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constants ¢ and C (in the sense of positive (1, 1)

1 Introduction forms), where wy, =dd| * |? is the standard Eu-

clidean Kahler form, d° :i(ﬁ —3d) and d is the
Let C be the complex plane and ¢:[0, o) —
usual exterior derivative.

R" a twice continuously differentiable function. )
For 0<<p<Ceo, the generalized Fock space F?

We extend ¢ to C by setti () =¢(|2]),z€C
¢ extend ¢ 10 y setting $() =g (| =),z consists of all entire functions f for which

such that "
: — b
cwo <dd‘¢ <Cus (D I f [ ped <JC ‘f‘ S d”U) oo,
holds uniformly pointwise on C for some positive where dv is the Lebesgue measure on C. It is
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clear that F% is a Banach space under the norm
[ ol ,,if 1<p<<eo. For 0<<p<1, F} is an F-
space under d(f,g) = Il f—g | 5,. And also, F}
is a Hilbert space with Bergman kernel K, , (2)

and normalized kernel functions k., (z)

K., (2) .
VK (w,w)

the Fock-Sobolev space is a special case of the

It’s well known that, for example,

space Ff with ¢(2) :%\zv —mlog|z|.

Note that we will write A=<DB for two quanti-
ties A and B if there exists an unimportant con-
stant C such that A<<CB. Furthermore, B=<A is
defined similarly and we will write A~B if A<B
and B=<A.

For z€C and >0, let D(z,r) ={w€C:|w
—z| <r}. It follows from Schuster et al™’ that
there exist positive constants ¢ and M, depending
only on ¢,C such that for all z,w€&C,

| K, (z,w) e #9e ¥ <Me "= ¥ <M (2)
and, in addition, there exists positive constant 7
such that

K, (z,w) e P e ¥ =MK,(z,2)e #2 =M

(3
for z€C and w € D(z,r,). With above results,
we have

K,(z,2)~e?** ,z€C 4)

If H is a holomorphic function space on C,
we can define the Volterra type integral operator

on H induced by a holomorphic symbol g as
Vof @)= | fag @,

Pommerenke?! characterizes the boundedness,
compactness, and other operator theoretic proper-
ties of V, in terms of function theoretic conditions
on g in 1977. There are a lot of interest following
works about operator V,, for instance, Aleman et
al®* on Hardy and Bergmann spaces. For more
information, we refer to Refs. [ 5-7 ] and the ref-
erences therein. The Volterra type integral opera-
tor V, has an essential relationship with the mul-
tiplication operator M, (f) =gf by
M, () =f(0)g(0) +V, () +I, (),

where I, is the Volterra companion integral oper-

ator given by
Lf@= | f@gtwdu.

Let ¢ be an entire function and C,f = f(¢) be
the composition operator on the space of analytic
functions on C with symbol ¢. The induced prod-
uct of Volterra type integral and composition op-

erators is defined by
Veew = | £ g (o) duon

If ¢(2) ==, then these operators are just the usu-
al Volterra type integral operators V,. As will be
seen later, the study of V., reduces to studying
the composition operator C, when lg'(2)/(1+]|=2
[ )| behaves like a constant for all 2. Many opera-
tor experts have obtained rich results for this kind
of operators, referred to Refs. [ 8-12 ]. The
boundedness and compactness of weighted compo-
sition operators between different weighted Berg-
man spaces and different Hardy spaces expressed
in terms of the generalized Berezin transform are

[ 1% The equiva-

characterized by Cuckovic et a
lent characterization of boundedness and compact-
ness of composition operators on Bloch-Orlicz
type spaces of the unit ball can be referred to Ref.
[15]. Similar results were also obtained in Ref.
[16] for the same operator acting on the classical
Fock space F?.

