, by integrating by parts, we consider
the following problem;

Find (¢t,o,u) € LP(Q) X H(div; Q;S) X H!
(), such that

JQ{/\(t)tr(z‘)tr(s) +ulOit:s) —Jg:s =0,
e Ju dive = (o, (3)

*J vedive :J fewv
Q Q
for all (s,z.v) €L*(Q) X H(div;Q;S) XH'(Q).
Finally, in order to analysis our main re-
sults, we define the Hilbert spaces X, == L*(Q),
M, = H(div; Q;S) and M= H'(Q). Besides,
we defin the nonlinear operator A, : X, —>X', the
linear operators B, : X, —>M,", B: M, >M', the
bounded linear functional He€ X", G€M,’, and
FeM, where X,", M,”, M is the dual of X,,
M,, M, respectively. Given each r, s€ X, 7, §
eM,, veM, we define

[A (1),s] :=JQ{A(r)tr(r)tr(s) +u(r:st,
[B(O.v]= *Jv « div ¢,
[B.(rvc)i= | o [Hos]=0,
Q

I:G9T:| :=7<Tvag>rv [Fa'U] :=Jﬂf° v (4)
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3 The full augmented variational formu-
lation

In this section we adopt the following three
steps to derive a full augmented formulation and a
discrete scheme.

In the first step, we introduce the constitu-
tive law relating ¢ and 7 multiplied by the stabili-
zation parameters ko,k1sk2sk3 >0, to be chosen

later, and add

mjﬂ(a — 2oL +pue}):c =0,
/cJﬂ(diva + f) « dive =0,

szn(e(u) —1):e(v) =0,

of uro—r| g0
to the first equation of (3).

In the second step, we subtract the second e-
quation from the first equation of (3).

In the third step, we add the third equation
of (3) to the first equation again.

In this way, we arrive at the following fully
augmented variational formulation:

Find (t,0,u) € X =L*(Q) X H(div;Q;S) X
H'(Q), such that

[A(t,o,u), (sytsv) ] =[F,(sy7,0) ] (5)
for all (s,z,v) € X, where the nonlinear operator
A:X—>X’ and the functional F€X ” is defined by

[A(t,o0u) s (sotyv) =LA (1) 5]+

[Bi(s),o] —[Bi(),z] +

KOJQ(U —ADOrOL+puDt)) i+

IC3J e erszﬂ(e(u) —0:e(v) +[ B (ry0) ] —
[Bi(zsw)] —[B(zsu)] erjdiva « dive
I:F’(S’T"U):I:=JFT/1 g 7Jf . leT +

/c;gJFg-‘v*Jf- dive (6)

Our next goal is to show the unique solvabili-

ty of the variational formulation (5). We first re-
call the following theorem.

Theorem 3. 1" Let X be a Hilbert space

and A: X— X' be a nonlinear operator. Assume

that A is Lipschitz-continuous and strongly mono-
tone on X, that is, there exist constants 7,a >0,
such that

[ACx) — Ay lIx <y llxz—ylx, Yo,y
€X,

[A() Ay ,x—vy]=Za la—y %, Ya,y
€X.
Then, given F € X', there exists a unique x € X
such that [A(x), y] =[F,y], x € X. Further

more, the following estimate holds

1
[z llx<= IIFlx.
a

In order to apply Theorem 3. 1 to the fully
augmented formulation (5), we need to prove
first the required properties for our nonlinear op-
erator. We begin with the Lipschitz-continuity.

