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Global dynamics of a planar Filippov system with a regular-SN
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Abstract: In this paper, we investigate the global dynamics of a planar Filippov system with a regular-SN
for general parameters not required to be sufficiently small. By analyzing the qualitative properties of the
pseudo-equilibria, tangent points, equilibria at infinity as well as all kinds of periodic orbits, we obtain
the global bifurcation diagram with eight bifurcation curves and give all global phase portraits in
Poincaré’s disc. Some new bifurcation phenomena which do not appear in the case of small parameters is
finded.
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. tems with dry friction'” and neural activities™,
1 Introduction . . . iy
Consider a two-dimensional Filippov system

{f"(f»y;a) if hi(x,y;a) <0,
3 fRxsysa) if h(x,y;a) >0
where ¢ € R” and h (x, y;a) =0 is the unique

Filippov system consists of a finite set of e- T
@b

quations
& =f"(x),x€GCR",

where G; (i =1, +*+,m) are open regions separated

switching manifold 3. Usually, /& (x. y; a),

by some (n—1)-dimensional submanifolds in R". (. ) are called the left half vector field and

These submanifolds are usually called switching the right half vector field, respectively. Bifurca-

manifolds any practical applications use Filip tion analysis is one of the most important subjects

pov system, such as electronic™, mechanical sys-
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in qualitative analysis of differential systems. In
recent years, there are many results for smooth
differential systems. As in smooth systems, man-

[ 45) can be

y interesting bifurcation phenomena
observed as the parameters of system (1)change.
A special form of system (1)

v—at )
( ), if x—p<0,
-y

= 1 (2)
( 0 ), if x—p>0

y

was investigated near the origin O: (0,0), where
(psv) €R* and p,v are sufficient small"*. Notice
that the switching manifold in system (2) is a
vertical line = = p, so that the projection of
(v—a*, —y)T in the direction of the normal vec-
tor of switching manifold is a constant v — o’
Thus, it is not hard to obtain that the whole
switching manifold is either a sliding region if v—
0’ >0, or a crossing region if v—p* <0, or a set of
tangent points if v—p" =0.

There are some interesting problems-®*

, for
instance, how about dynamical behavior for gen-
eral parameters, how about dynamical behavior
for non-vertical switching line, how about the
global dynamical behavior. Motivated by these in-
teresting problems, in this paper we investigate
the global dynamics for system

v—x*
J( )9 if x—ky—p<0,

x —y

3

1
l ( 0 ), if x*ky*p>0

where (p,v,k) €R’ and £#0. By transformations

y

x—>x,y>y/k, system (3) is equivalently rewrit-
ten as
v—at\ .
( B ), if x—y—p<0,
= 7 )
( 0 ), if x—y—p>0

x

y

where (p,v) €R*. When p=v =0, the origin O:
(0,0) is a regular point of the right half vector
filed and a saddle-node of the left half vector
filed, hence, we call O as a regular-SN of system
(4). We equivalently investigate the global dy-

namics of system (4) for general (p,v) € R* and

obtain the following result.
Theorem 1. 1

system (4) is shown in Fig. 1 and consists of the

The bifurcation diagram of

following curves:
(1) the boundary equilibrium bifurcation curves:
Eni={ ({Oav) ER? |v:p2 ,p>1/2} ,
Epi={ ({O,YJ) ER? |°U:loZ ,O<p<1/2} .
Ex={(0s0) ER? |[v=g ,p<0}
(i1) the double tangency bifurcation curves:
DT ={(ps0) €R® |u=p—1/4,0>1/2}
DTy={ (o) ER [v=0—1/4,1/4<0=<1/2} ,
DTy={ (p,v) ER? ‘U:p*1/4,p<1/4} ;
(ii1) the saddle-node bifurcation curves;
SNi={(psv) ER*[v=0,p>1/4},
SN:={(p,v) ER*|v=0,0<p<<1/4}.
Global phase portraits of system (4) are given in
Fig. 2, where A,B,C lie at (0,0),(1/4,0),(1/2,
1/4) respectively, and
1={(p,v) €ER* |max{0,p—1/4} <v<p’,
O<‘0<1/4},
1:={(p,v) ER*[0<v<p—14,1/4<p},
[I:={ (osv) ER* |[p—1/4<<v<p",1/2<p},
V:={(psv) ER*[0<v, — Vo <p< v},
Vi={(psv) €ER*[p—1/4<v<max{0,
—sgn(p)p’ }sp<<1/4},
VI:=={ (p>v) ER* [v<<min{0,p—1/4},
—co<Lp<<oo),

Fig. 1 Bifurcation diagram of system (4)

Note that (p, v) is considered generally in
R%. We observe some dynamical behaviors which
can not appear in the case that p,v are sufficiently
small'®’. On the other hand, our result is global

dynamics, not only restricted in a small neighbor-
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hood of the origin O. ippov systems. In Section 3, we give some lemmas
This paper is organized as follows. In Section and finally provide a proof for our Theorem 1. 1.