In this paper. we obtain some equivalent
characterizations for the boundedness, compact-
ness, and Schatten-p class properties of the prod-
uct of Volterra type integral and composition op-
erators between generalized Fock spaces in terms
of certain Berezin transforms on the complex
plane C . By modifying all the results stated for
V. » one could also obtain similar results for the

Volterra type composition operators
Ve Cof (= | gD (g(ga))) due

For 0 <<p <o, if we choose the function ¢
such that

J se P ds<Too,
0

the p-distortion function of ¢ is defined by
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se PO ds

0 fenwn Osr=e

For p >0, the p-Berezin integral transform of g

90/;,¢(7'):

on generalized Fock space is defined to be
By (gl ()=

J Koy (@(2)) ’ .
c K, (w,w) vK;(z,2)

| g/ (D@, (2] [P du2).

2 Boundedness and compactness of
V(e.,w) On generalized Fock space

One of the main tools in proving our results
is the following theorem which comes from the
Corollary 11 in Constantin et al.’s paper-'".

A direct computation shows that

c<ap() =4 (=) + ‘(Jj“)gc (5)

for positive constants ¢, C. If the weight

function satisfies
im supf 2 =0.
then by LL'Hospital’s rule, we get
hrgsup@ =0, lirrrlaiupszs”(r) =0.
By the same way, if we choose that function such

that
lim inf$ 47 — 4,
then
lim :jﬂnf@ =teo, lim infg () =+ oo,

Obviously the above discussion contradicts the
condition (5). So we can see that the weight
function has a property that

i{n r¢ (r) =+ oo,

2

Moreover, ¢ (z) does not grow faster than | 2

and decay more slowly than | z|? at infinity. At
this time, it is easy to check that ¢(r)satisfies the
so called K ,-condition

d r) - . ) Je

—(re 7)) | se B ds

dr

R

<K
P ~=
)

for constant K >0. Then the following theorem
holds according to Ref. [17].
Theorem 2.1 Assume that 0<<p<<=c and ¢

is a function satisfying the K,-condition, then

| 1re re o doco~

| £ /}+JC | @1 | gy ([ 2659 dul)

for any entire function f.

The following estimate is important to our
main results.

Lemma 2.2 For each p>0, let x(,., be the
positive pull-back measure on C defined by

Lo ()=

Jm ¢/ (D (2]
for every Borel subset E of C. Then

Pe PP dy(z)

Jm "D e dp . (2) =By ( [g1?) ().

where D(w, 1) is the disc with center w and radi-
us 1.
Proof For each z € D(w, 1), by (2), (3)

and (4), we have

K;(z,w b
k(u,@(Z)p—;w

VK (w,w)
‘ /7K¢(z,z) ‘ Paceh@

This shows that

PICN| ()=
(& (p.p) \Z) =~
JD("{L’»l) Mg

Jum.n ‘ k“"¢‘(z) ‘ pdﬂ(p.¢> ()<<

jc ‘ ku¢(z) ‘ pdﬂ(/),¢) (Z)

The definition of the measure p,., and the inte-

gral transform By, (| g|?) give that

JC ‘ k(u-,¢) (Z) ‘ /)d/j(p,¢) (Z)~

JC ‘ k(w.g;) (4’[}(2)) ‘ /’efﬁﬁ(z)

& (D@, (1] ] 2du)~
By ( lg|?) (w).
The proof is finished.
Now we state our first main result.
Theorem 2.3 If 0<<p<{g<<cc and ¢ is an en-
tire function. Then
(1) The operator V.4 : F4—F4 is bounded if
) (w) € L7 (C,dv). More-

and only if By, (| g
over

Ve | ~ (supB. ( lg| D ) (6)
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(i) The operator V. : F{—F} is compact if
and only if

‘ iyi‘rrin(mS) (| gl (w)=0.

Proof (i) Suppose that the operator V., is
bounded. For 0 <<p <Cco, we can get from (2),
(3) and (4) that

[ oy |l 5,42

Jc | K, (z.w)

PemHOTHE dy () =<

J. e =l do(e) <.
C

On the other side,

(PR PWES

qmw,,,) ‘ K¢ (z,w)

1
»r ],

Pe W B dy(2) )

IV f 11565 [ ¥ o) JD( e

w,

JC | f(2) |1e #@ d’v(z)J

%gng.sﬁ) ( ‘ g ‘ q)(Z) H f H (/[>,¢9

D(z,1)

|

where the last inequality follows from the inclu-
sion I, CFj(p<q). Then it deduces that V., is
bounded and the formula (6) holds.

