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Stochastic resonance of a time-delayed fractional oscillator with
fluctuating frequency and signal-modulated noise
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Abstract; In this paper, stochastic resonance (SR) of time-delayed linear fractional oscillators subjected
to both frequency-modulated and signal-modulated noises is investigated. By using the (fractional) Sha-
piro-Loginov formula and Laplace transform technique, the analytical expression of the output amplitude
gain (OAG) is firstly derived, and the dependence of OAG on the system parameters such as fractional
order, time delay and the parameters of noises is explored. It is shown that every dependence is non-
monotonic, say, generalized stochastic resonance (GSR) happens. Particularly, cooperation of fractional
order and time delay may result in diverse GSR behaviors of the system. In other word, the GSR behav-
iors can be controlled just by the system parameters.
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1 Introduction

Since the term “stochastic resonance (SR)”
was originally coined by Benzi, Sutera and Vulpi-
ani " in 1981, SR has become a popular research
topic due to its widespread applications in biolo-
gy, physics, chemistry, engineering science, and
even economics**. As a counter-intuitive con-
cept, SR utilizes noise instead of eliminating it to
improve signal-to-noise ratio (SNR) of nonlinear
systems, which reflects the fact that noise can
play a constructive rather than destructive role in
stochastic systems. Early researches on noise-in-
duced SR focused primarily on those nonlinear dy-
namical systems with periodic signal and additive

[6, 7]

noise Subsequently, many studies have

shown that SR can occur in linear systems with

110) - Additionally, general-

multiplicative noises
ized SR (GSR), as the extension of SR, was in-

troduced by Gitterman to depict the non-mono-

tonic dependence of output amplitude of system

steady response on the system parameters-% ',

In recent years, the discovery of anomalous
diffusion in various fields has led to the study on
numerous {ractional stochastic models"'*'', in
which the linear fractional models with noise have
been of particular interest due to their ease of the-
oretical analysis compared to the nonlinear frac-
tional stochastic models. Subsequently, the frac-

tional oscillators ( FOs) with mass fluctua-

[15-18] [19. 20]

tion , damping fluctuation or frequency
fluctuation’?**’ have attracted considerable atten-
tion, and their GSR phenomena have been exten-
sively investigated. The majority of existing re-
searches investigated the GSR behavior induced
by additive and multiplicative noises. However,
in the case of signal-modulated noise in optics and
radio astronomy, the noise is often modulated by
signal”). Recently, close attention is paid to
GSR in the FOs subjected to signal-modulated

25321 - For instance, He et al.™ and Lin

noise
et al.'” investigated the bias-signal-modulated

dichotomous and trichotomous noise induced GSR

phenomena in the FOs with random frequency re-
spectively. Additionally, SR behaviors induced
by the signal-modulated noises were also studied
in the FOs with random mass or random damp-

29311 and the collective resonance behavior in

ing
coupled FOs subjected to noisemodulated external
periodic force was studied in Ref. [32].

Moreover, time delays are inevitably present
in nature due to the finite transmission speed of
information and energy"*!. In some complex sys-
tems, time delay is an important factor that can-
not be ignored in the study of dynamic problems,
and even a small time delay can qualitatively
change the dynamical characteristics. Therefore,
stochastic time-delayed models have been em-
ployed to simulate and analyze the dynamic be-
haviors in scientific and engineering fields "%,
However, few literatures have considered the
synergy in the time-delayed systems with the fre-
quency fluctuation and signal-modulated noise.
Hence, in this paper, we propose a time-delayed
FO subjected to frequency fluctuation and signal-
modulated dichotomous noise, here the noises are
exponentially correlated. Then, we study the
GSR behaviors and the nonlinear effect of time
delay, and further reveal the cooperative mecha-
nism of fractional order, time delay and noise pa-
rameters.

The remainder of this paper is structured as
follows. We propose the system model and derive
the analytical expression of the output amplitude
gain(OAG) in Sections 2. The numerical results
and discussion are presented in Section 3. A brief

conclusion follows in Section 4.