2 we recall some definitions and theory about Fil-

Fig. 2 Global phase portraits of system (4)

.. . hing manifold 3. Depending on the sign of nor-
2 Preliminaries . .
mal components of left half vector field and right
In Filippov system, we always focus on the half vector field, we split 3 into crossing region 3¢

result of how the orbit interacts with the switc- and sliding region 3 as
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% 59 &

v K FRCH KA F O

%34

S ={(x,y) € 3| Lth « Lxrh >0},

> ={(x.y) € Z| Lph « Likh <0},
where L ={grad(h), f is the Lie derivative of
h with respect to the vector field f. For (x,y) €
>¢, since the normal components Lth and Lx&h
have same sign, the orbit reaching (x,y) from G,
(G, ) concatenates with the orbit entering G,
(Gy). That is why we call 3° as crossing region.
For (x,y) € 3", since the normal components L +h
and L&h have opposite signs, so the orbit reac-
hing (x, y) slides along the switching manifold
> . By Filippov convex method!, the sliding vec-

tor field fSthat governs sliding motion is given by

FS=2 P R (5)
where
N Lx&h

CLgh =Lk
Denoting the numerator of f° by p(x,y), i.e.
plar,y)i=fR o Loih —f“« Lirh,

In order to figure out dynamics of Filippov
system, as classic odes, we have to analyze singu-
lar points. According to Filippov’s approach"',
local singularity is caused by the vanishing of
some functions such as f*, f®, h, p,Lih,Lxh
for system (1). Point (z,y) €G; (Gg) is called an
admissible equilibrium if f*=0 (resp. f%=0) is
satisfied at that point and called a virtual equilib-
rium if % =0 (resp. f*=0) is satisfied at that
point., Point (x, y) € 3 is called an admissible
pseudo-equilibrium (resp. a virtual pseudo-equi-
librium) if Lth » Lrkh 0, fRX « Lih —f* « Lxh =
0 are satisfied at (x,y) € 3" (resp. (x,y) € 3 ).
Point (x,y) € 3 is called a boundary equilibrium
if f£-=0 or f® =0 and called a tangent point if
Ljh « Lx&h =0 and f*#0, f* #0. Moreover, if at
point (x,y) € 3 we have

Ljih =0, Lih #0, Lxh#0
and call it a fold. A fold is visible if Lj-h <0 and
invisible if L7 7 >0. Similar definitions hold for
the vector field f%. If at point (x,y) € 3 we have

Lph =Lih =0, Lith #0. Ljkh #0 (6)
we call it a cusp or a double tangent point. Simi-
lar definitions hold for the vector field f¥.

For system (4), we have grad (h) =

(1,—DT, so that
Lih=v—a®+y Lrh=—1,
where
[ layysv) =(v—a%, — 7T,
Ry y;0)=(—1,00T,
h(x,y;0) =x—y—p.
According to definition of sliding region 3' , we
obtain it by solving inequality v—x% +y=0. Let
Kios=1x/1-4(p—).
By a straight calculation we get 3* = & if v<<p—
1/4 and

K, K,
DL
2 ST =7

r—y—p=0} 7
if v=p —1/4. The boundary of the sliding

region is

s = {u,y) € R

> :{(x,y) ER |x:%91*y*p:0 ,

which consists of boundary equilibria and tangent

points. By (5) we have

—k

s :7#% ( —1)’
from which we get f° =0 if and only if (x,y) =
(0,0). By (7). we have the point (p,0) is an ad-
missible pseudo-equilibrium if and only if

T e P S R ey

v>{0*1/4,

1. e.s "u>{02.