(i) Note that £, ,—0 as | w|—co uniformly
on any compact subset of C and | k.., [| =1 for
all w, then £, ,—0 as | w| —>co then weakly in F?
for 0<<p<<q. U V(,.41is compact,

O:‘ lim ‘ IV gp by |15

w | o
lim Bo.p (Lgl™ (.
It means that necessity follows.

Now we prove the sufficiency of the condi-

I:z = JC ‘fn(z) ‘de*(@ﬁ(z)B(‘p”ﬁ) ( ‘g‘ q)(Z)d“U(Z):

e qu,w(w)sjc | £

This means [l ke I ,.; 1. Thus, by applying
Vi.p on the normalized kernel functions along
with Theorem 2. 1,

By (121D () = | Vi by 185 =1.
Then we get the necessity part.

To prove the sufficient part, we extend the
techniques used in Refs. [ 6,16 ]. Combining the
definition of the measure p(,.4 » Theorem 2.1 and

Theorem 2. 1 in Ref. [ 18], we can get

| Vg f 14, L | fC) | ducyp () =

Le’”““" deegg.p (w) fnw | £ |17 #9 du(2).

Lemma 2. 2 and Fubini’s theorem show that

1o #® dy(z) =

‘e #9 By, (lg]) (du(x) =

tion. To this end, let f, be a sequence of entire
functions such that f,—0 weakly in F} for 0<<p<
q as n—> <, it means that f,—>0 as n—> <o uni-
formly on any compact subset of C and | f, Il ,.,
=1 for all n. Then, as proved in (i) of this theo-
rem, we obtain

[V fu 14.4=

J A€
c
For a fixed R>0, we set

‘e *9 B,y (| g (2 du(x) =1,

(] L +| ) @1 By (gl D (du) =Ly + e

|

Firstly, we estimate I,. Noting that sup B,
z€C

(lg|") ()<< and f,—0 as n—c° uniformly on

lim supl,; =lim supj

n—>oo 2] <

any compact subset of C, we can see that

| fu() [7e %@ B, (| gl (2)du()=
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lim sup sup | £, () ‘(’J\.,\(R e ¥ By (|g|D (D du()=lim sup sup |/, (2)

| =] <R

Secondly, we prove the similar conclusion for

the second piece of the integral I,;. It follows

4—>()

from the conditions | f, Il ,;, =1 for all n and

By ( | g| ") (2)—>0 as | z| =0 that

lim supl,; =lim supj - | £ [1e #@ B, (|g|") () du()=

n—>co n—>co

sup By ( [gl D lim sup | £, [14..

When R— oo, we see that the last expression in
the right hand above converges to zero and so
Vigw [0 In F§ as n—>co,

The conditions in both (i) and (ii) are inde-
pendent of the exponent p. However, p must be
less than ¢. Furthermore, V., is bounded (com-
pact) from F% to F} for some p=>0, then it is also
bounded (compact) for any p<q.

In general, it is difficult to characterize the
boundedness, compactness, or Schatten class
membership of a concrete operator with proper
Hilbert

spaces, the Berezin type transforms often are use-

conditions. For reproducing kernel

ful conditions, partly because we can know the

effect of their action on the kernel functions, this

is called the operator theoretic method. Howev-
er, nobody can completely interpret why, how
and when these conditions are effective. The
boundedness and compactness of V., are respec-
tively equivalent to

SUp | Vg ke g5 <<e2>
| lim H V(g.¢>/€z.¢ H q ¢ =0.

2| oo

A natural question is whether there exists an
interplay between the two symbols g and ¢ indu-
cing bounded and compact operators V.,. We
first observe that if g' #0, then by the classical
Liouville’s theorem the function g cannot decay in

any way. This forces that

By (| g\")(w)~JC | Koy (p(2)) [Pe B0 [ o/ (), (2] ) | Pdu(z)=

J e*sp | </1(:)*“w‘ e*pyﬁ CP(2) > —pgp(2)
C

|
is bounded only when ¢(2)=az +b with |a| <1.
Moreover, if |a| =1 then #=0, and compactness
is achieved when |a| <<1. Then the following
corollaries hold.