Lemma 3, 21"

tor defined by (6). Then there exists a constant

Let A be the nonlinear opera-

7>0, depending on || B ||, and the parameters
kis1€{0,1,2,3}, such that
| ACtiosu) —Als,tov) Ix <
Y I (tsosuw) —(sozev) |l x
for all (¢z,6,u),(s,7,0) €X,

In turn, the strong monotonicity of A makes
use of a slight extension of the second Korn ine-
quality, which establishes the existence of a con-
stant ¢; >0 such that

leCo) 5o+ lvltr=c llviia,
YveH' (Q) @)
The proof of (7) follows from a direct application
of the Peetre-Tartar Lemma™.
Lemma 3.3 Let A be the nonlinear operator

X
defined by (6), the parameter ¢, € (0, 2 yzal ),
1

where y, and «, are positive constants, In addi-

tion, assume ks k25 and ks are chosen such that

0<kis 0<<ky <2a and 0 <x;, where ¢ is a con-
2

__ koY1 Ko

2 2

Then there exists a constant ¢ >0, de-

stant, o *= min{a, }y and a3 = ¢;min

{ke2 265 7.
pending on a, ¢1, k1 k2 and k3, such that
[A([,a,u) —A(s,z‘,v),(tm,u)_(s,z‘,v)]>
al (Giosw) —Csory) 1%

for all (tsosu) s (s.av) €X.
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Proof Given (¢,6,u), (s,7,v) € X, we ob-
serve, according to the definition of A and the
fact that the terms involving B cancell out, that

Altsosu) —AGsst50) 5 (thosu) —(sy750) | =

[A(t,0) —A(sy0) s (2ho) — (s ]+

| divie—o) [l §.0+ KzJQ(e(u —v) —

(t—s5)):e(u—v) tws lu—2olir.
Then, the Cauchy-Schwarz inequality and the

basic estimate ab<%(a2 +b%) yields

A(teﬂau) 7A(59T9"U)9(t70'9u)7(‘5'92‘97))])
al lt—=sllsat llo—zllta)+

k1 1divie—o) oo+ |eCu—v) 3.0 —

2

K2

2
By using the the Korn inequality (7)
A([,Uvu) _A(Svf"v) s ([7071/{) _(372'77))]2

lz2—s 6.0 Fks leu—v ll&r.

(@) It=s llba+as lo—t o+t
G =) ot lu—wo 0=

K2
(a*é) l2—s 6.0 Faz lo—7 [ dva+
as H u—7v H %,025 H (tv()"u) 7(5'92‘77)) H g(?

min{%,/eg t. The

where o, = min{as>x;} a3 =

proof is ended by g := min{ (a *%) 20253 )

The well-posedness of the fully augmented
formulation (5) can be established from Ref. [ 2].
Theorem 3. 4

kosk1s ks and k3 are chosen as in Lemma 3. 2.

Assume that the parameters

Then there exists a unique (¢,0,u) € X solution of
(5). Moreover, there exists C >0, depending on
@, such that

| ((tyo)s) || x<<C{ | S loat gl %F}

Proof By LLemmas 3.2 and LLemma 3. 3, the
proof is a direct application of Theorem 3. 1.

Let X,.,-M;.,, and M, be finite dimensional
subspaces of L*(Q), H(div; Q;S)and H'(Q). De-
fine X, ==X, XM,., XM,. We are interested in
the following discrete scheme:

Find (¢, .04, u;,) € X,,» such that

LA sonsui) s (o) ] =[F, (Gsyrev) ] (8)

for all(s,z,v) € X).
The following theorem establishe the well-
posedness and convergence properties.
Theorem 3. 5

Kos K1s k2 and k5 are chosen as in Lemma 3. 2.

Assume that the parameters

Let X,,,M,, and M, be arbitrary finite dimen-
sional subspaces of L* (Q), H(div; Q;S), and
H'(Q), respectively. Then there exists a unique
(tysonsup) € X,» solution of (8). Moreover,
there exist C;, C, > 0,
such that
| hsonsur) | x<Ci{ I flloat I g liert
D)

independent of &,

” (ts(fyu) _(Z/, sOh 91/{;1) H X<
CZ mf

(5, 7y 00 €X),

| Ctygsr) —Cspoznsvn) ll x

10

Proof It is clear that the Lipschitz-continui-

ty and strong monotonicity of A are certainly val-

id on X, XM, , with the same constants ¥ and &,

respectively. Therefore, the unique resolvability

of (8) and the estimate (9) are again consequence

of Theorem 3. 1. In turn, the Ce’a estimate (10)

follows from standard arguments, similarly as for
linear problems. We omit further details.