3 Proof of the main result

In order to prove Theorem 1. 1, we give
some lemmas firstly, By straight calculation, the

left half vector field f*(x,y;v) has no equilibria
if v<<0 and has equilibria( + v ,0) if v=0. Fur-

thermore, since the Jacobi matrix of f“(x,y;v)
at( +/v,0) are

[ F2Vu 0 }

o -1

#* has a stable node (Vv,0) and a saddle ( —+v,0)
for v >0 and a nonhyperbolic equilibrium (0, 0)
for v=0.

Lemma 3.1 In the case v>0, system (4)
has a saddle and a stable-node if v<<p* and p>>0, a

031001-4
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saddle if v>p", and no equilibria if v<<p’,p<<0.
In the case v=0, system (4) has a saddle-node if
=0 and no equilibria if p<<0. In the case v<<0,
system (4) has no equilibria.

Proof In the case v >0, f* has a saddle
(—+v,0) and a node (Vou,0) if v=>p", i e,
— ﬁ<‘0<«/;. We get

h(—v,050) = v —p<0,

h(Jo.050) =+ —p=>0.

It implies that ( —+/v,0) is an admissible equilib-
rium and(vv,0) is a virtual equilibrium. There-

fore, system (4) has a saddle( — v ,0)for v>p.
If v<<p*, we obtain

h(—v,050) = v —p=<0,
h(Jo,050) = Vo —p<<0

for p>«/;>0, and
h(—0,050) = Vo —p>0,
h(Jv,050) =Vv—p=>0

for p<< — Vv <<0. Therefore, system (4) has a
saddle and a stable node if v<<p*,0<p, and no
equilibria if v<<p*,p<<0.

In the case v=0, f" has a saddle-node(0,0).
Then h(0,050) = —p<<0 if 0=>0 and h(0,050) =
—0>0 if p<<0. It implies that system (4) has a
saddle-node for >0, no equilibria for p<<0.

In the case v<C0, system (4) has no equilib-
ria because f“has no equilibria.

Notice that if v=p", there is an equilibrium
(0s0) of /" onX, so that /=0 and h =0 at
(0,0). This is to say, (p,0) is a boundary equilib-
rium of system (4) if v=p’.

In the following we analyze equilibria of sys-
tem (4) at infinity. Using Poincaré transforma-
tions x =1/2, y =u/z, which change the infinity
of the xy-plane to the u-axis of the uz-plane. We

write system (4) as
€))

where dr=d¢/z, and find that on the u-axis (8)

has a unique unstable star node A:(0,0) for each

(0sv) € R*. Thus system (4) has an unstable
node at infinity I; on the positive part of r-axis,
and a stable node at infinity I, on the negative
part of xr-axis.

By Poincaré transformations x = w/z, y =
1/z, which change the infinity of the xy-plane to
the wraxis of the wz-plane, system (4) is trans-
formed into

dw ; P
— Wz wz o4 2 ’
dZ

€

where dr =dt/z. Since the equilibrium at the ori-
gin of system (9) is degenerate, we use classic
normal sector method to analyze it as in Ref.
[10]. Let P(w,2)=wz —w’ +vz?,Q(w,z)=z".
By polar coordinates transformations w = rcosf,
z=rsinf, we write system (9) in polar form and

from which obtain an equation

1dr H®@®
rdd G@°
where

G() =sinf cos’)—wv sin*0,
H(®) =sin*d+sinfd cos’d —cos’§ +
v sin”fcos.

As shown in Ref. [10], exceptional direc-
tions are determined by zeros of G(#). It is not
hard to check that G(#) =0 has exactly two real
roots 0 and w if v<<0, four real roots 0, /2, ©

and 37/2 if v=0, and six real root 0, .

arccot ( = +/v) and arccot( £ o) +x if v>0.
Lemma 3. 2

(Vo) s wand arccot (Vov) +mxs as r—>+ o or r—>

—oo, system (9) has a unique orbit approaching

(0,0). In the directions §=1/2, arccot( — Jv),

In the directions § =0, arccot

37/2 and arccot( — vv) + x, as r—> + = or r—
—oo, system (9) has an infinite number of orbits
approaching(0,0).