Corollary 2.4 Let 0<<p<<g<<co, g’ #0, and
¢ be an entire function. If Vi, : F—FY is bound-
ed, then ¢(z) =az+b with la| <1, Moreover, if
Vie.p is compact, then |a| <1 and H=0.

In general, the boundedness of operator
V (4. does not necessarily imply that the Volterra
type integral operator V, is bounded. This is be-
cause that the boundedness of the former allows g

to be any entire function that grows more slowly

g (D, (2] ]?dulz)

than the exponential part of the integrand in
{By.p (lgl?)(w)}, while the boundedness of
the latter forces g to grow as a power function of
at most degree 2, as can be seen below. By set-
ting ¢(2) ==z in the theorem, we immediately get
the following result.

Corollary 2.5
Fi—FY is

(1) bounded if and only if g(2) =az* +bz+c,
asb,ceC;

(i1) compact if and only if g(2) =az+b,a,b
eC.

Proof According to Theorem 2. 3 and condi-

Let 0<<p<<q<<oo. ThenV,.
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tion (5), we know that ¢, ( | 2] ) does not decay
slowly tha n ﬁ at infinity. Then |2az+b]g¢,.,

(| =]) is bounded on C. It follows that sggB(M)

(| g|?)(w) < eo. The sufficiency of the condi-
tions in (i) are proved. By the same discussion,
the sufficiency of the conditions in (ii) are imme-
diate. We shall sketch the necessity. By formulae
(2), (3) and (4)

By (gl (=

|, e ezl o=
FRCOrReL DL (7)
where
D(w,1) ={z€C: |z—w| <1}.
The boundedness of View implies

| g' (W)@, (|w]) | =1 for all weC. In terms of
the growth of ¢, ( | 2| ) at infinity and g is entire
function, the desired expression for g follows.

On the other hand, if V, is compact, then,
since ky.;—>0 weakly in F£(0<p<<c) as |w|—>
oo, we see from relation (7) that

&' (D@ (I2]) ][>0, 2] —>ece
This can happen only when g is a polynomial of
degree at most 1.

If ¢ as ¢(2) =Pz with |B] <1, then g can
have loose condition. More precisely, we get the
following corollary.

Corollary 2. 6 Let ¢(2) =gz with |g] <1
and 0<<p=<<g<<ce. Then V., :F,—F} is bounded

lim supl,; =lim supj‘ - | fu(2)
oo 2| <R

n—>co <

lim sup sup | £ ()
000 2| <R

if |g(2)| se®@ #® +eC.
For the case 0 <<q<{p <<=, we get the fol-

lowing stronger conditions.
Theorem 2.7 Let 0<<g<<{p<<oo

entire function.

and ¢ be an
Then the following statements
are equivalent;

(1) Vig.p : F5—F} is bounded;

(i) V. : FE—F} is compact;

(i) B,y (g (w) €L77(C,dv). Moreo-
ver

I Vigw | =CIByp (Ll Il iitae, doy )"

&

Proof It’s obvious that (ii) implies (i),
then we just need to show that (iii)= (ii) and (i)
= (iiD).

Firstly, if we assume that

By (1 g1 (w) €L (C.dv)
then we shall show that Vi, : F,—F} is com-
pact. Let f, be a sequence of functions in F sat-
isfying that f,—>0 weakly. This means that f,
converges to zero uniformly on compact subsets of
Cand | f, Il ,.,<<eo for all n. Then we proceed as
in the proof of Theorem 2. 3 until we get the e-
quation that I, =1, +1,. Since f, converges to

zero uniformly on compact subsets of C and
J\ € "By (gl (o) =

I B(¢,¢) (\g\q) [ Lp%q(c,drv) ,

we can see that

‘e By, (| g (D du(=

: J‘ By (gl D (Ddut)=
2| <R

=

lim sup ﬁ‘ﬁBR‘ L7 I By (Lg% (e, dw) =O.

In views of B, (| g

lim supl,; =lim s}lpj

n—>co

tim sup | £, 14, (]

|

when R—co, This shows that V., is compact.