2 The model

We consider a time-delayed fractional har-
monic oscillator described by the following sto-
chastic differential equation (SDE) :

(D) +y D () +[w +6, (D) Jx(t—7) =

E (W[ 1+Rcos(Qr) ] +¢0) @YD)
where x(2) is the displacement of Brownian parti-

cle at time ¢z, ¥ >0 is the damping coefficient, w
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represents the system intrinsic frequency, >0 is
the time delay, and &, (z) [1+Rcos(z) ] is a bi-
as-signal-modulated noise. In various physical and
biological environments, viscous media usually
have power-law memory which represents the de-
pendence of the viscous force on the velocity his-

[38]  Therefore, the viscous force

tory of particle

here is defined by fractional derivative y § Dx(z) =
‘ 1

yj JTA -

to form. The internal noise term {(z), defined by

— ) “x(s)ds with g-order Capu-

¢(t) = V2T %BH (1), is a fractional Gaussian
noise (f{Gn), here By (#) is the fractional Brown-

ian motion with Hurst parameter H =1 —%. In

addition, the internal noise £(#) shares the same
origin as the damping force of the system ', and
then £(¢) is supposed to satisfy the generalized

second fluctuation-dissipation theorem(FDT) M%7,

(e(t)) =0, <§(t)§(s)>—L\z—s\’

ra
(2
where the average { * ) is taken over an ensemble
in thermal equilibrium, kg is the Boltzmann con-
stant, and T is the absolute temperature. In addi-
tion, the frequency fluctuation &, (¢) and signal-
modulated noise &, () are modeled as symmetric
dichotomous noises, taking two values & (¢) €
{ —6is0;},i=1,2, and have the following statisti-
cal properties:
(€:(D)) =0, (&, (DE () =gle W1,
(£ (D&, () =(6/(DE(D)) =150 s 117!
(&)
where ¢¢ and ); are the noise intensity and correla-
tion rate of & (¢) (i =1,2), Ascharacterizes the
correlation rate between &, (¢) and &,(t), respec-
tively. We further assume that they are uncorre-
lated with the additive {Gn term
&1 (DEs)) =& () E(s)) =0.
Particularly, for =0, Eq. (1) turns into the FO
with signal-modulated noise, and it had been in-
vestigated in Ref. [ 27 ].

Performing an O (z?) Taylor expansion a-

round =0 on the function x (¢t —7), Eq. (1) can
be equivalently given by the following form with-
out time delay:
W) +ySD () +w? &) ] -
[ —7i () ] =6 @[ 1+Rcos(Qu) ]+¢(D)
D
It should be noted that Eq. (4) is an approxima-
tion to Eq. (1) only in the situation of small time
delay. In order to analyze the system steady re-
sponse, we average Eq. (4) and have
(D)) +yiDa(@)) tw*{x () +
EWx() = () —(& W x()) =0
(5)
Meanwhile, we multiply both sides of Eq. (4) by
&, (¢) and then average all the terms, thus obtain
(EWx@) +7& D tx (1)) +
w* (& WD) ot (x (D) —
o’ & x(D)) —oirla () =
o102 1 tRcos(Qt) ] (6)
For splitting the correlations, we employ the Sha-
piro-Loginov (S-L) formula'*"’, which reads as

dI(t) d " .
>—(dt +A,> (&), i=1,2

& @

)

At the same time, applying the fractional S-L for-
mula™? to the term (&;(0)§Dx(¢)), we have

(& WD (D)) =e WD (& W a())e),

i=1,2 8

Substituting S-1. formula (7) and fractional S-L.

formula (8) into Egs. (5)(6), we obtain the fol-

lowing fractional differential equations:

(i —w fjwowa >x1(l)+

[1ff(d9+,11)]xz<z):o,
6%(1 dt)m(zw[(%ﬂl)z—

(i ) ﬂf}@(z) +

ye MDD (a2 (D) =16, (1 +FReos(Qt) )
D
with 1 (¢) &2<x (1)) and x, (2) &2& () x ().