Proof Since

G'(OHO) =G (mH(p =—1,
by Theorem 3. 7 of Chapter 2 of Ref. [10], sys-
tem (9) has a unique orbit approaching (0,0) as
>+t or t—> — oo in the directions § =0, &

Then we investigate §==/2, which only appear in

031001-5
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the case v=0. By the transformation ¢ =0— /2,
we obtain that G (§') = cos ¢ sin* . Since the

Taylor expansion of G(§)is

o @,
(;(@)—[1 5 0.;:]
3 2
[6/ (0) Thoo ] ’
i.e.. GO :((9 )2 4+ h. o. t. As shown in Ref.

[12], in direction 8 ==/2, system (9) either has
an infinite number of orbits approaching (0,0) as
7—> + oo or r— — <, or no orbits approaching
(0,0) as > =*co. We obtain

dw
sz‘ —wz w ’
(10)
£
dr

in the case v=0, and system (10) has a solution
w=0. Because of dz/dr>0(z#0), we find an or-
bit leaving(0,0) as t— + o in direction § = =/2.
Therefore, system (9) has an infinite number of
orbits approaching (0,0) as r— — o, in direction
0=m/2. Similarly, we can prove the conclusion of
0=3x/2 in this lemma.

Let

0= arccot(/u) € (0, /2),

0y'= arccot( — v) € (/2,1 ,

0= arccot(Vv) +x€ (7, 37/2),

0= arccot( — o) + € (3n/2,2/70.
Clearly, 6, =arccot( ,/y ) implies cot 0, = Ju ,since

G () =cos’0—2 sin*fcosf —3v sin*fcosh
and sin ¢, >0,v>0, we have

G/(gl) :*ff

H(,) =sin*g, (v+1) >0.
G (9,)H () <0, by theorem 3.7 of Chap-
ter 2 of Ref. [10] system (9) has a unique orbit

Since

approaching (0,0) as — +c© or r—> —©© in direc-

tion =@,. We consider the case @, in the follow-

ing, which implies that cot 6, = — . Similarly,

G’(@)—Zf

(v+1)>0,

H(9,) =sin*0, (v+1) <0,
where sin 0, >0. Because G’ (0,) H(,) <0, in the

directions 0, = arccot( — Jv) as ¢—> + == or r—

—oo, system (9) has an infinite number of orbits
approaching (0,0). We can also prove the conclu-
sion of 0=0;, 0=0, in this lemma by the
same way.

Lemma 3.3 For the case v>p—1/4, v#p’,
the fold (K, /2.K,/2—p) of f* is visible if p=1/2
v<p’, and is invisible either p<<1/2 or p>1/2,
v>{02; the fold (K,/2,K;/2—p) of f*is visible if
p<<1/2, v<<p’, and is invisible either p>1/2 or
p<<1/2,0" <w. There is a visible fold (1 — p,
1—2p) for v=p",p#1/2, and a cusp (1/2,1/2 —
—1/4,p#1/2. There are no tangent
points for v<<p—1/4.

Let T,y Ty, Ty be (Ki3/2,K,/
2—=p)s (I—ps1—20), (1/2,1/2 —p), respective-
ly. We obtain that system (4) has tangent points
T, ., for ‘U>p—1/4,717ﬁp2 , T, for ‘U:‘o2 ,{07ﬁ1/2,
and T, for v=p—1/4 by solving equation L h =

p) for v=p

Proof

0. Then we need to judge the sign of L.h at T,
i=1,+ ,4, where Lith = —2xv+2 2* —y.
Firstly, we analyze the tangent point T with
conditions v=>p—1/4,v#p’. By straight calcula-
tion, we have
Leh |y, :%_({0_%)[9
where ¢ = m Since Ljh |1, =0 has
two real roots ¢t =0,20 —1, if p<<1/2 we obtain
Lih |1, >0 for t>0. This is to say, T} is an in-
visible fold of f“. And if o >1/2, we have
Lith |1, >0 for t>1—2p and Lih |1, <0 for 0<<
t<<1—2p. Moreover, because
’U<p2:>4”0<4 p2:>1 *4p+4v<(1 *2‘0)2$
V1—dptdv=1<1—2p,
we get LiLh \Tl <20 and T)is a visible fold for v<<
p’. On the other hand, since
v>p=>4v >4 P =1 —4dp 4> (1 —2p) "=
«/m =t>1—2p,
Lih |1, >0 and T is an invisible fold for v>p".
We can prove the conclusion of T, by the
same strategy.
System (4) has a boundary equilibrium (p,0) €

2

93" for v =p’. Further, we obtain that another

boundary of switching manifold T;:(1—p,1—2p)