Now our proof will be complete once we

> | >
2| =

p ]‘7)
i (By.p ClglD ) )/’%qdv(z)) !

1) (w) € Li*e(C,dv)and Holder’s inequality, we obtain

| £ ()
| =R

‘e By, (| g (D dvu()=

a

~>O,

To this end,
note that V., is bounded if and only if

show that (iii) follows from (1).
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JC | View f(2) [1e % du(z)~

JC | £ |7 (2).

However, it’s easy to see that

| 17 e 0=

JC | f(2)

where dA(,.p» () =e* dp ..y (2). The above ine-

quality means that dA(., is a (p,q) Fock-Carle-

qeiw(Z)d/\(q,ys) ()= | f [ ;{),yg ’

son measure. By Theorem 2. 8 in Ref. [19], this
holds if and only if

m(w):

K¢(Z7w) q
Jc K, (z,2) K, (w,w) dAg.p (2) €
L/)Jii (C9 d'U)

Substituting back dA¢., and du., s we obtain
from (2), (3) and (4) that

Agp (W)=

J qu(Z,w)
¢ | vVK;(z,2)Ky(w,w)

q
e dp gy ()

Jc (B ( lg|") (w) yitido(w)=

Je(f,

JC | g (), (|w

K, (¢(2) ,w)
K,;(z,2) K, (w,w)

) |7 du(w)

|

from which the desired restrictions on g, p and ¢
follow once we assume that the left-hand side of

above inequality is finite.
3 Essential norm of V, ,,on general-
ized Fock space

The essential norm || T |I, of a bounded op-
erator T on a Banach space B is defined as the dis-
tance from T to the space of compact operators on
H. We refer to Refs. [ 13-14,16,20-21 ] for esti-
mation of such norms for different operators on
Hardy space, Bergman space, L”, and some Fock
spaces. Here we estimate the essential norm of
Ve.pas following.

Theorem 3.1 Let 1<<p<<g<<<° and ¢ an en-

By.p (lg|® (o).

It remains to prove the estimate (8). Since
Aw.p 1s a (psq) Fock-Carleson measure, the series
of norm estimates in Theorem 2. 8 in Ref.
[19] yields

1View | 2=l Agp e, do) )7~
( 1By ( \g\ 9l e, do) )‘ll.
This ends the proof.

It is interesting to note that unlike condition
(i) of Theorem 2. 3, where we map smaller
spaces into bigger ones, condition (iii) above is
expressed in terms of both exponents p and q.
When ¢(z) ==z, the theorem simplifies to saying
that V, (for non-constantg) is bounded or com-
pact if and only if g’ is a constant ¢=>2p/(p +2)
and g'=0 for ¢<<2p/(p+2). This is because by

subharmonicity, we have

. e _
\g/(z)gop,ﬂ ‘ Z‘ ) “’dv(z))/ dv(w)=

tire function. If Vi, : F4—FY is bounded, then
Vi | g%(li‘m‘supBwhw (gl ),

Before proving Theorem 3. 1, we introduce

some useful lemmas. Recall that each entire func-

tion f can be expressed as f(z)= > axz", let
p

K, f(2)= 2 a;z" be the projection onto the sub-

k=0

space which is produced by {1,z,2*,+*+,2"} and
R,=I1—K,, where I f(2) =/ is the identity map.

Hence

R.f()= D) az".

k=nt1
Then we have

Lemma 3.2 Let 1<<p<{co, Then
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lim || Rnf [ Drd =0

n—>co

and

R, f (w) |0 uniformly on any compact sub-
set of C.
Proof By Corollary 3 in Ref. [22], we know

that there exists constant M such that
27 X

JO | K,.f (re")

for f(re") € H? (1 <<p<<oo), the Hardy space and

n=1. It follows from the use of polar coordinates

ﬂdthJ" | ety | P,

2
0

that for any function f in generalized Fock

space F%,

I K./, 5,= Jc | K, f ()] ?e #du(z)=
oo “2m
J o PO rer | K f (e | Pde<
0 0
M Irls,
for any n € Z*. Then Proposition 1 in Ref. [22]
shows that
lim | R,/ | p,¢:1Lf3 | f=K,f Il ., =0.