In order to develop the rate of convergence of

the Galerkin solution provided by Theorem 3. 5,

we need the approximation properties of the finite

element subspace involved. Therefore, we define
Xl./,::{sh GLZ (Q) :Sh |T 6P1(T) V TGT/I }

an
M, i={7, € H{div;Q;S) NC (QD**:7, | 1€
P (T) YTeT,) (12)
M, ={v, € H' (Q) :v, |1 € Pys1 (T)
VTeT, (13)

The following theorem provides the correspond-
ing rate of convergence.

Theorem 3. 6
Kosk1skss and kzare chosen as in Lemma 3. 2.
Given an integer £ =0, let X,,, M, and M, be
the finite element subspatces defined by (11) ~
(13), (tyo.uw) € X and (2,405 >u;,) € X, be the u-

nique solutions of the continuous and discrete for-

Assume that the parameters

mulations (5) and (8), respectively. Suppose

011004-4
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that t€ H°(Q), 6 € H (), and u € H°(Q) for
some 6 € (0, +1]. Then there exists C>0, inde-
pendent of &, such that

I Ctoosr) = Ctyuomsun) | x<

CRo{ ltlsat llolloat luloarl.
Proof It follows from the Ce¢ a estimate

(10) in Ref. [3].

4 Numerical example

In this section we present a numerical exam-
ple illustrating the performance of the Galerkin
schemes (8). We consider £=0. Let N stand for
the total number of degrees of freedom (un-

knowns), A and A" denote two consecutive mesh-

In addition, we introduce the experimental rates

of convergence

_log(e( /e (1)
rO=TN ey

_log(e(0) /' (0))
(=R E O

._log(e, (w) /ey (w)
o = Ch )

In the example, we set Q=1]0,1[ X ]0,1[ and
choose the data f and g, so that the exact solu-
tion is given by
sinx; cosayexp(x xs)
u(Il aIz) - < . )
cosx sinxzexp( —x1a2)
for all (xy,22)" €Q.

In Tab. 1, we summarize the convergence

sizes with corresponding error € and ¢’. The total history of the example. We observe that the O(h)
errors are given by predicted by Theorems 3. 5 (with § =1) is ob-
eW=1lt=tloar el =lo=0 lloa. tained by all the unknowns.
eo(w) = llu—uy lloas
Tab.1 The convergence of the unknowns in the fully-augmented formalation

N h e(t) r(t) e(o) r(o) eo (u) ro(u)

10 205 1/30 1. 027 2e-001 1.001 4 2.063 8e-001 1.003 2 1. 001 1e-003 1.001 9

258 29 1/48 6.417 2e-002 1. 000 9 1. 289 5e-001 1. 000 7 3.903 1e-004 1.000 5

48 581 1/66 4. 666 0e-002 1. 000 7 9. 377 9¢-002 1. 000 O 2. 062 4e-004 1. 000 2

78 461 1/84 3. 665 7e-002 1. 000 6 7. 368 6e-002 0.999 9 1. 272 4e-004 1. 000 1

115 469 1/102 3. 018 5e-002 1. 000 5 6. 068 5e-002 0.999 8 8. 625 3e-005 1. 000 1

159 605 1/120 2. 565 5e-002 1. 000 4 5. 158 4e-002 0.999 8 6. 229 6e-005 1. 000 1

210 869 1/138 2. 230 8e-002 1. 000 4 4, 485 7e-002 0.999 8 4,709 2e-005 1. 000 O

269 261 1/156 1. 973 3e-002 1. 000 4 3. 968 2e-002 1. 000 0 3. 684 3e-005 1.000 0
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