031001-6
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is a tangent point if v=p",p#1/2. The visibility
of Ty is determined by the sign of Li.h, Since

Livh |7, =(1—2p)%,
Lith \»1«3 >0 for p#1/2, i. e., T; is an invisible
fold for v=p", p#1/2. We have Lth [, =0 if
v=p—1/4,p7#1/2. Furthermore, by

Lith=—2v"+8 2*v—6 2 +y,
we get Lith = —2 (p—1/2)* <0 at T,. There-
fore, according to (6) T, is a cusp for v=p—1/4,
p7#1/2. Finally, since 3 = for v<<p—1/4, there
is no tangent points,

Lemma 3.4 System (4) has no periodic orbits,

Proof Suppose that G:=={(x,y) |h(z,y;v) <
0} and Gy:={(x,y) |h(x,y;0v) >0}, which denote
left half plane and right half plane respectively.
Based on the regions where periodic orbits exist,
we need to consider three scenarios as follows.

At first, periodic orbits exist in whole G, or
G, without sliding segment, i. e. , system (4) has
standard periodic orbits. By well-known conse-
quence of index theory, which figures out periodic
orbits in a continuous, planar vector field must
encircle at last one equilibrium. Since there are no
equilibria in right half vector field f%, standard
periodic orbits exist in G;if they exist. As in the
proof of Lemma 3. 1, there are three scenarios a-
bout equilibria of system (4). By index theory we
get that the standard periodic orbits of system (4)
can not encircle a saddle. Since the number of hy-
perbolic equilibria inside a periodic orbit is odd, it
cans not encircle a saddle and a node simultane-
ously. By Lemma 3. 1, system (4) has a saddle-
node (0,0) for v=0,p>0. Notice that =0 is an
orbit of system & = —2z%, ¥y = —y. Thus, there
is no periodic orbits surrounding the saddle-node
(0,0) for system (4). Since the right half vector
field f* =(—1,0)T, any orbit starting in G, can
not go back to G, after entering into G,. There-
fore, system (4) has no periodic orbits existing in
both G, and G,.

Then, suppose that system (4) has a sliding

periodic orbit ', i. e., I'N 3" # &, and the interi-
or of T" is denoted by int(T") CG,. Since Lxh =
—1<0, we get Lt h >0 for each point on 3.
Therefore, orbits which start at I'() 3" are unique
in the forward time, and leave 3' at a tangent
point T. Since f (T, 1 ) Cint(T)is bounded,
where f (T, I ) denotes the negative half orbit
which is started at the point T, the o-limit set A
of f(T,I) is either an equilibrium or a periodic
orbit. Since system (4) has no standard periodic
orbits in Gy, the ¢-limit set Ay of f(T,I) is an e-
quilibrium which can be a saddle, a node or a sad-

dle-node, i. e., the sliding periodic orbit ' must

surround an equilibrium. Notice that z=+%v is an
orbit of left half system, therefore, I" can not en-
circles a node.

Finally, the results of saddle and saddle-node
can be proved similarly.

Having Lemmas 3. 1~3. 4, in the following
we give a proof for Theorem 1. 1.

Proof of Theorem 1. 1
equilibrium bifurcation curve v = p’ by Lemma

3. 1. Indeed, if p>>0, system (4) has a boundary

We obtain boundary

node for v=p". As parameters p,v change, sys-
tem (4) has a stable node for v<<p’and a stable
pseudonode (p,0) for v=>p’. If p=>0, system (4)

has a saddle ( —%,0) and a stable pseudo-node
(0,0) for v=>p’. Those two equilibria become a
boundary saddle when v=p*and both vanish when
v<p’. By Lemma 3. 3, we obtain double tangency
bifurcation curve v =p —1/4. System (4) has a
cusp(1/2,1/2 —p), which divides into a visible
fold and an invisible fold as parameters change in-
to v=>p—1/4. There are no tangent points for v<
p—1/4. Thus, we obtain the boundary equilibri-
um bifurcation curves, the double tangency bifur-
cation curves and the saddlenode bifurcation
curves in bifurcation diagram as shown in Fig. 1.
As shown in Lemma 3. 2, f* has an unstable
node I{ on the positive part of x-axis, a stable
node Iy on the negative part of x-axis, and two
degenerate equilibria I} on the y-axis. Ix , I are

shown in Fig. 3.
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