It is obvious that | R, f (w)

compact subset of C from the properties of Taylor

—0 uniformly on any

series of entire function,
By Lemma 3. 2 and the principle of uniform

boundness, we know that sup || R, || <<co, We

need the following lemma in proving Theorem
3. 1.

Lemma 3.3 Let 1<<p<<¢<<co° and ¢ an en-
tire function. If Vi, : F{—F} is bounded, then

Voo Rf 1= | IR |7y ()=

D(z,

Jceq¢<:> deeg.p (z)li‘m‘ sgpj

[ V(g,‘p [ «glir]grj}’lf | V(g.¢>R11 I
Proof
Noting that
Vigw =Vip (R, TK,) s
we have
[V —K I < VR, | +
Vi K, —K |l (9

for all n==1. It is easy to know that K, is compact

Let K be a compact operator on F%.

on 4, then V., K, is compact. It follows that
[ Vi K, | .=0 for all n € Z". Taking the infi-
mum over compact operators K and letting n—>co
in (9), we obtain the desired inequality.

Proof of Theorem 3.1
operator Q on F%} and noting that ||k, Il ,; =1

If taking a compact

and k.., converges to zero uniformly on compact
subsets of C as | w|—>co, we see that
[ Vi —Ql >l‘im‘ Sup | Vg kung = Qbug Il 4.9=

l‘im‘sup( IV kg g = 1 Qg |50 =

w | oo

hm sup H V<g,¢>/€u,,¢ H (1,‘#%

| w| —>oo
. 1
lim sup(Be.p (| gl )7,
Lo | ot
where the equality comes from compactness of Q.
This shows the lower estimate in the theorem.
Now we turn to prove the upper inequality.
For each unit vector f in F%, it follows from the

proof in Theorem 2. 3 that

|R,f(w) | 1e % dy(w) =<
r)

JC [Ruf () | 7e % B,y (| g | ) (o) dolee) =

q\w\,\»k +J\w\<R> |R.f (w)

Inl +I712 ’

‘e By (lg| " (w)do(w) =

where R is fixed positive number. We first estimate I,; as follows. Firstly, we have

I,= J R, f(w)
[w| >R

1e "B (| gl (w)du(w)= ‘ SRRRBM"” (gl (w),

since sup || R, || <<eo. It remains to estimate I,,. By LLemma 3. 2, we obtain

L,z:J R, f(w)
| w] <R

sup | R.f (o) |* supBy. (| ] ) (o) |
| w| <R wEC

lwl<

qefi,¢<ur>B(¢’¢) (| g | ) (w)do(w) =

e ¥ dy(w).
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|
from Lemma 3. 2 that sup

| wl <R

|R,f(w) |, n—>co. By Theorem 2. 3, it fol-
lows that I,,—>0 as n—><o. Therefore,

lim sup [V R/ 1i,=
n—>oo H_f‘ I’~¢(\:il

sup Ba.p ([gl") ).

It follows

By Lemma 3. 3, we get
I VepRof I1=lim sup B (|g]" (w)~
li‘m‘squw,gg (lgl (w).

This completes the proof.

4 Schatten p-class operator V, ) on
generalized Fock space

Let us now characterize the operator V., in
the Schatten p-class membership for 0 <{p<Teo,
A positive operator T on Fj is called the trace

class operator if

DA Teprer) =
k=1

ZJCT&, (e, (e #9du(z) <o,

k=1

where {e; };=; is some orthonormal basis of Fj.
We write the trace of T as Tr(T). H 0<{p<<co, a
bounded operator T on F;j belongs to the Schatten
class S, if the positive operator (T * T)** is in the
trace class. We denote the S, norm of T by
| T | 5, - For more information of Schatten class,
we refer to Refs. [ 23-24].

Proposition 4. 1 Let A be a Hilbert space
and T be a bounded operator from Fj to A.

(D I p=2 and TE€S,, then
JC | T, |l hdo(ae) < oo (10)
(i) If 0<<p<2 and (10) holds, then T €S,.