Then we perform Laplace transform on Eq. (9)

and obtain
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[s* —wits tys Tw? ] X, () +
A —zs—A) X, () =by s

A (1—)X () H[GHA) —w’c(sTA) +
y (s T tw? 1 X, () =

1 Rs

)H)z
(10)
N +eo
where X;(s) = Yz, (1)} = J x: (e ¥dt is the

0

Laplace transform of x;(z), i =1,2, the coeffi-
cients b; and b, are respectively given by

b =(s+tys P —wit)x(0) —7rx,(0) +25(0),

by =it (0) +[s+2A Ty (s +A) ! —

w?t ], (0) +2,(0),

with initial conditions x;(0), x;1,(0) =,(0), i=
1,2. Obviously, all the solutions X, (s) of Eq.
(10) can be uniformly obtained. Specially, we
mainly focus on the first-order moment of system
steady response in present work, thus X, (s) can

be written as

1 Rs
X] (S) = H]()(S) <T Jrsz +QZ )+
4
Z Hlk(s)x,\,(O) (11)
k=1
with
H,, = 7a]i(71(72 ,
apdz —Adpzdsz
H _an(s —wlrtys ) fandit
1= — ’
andy —dpzdz
1, ——GnTdn [s+2\ —w’cty G ]
12 ands; —dizds ’
Hy; = aiz ’
apdyz —drpzdsy
Hy, = L

Anndsy —dArzdz ’
an =5 —wlrs tyst tw’,
ap =1—s—7A1
an =aoi (1 —s),
an =(s+A)" —w’t(s+t1) +
Y (s+A)° waz-
Finally, we apply the inverse Laplace trans-

form and obtain

<ﬂw>:nu>:ﬁmwrﬁvu+

4
Reos (Q' ) de" + D hy (D)2, (0) (12)
k=1

where H,, (s) are the Laplace transforms of
hlk(t)$/3:17'

the influence of initial conditions will vanish, and

+=,4. In the long-time limit of t— oo,

the system steady response (x(1)), =lim{x(2))

can be expressed as

(2 (1)), =Aucos(Qt +o,) +K (13)
with the output amplitude
. 2 + 2
A.=R|H, ()| =R |1 (14)
us +u,1

and phase shift

_ : _ UpUUs —U Uy
@u —arg(Hy, (JQ)) arctan<ulu3+u2u4>
(15)

where the constant

_ o0z (zA1 —1)
602 I:/\% Jr'}//‘Vll jLwz (1 *‘L'/h ) :| *cﬁ (1 *Z';h )
(16)
The related coefficients in Eqs. (14) ~(16) are

listed as follows.
b=+vQF +)%,

@Zarctan(%) ,

K

fi=w? —Q° —O—yﬂ"cos(?’ra) s

S :}’Q“Sin(?na) —w’Qr,

f3 =2 o’ (1 =2i0) —Q° +yb cos(Ga) »

£ =20\ —*Qr +yb*sin(a) »

uy =o102 (zAy — 1)

Uy =010:Q7,

us =f1fs = f2f1 toi (chi —1) +at Q77

wi =fifo Hfofs TolQr(2 =),
Then the output amplitude gain ( OAG) is
given by

Ay Juitu
CTR Wuitdl

3 Results and discussion

an

In this section, we explore the resonance be-
haviors of G based on the analytical expression of
Eq. (17). Additionally, we investigate the de-
pendence of G on various system parameters, in-
cluding a» 7, Q. o1 and A;.

3.1 GSR to the driving frequency

Firstly, we present the curves of G versus Q
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for different ¢ and r in Fig. 1. It is shown that
G(Q) can achieve a peak value no matter whether
time delay 7 exists or not, which indicates that
GSR appears. From Fig. la, we can see that as «
increases, the peak value decreases, and the peak
position shifts to the left in the FO without time
delay (¢ =0). Comparing with Fig. la, as « in-
creases, the double-peak GSR disappears and the
single-peak GSR occurs in the FO with small time
delay (¢ =0. 03) in Fig. 1b. Moreover, G(Q)
presents the same trend as « changes, but the
maximum value goes up. Next, we choose the
fixed fractional order « =0. 4 to investigate the
effect of small time delay r on the non-monotonic
behaviors of G(Q). It is observed that G becomes
stronger and the GSR peak gets sharper as the