In general, the inverses of the two state-
ments above can not hold, for instance, Hankel
operators on the Hardy space H? in Ref. [ 25 ].
We are interested in whether the inverses still
hold for the product of Volterra type integral and
composition operators on F;. We will show the
inverses is indeed the case (see Theorem 4. 2). In
particular, T belongs to the Hilbert-Schmidt class

if and only if for any orthonormal basis {e; }3=; in

F,

ITI% = EJC | T" e, (2)|%e 22 do(z)=

k=1

JCZ ‘ <TK:.¢93/3> ‘ e ¥ du(2) =

s}
[ TR 1 doey < an

C
If T is any positive operator in the trace class

of F;, then
Tr(D) =T |§=

| T kg 15 oo =

[ (Thegohey) doteon.

We know that T belongs to the Schatten class S,
if and only if (T T)?” is in the trace class. Thus
Tr((T"T)")=

| FREG S YT SN S HIEDES
C

[ 1Tk 12060
for 2<<p<<eo, and
Tr((T T | Thay I14,doteo)

for 0 < p << 2. In particular, when T =V,

we have

[ 1Vip by 1 ydotar~

JC (Bp (1] ) ¥ do(w)

which gives the proofs of the necessity for p =2
and the sufficiency for 0 <<p <2 of our next theo-
rem.

Theorem 4.2 If 0<<p<<<o and ¢ be an entire
function. Then the bounded operator V., : F;—
F? belongs to S, if and only if B, (| g|?) € L??
(C,dv).

Proof The crucial step in proving the theo-
rem is to introduce a Toeplitz operator on Fj. Let
1 be a finite positive Borel measure on C satisfy-

ing the admissibility condition
JC | Koy () | 26729 du(2) <o (12)

for all z € C. Then we define the following To-
eplitz operator by

T,.f(z)= JCK“"*‘ (2) fwre #du(w)
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for each ¥ € C. Since the kernel functions are
dense in Fj, it follow by the admissibility condi-
tion and Hélder’s inequality that T, is well de-
fined. We observe that by Theorem 2. 1, the in-
ner product

(fsh)y=f(0)h(0)+
ch/(z)h (2) (@ay (| 2]))%e 9 du(2)

defines a norm which is equivalent to the usual
norm on F;. We prefer to use this norm since this
alternative approach has the advantage that it per-
mits us to easily associate the product of Volterra
type integral and composition operators with To-
eplitz operators.

For any f€F;, we calculate that

V7 Ve FD =V Vi [ K 4= Vi [V Keog 25 =
| F R @) | g/ o)

2

o(lwl) [*e #* du(w) =
ch(gb(w) YKy (2D 1 8" ) |7 [o(|w]) [Pe % do(rw) =

| PR e 0 dutp =T, f (o0,

|

Therefore, if V., is a bounded operator on F},
then we claim that V* (, ,V,.,) =T, where T, is
the Toeplitz operator induced by the measure

du(2) =¢o¢ (D dv(2),
where

£ =& D1 [y || |2evcromo,

For such particular measure p, the admissi-
bility condition (12) holds whenever V., is
bounded on Fj. Denote the associated Berezin
symbol 7z of . by

2(2) =T kg skey) .

Then the results from Ref. [ 26 ] show that the
Toeplitz operator T, belongs S, if and only if z
belongs to L?(C,dv) for each 0<{p<Tco,

On the other hand, V., belongs to S, if and
only if V" (.5 V., belongs to S, (see Ref.
[23]), and this holds if and only if gz (2) =

I'Vigpkey |5, belongs to L?*(C,dv). It is easily
seen that

IV igpkeys I15.5~Bgy.p (I gl*) ).
Thus the result of this theorem holds.

Corollary 4.3 Let p>2 and V, be a compact
operator on Fj. If ¢, , € L?(C,dv), then V, be-
longs to S, for all p>2.

Proof 1f V, is a compact operator, then by
Corollary 2. 5. g’ =C, a constant. By (2) and

Holder’s inequality, we have

JC (B(¢.,¢> ( \g\ () )gdv(z) =
‘g
Ldy@(Jc Ce? el gl (JwDdu(w) ) =

JC90§~¢( | w] ) dv(w) <eo,

If V, belongs to S,, then the above integrals
should converge for all p>2.
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