1

(a) a=0.2
a=0.4
0.8 a=0.6 1
a=0.8
a=1
0.6
©
0.4
0.2
0
0 1 2 3 4
Q
25
© —7=0
—7=0.01
2 7=0.03 |
—7=0.05
——7=0.07
1.5 7=0.09 |
&)
1
0.5
0 — -
0 1 2 3 4
Q

Fig. 1 GSR phenomena of GCQ) for different @ and z: (a) =0, 41 =0.5, 52 =0. 5,

time delay ¢ increases. The enhancement effect
could be explained as follows. The time-delayed
system is, in fact, a memory system, and bigger
7 means stronger memory of the system. Thus,
the energy can be accumulated by the memory
effect, leading to an enhancement of the GSR in-
tensity as r increases. In addition, for small noise
correlation rate A; =0, 1 in Fig. lc, there is a
changing in the GSR from one peak to double
peaks as ¢ increases. Specifically, two peaks are
observed on G (Q) for >0. 07. However, for
A =0. 5 in Fig. 1d, the double-peak GSR phenom-
enon disappears, and the GSR intensity is weak-
ened. All the above results indicate that properly
increasing ¢ can enhance the GSR intensity, and

induce more diverse GSR phenomena,

1

(b) ——a=0.2
a=0.4
0.8 a=0.6
—a=0.8
—a=1
0.6
o
04+
0.2+
0
0 1 2 3 4
Q
1.5
@ —1=0
—7=0.01
7=0.03
—7=0.05
g ——7=007 |
7=0.09
)
0.5
0 = A
0 1 2 3 4
Q

A1 =0.1; (b) £=0.03, o1 =0. 5,

02 =0.5, A1 =0. 1; (c) a=0.4, o1 =0.5, 02 =0.5, A1 =0. 1; (d) a=0.4, o1 =0. 5, o2 =0. 5, A =0. 5. The other

parameters are set as y=1, @ =2

3.2 GSR to the parameters of frequency fluctua-
tion ¢, and A,
In this subsection, our main focus is to in-
vestigate the effect of frequency fluctuation, par-
ticularly in terms of ¢; and A;.

Ref. [ 20] has demonstrated that GSR of G(¢)

could still occur in some dynamic systems even
when the intrinsic frequency w is not equal to the
driving frequency Q. Without loss of generality,
we take Q=2 and w=1.5 as an example. To fur-
ther demonstrate the effect of time delay on G(g)

in detail, we plot the three-dimensional and two-
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% 61 %

WOl K FEF/OE RAF

%14

dimensional graphs of G versus ¢, and 7 in Fig. 2.
As shown in Fig. 2b, we observe that the curves
of G (o) )present one peak, and the peak value in-
creases sharply as 7 increases, while the peak po-

These

phenomena indicate that a small time delay 7 can

sition moves to the smaller value of ¢,.

enhance the GSR intensity, mainly due to the en-

(a)

Fig. 2
w=1.5, 0=2, a=0.2, 11 =0.1, 6, =0.5

In the following, we continue to study the
effect of the noise correlation rate A; on G for dif-
ferent ¢ and z. As seen in Fig. 3, the curves
show that G attains a peak value with increasing
A1» which means that GSR phenomenon takes
place. Fig. 3 (a) indicates that the bigger the
fractional order « is, the bigger the peak value is,
and the more the peak position shifts to the left.
The GSR phenomenon disappears around o >>0. 3.
Fig. 3(b) shows that there is no resonance behav-
ior for £<<0. 07 and the single-peak resonance be-
havior occurs for ¢ >0. 07. From Fig. 3(b), we
also observe that the bigger the time delay 7 is,
the smaller the GSR intensity is, and the more

0 0.2 0.4 0.6 0.8 1
A1

Fig. 3 GSR phenomena of G(2;) for different a, 7, 015 02 :

hancement of memory effect with increasing 7. In
particular, a larger ¢ leads to a stronger system
memory, which results in more efficient transfor-
mation of noise energy into signal energy. As a
result, with increase of ¢, G increases and attains

maximum at smaller ;.

5 . . . ;
(b) e 7=0)
—7=0.01
al 7=0.03 |
——1=0.05
——1=0.07
3t =009 -
O
ol
1
*
0 o . . .
0 0.2 0.4 0.6 0.8 1

g1

(a) Three-dimensional graph of G(g1,7); (b) G(g1 ) curves with different z. The other parameters are set as y=1,

the peak position shifts to the right. Comparing
Fig. 3(a) with Fig. 3(b), we can observe a similar
trend, which can be explained as follows. In a
time-delayed FO with noise, both « and z reflect
the system’s memory property, and A; reflects the
noise’s memory property. Specifically, smaller «
and bigger r indicate a stronger memory of the
time-delayed FO. When the noise intensity is
fixed, bigger A, means that the correlation time of
noise is shorter, 7. e. the memory of noise is wea-
ker.

memory effect of the system caused by decreasing

Consequently, bigger A; can overcome the

a or increasing .

25
(®) —1=0
——1=0.05
2 7=0.1
—=0.15
m———1=0.2
15¢F
)
1
0.5F
0 ) . x i
0 0.2 0.4 0.6 0.8 1
A1

() 7=0.1, 61 =0.9, 62 =0.9; (b) «=0.2, 61 =0.9, 5, =

0.9. The other parameters are set as y=1, w=2, Q=2

011005-6



5 14

FTHCA , 5« 215 5 R B R 5 Ao 30 £ 0k 2h 9 B i 5 2R3k T 09 REAL 3R 3R

% 61 %

3.3 GSR to the fractional order o

Finally, we investigate the effect of the frac-
tional order @ on G for different z, and according-
ly depict the three-dimensional and two-dimen-
sional graphs of G versus ¢ and ¢ in Fig. 4. As
shown in Fig. 4(b), the curve of G(a) decreases

monotonically when ¢ =0, indicating that GSR

L\
N
N\
.\

NN
NI

N
)\
0w
~

N

NN

—
—

does not occur in the absence of time delay. In ad-
dition, G (@) presents non-monotonic variation
when 7 >0, i. e. » GSR appears in the FO with
time delay. As r increases, the peak value decrea-
ses first and then increases, and the peak position

gradually shifts to the right.

0 0.2 0.4 0.6 0.8 1
@

Fig. 4 (a) Three-dimensional graph of G(a,7); (b) G(a) curves with different z. The other parameters are set as y=1,

w=2s =2, 060=0.9, 41 =0.1, 52 =0.9

4 Conclusions

The frequency fluctuation and signal-modula-
ted noise exist widely in various complex physical
and engineering systems. In this study, we pro-
pose a time-delayed FO with fluctuating frequen-
cy, and investigate the effect of small time delay
on GSR phenomena driven by signal-modulated
dichotomous noise. By using the (fractional) Sha-
piro-Loginov formula and Laplace transform, we
obtain the analytical expression of the OAG. On
that basis, we observe that diversified GSR phe-
nomena take place in the system, and further ex-
plore the dependence on several parameters, in-
cluding Q. a» 7, 01 and A,. Specially, G(Q) ex-
hibits both single-peak and double-peak GSR phe-
nomena, and the diversity of GSR is dependent on
« and 7. At the same time, increasing ¢ can en-
hance the GSR intensity of G(), while increas-
ing @« weakens the resonance intensity. In addi-
tion, GSR also occurs in response to variations in
the frequency fluctuation parameter ¢; and A, » and
stronger system’s memory can enhance the GSR
intensity of G(s1), but weakens the GSR intensi-

ty of G(A;). Finally, G(a) presents single-peak

GSR phenomenon, and the peak value varies non-
monotonously as ¢ increases. These results can
provide theoretical support for further studies of

weak signal detection in engineering applications.
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