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Some new results on the p-adic valuations of Stirling numbers of the second kind
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Abstract; Let n and £ be positive integers. The Stirling number of the second kind, denoted by S(n1,%),
is defined as the number of ways to partition a set of n elements into exactly £ nonempty subsets. Let p
be an odd prime, v,(n) stand for the p-adic valuation of n, i.e. , v,(n) is the biggest nonnegative inte-
ger r with p” dividing n. It is difficult to evaluate v,(S(n,%)) in general. There are many authors inclu-
ding Davis, Lengyel, Hong et al. who investigated v,(S(n,%)). In this paper, we consider the p-adic
valuations of some special Stirling numbers of the second kind. In fact, by providing a p-adic analysis of
S(n,k), we show that v,(S(p,2)) =1 with the equality holding if and only if p is a Wieferich prime.
For n=2, we also prove that v,(S(p",2p)) =n, and v,(S(p",4p)) =n—2 with p=5, which improve
the result given by Adelberg recently.
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(2010 MSC 11B73, 11A07)

. Stirling number of the first kind, denoted by
1 Introduction

s(n,k), counts the number of permutations of n

Let n and & be nonnegative integers. The elements with % disjoint cycles. One can also
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characterize s(n,k) by

n

(), = > (= D" skt

k=0
where (x2), is the falling factorial which is defined

by

(), =x(x—D(a—2)(x—nt+1)
for n=1 and (x), = 1. The Stirling number of
the second kind is defined as the number of ways
to partition a set of n elements into exactly £ non-

empty subsets, and we have

1< Ik )
Sty = L2 (D)o @
/3! i=0 2
k . . .
where () represents the binomial coefficient,
i
which is defined by
kY (k) k! :
(i>* T CER YR

Note that the exact value of Stirling number of
the second kind S (n, k) equals the sum of all
products of n —k not necessarily distinct integers
from {1,2, <+, %k}, i. e., the following explicit

formula holds:

Stak) = >,

ey tegdeete, =n—k

19 2% eeehp%

(cp ey ENE
where N stands for the set of all the nonnegative
integers. One can also characterize the Stirling
number of the second kind by

2 = DSk (s

k=0
and there holds the recurrence relation

S(0,0) =1, S(n,0) =0
and
Sln,k) =kS(n—1,k) +
Sth—1,k—1) ,n=k=1.
Furthermore, we have the following two genera-

ting functions of Stirling numbers of the second

kil’ld:

(er — :k!ES(j,/af—;,
=k :

k

I = 286G+ kb,

i=1 =0
The Stirling numbers of the first and second kind

can be considered to be inverse of one another:

D= D" s (i) » SGak) =

i=0

DI DTS o 5Guk) =5

i=0

where 8, is the Kronecker delta function, which
is defined by §,,:=1 if n==F and §,,:= 0 if n#~k.
See Refs. [ 1-14 | for more results on this topic.
Divisibility properties of Stirling numbers
have been studied from a number of different per-
spectives. Amdeberhan, Manna and Moll'" stud-
ied the 2-adic valuations of Stirling numbers of
the second kind, they also conjectured that v, (S
(4n,5)) #v, (S(Un+3,5)) if and only if n€ {325 +
7.7 €N}. Hong et al. proved this conjecture in
Ref. [7]. Lengyel™! conjectured, proved by Wan-

121 g special case of the 2-adic valuation

nemacker
of Sm,k): v, (S(2",k)) =5, (k) —1, independ-
ently of n, where s, (k) means the base 2 digital
sum of k. By using Wannemacker’s result, Hong
et al.'™ proved that
0, (S(2" +1,k+1)) =5, (k) —1

holds for all £ with 1 <<k <C2", which confirmed
another conjecture of Amdeberhan, Manna and
Moll-,
the Stirling number of the second kind was stud-
ied by Zhao, Hong and Zhao in Refs. [13-14].

Given a prime p and a nonzero integer m,

We also note that the 2-adic valuation of

there exist unique integers a and r, with pfa and
r=0, such that m =ap”. The number r is called

the p-adic valuation of m, denoted by r=v,(m).

Define v,(0):=co, If x :%, where m, and m,
2

are integers and m, #0, then we define v, (x):=
v,(m,) —v,(m,) (see, for example, Ref. [15]).
It is easy to see that

v,(mymy) =v,(m;) +v,(m,).
Furthermore, for any rational number x and y
we have

v, (x+y) Zminl{v,(x),v,(y)},
and if v,(x) #v,(y) then one has

v, (x+y) =min{v,(x),v,(y)}.
The above property is also known as the isosceles
triangle principle-'®.
For every odd prime p, we have 27! =1

(mod p). An odd prime p such that 2#7' #1(mod
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p?) is called a Wieferich prime, see Ref. [ 17 ].
For example, 3, 5 and 7 are Wieferich primes.
We have the following result, which gives a new
method of determining Wieferich prime.

Theorem 1.1 For any odd prime p, we have

v,(S(p,2)) =1,
where the equality holds if and only if p is a Wief-
erich prime.

Let p be an odd prime. For any given real
number vy, let[y] be the smallest integer no less
than y. Recently, by using the study of the high-
er order Bernoulli numbers BY, Adelberg

proved that

p(k) 5/;(71)
(71) 1 1 (2)

where 5, (%) and s, (n) stand for the base p digital

0, (S(n k) =

sum of £ and n, respectively. Now for the case
that n is a power of p, we arrive at the following
two results, which improve Adelberg’s result in
this case, and are the main results of this paper.
Theorem 1. 2
For any odd prime p, we have
v,(S(P".2p)) =n.
Theorem 1.3 Let n be an integer with n=>2.

Let n be an integer with n=>2,

For any prime p=5, we have

v,(S(p*,4p)) =n

Evidently, for n =4, the lower bounds of
v,(S(p",2p)) and v, (S(p*,4p)) in Theorems
1. 2 and 1. 3 are better than Adelberg’s result (2).

We organize this paper as follows. Firstly,
in Section 2 we show some preliminary lemmas
which are needed in the proofs of Theorems 1. 1
to 1. 3. Then in Section 3, we give the proofs of

Theorems 1.1 to 1. 3.

2 Preliminaries

In this section, we present several auxiliary
lemmas that are needed.

Let n and £ be positive integers. By conven-
tion, we set S(0,0) =1 and S(n,0) =S(0,k) =0.
It is also clear to see that S(n,k) =0 if n<'k and
S(n,n) =1. Equation (1) also gives us that

S(n,1) =1

and

Sn,2)=2"""1—1, n=2 (3
The Euler phi
function ¢ (m) counts the number of integers in

the set {1,...

Let m be a positive integer.

,m} that are relatively prime to m.
For example, we have ¢(1) =1 and ¢(6) =2. If p
is a prime number, then (a,p) =1 holds for any a
witha€{l,...,p—1}, and so p(p) =p —1. Let
r =2 be an integer. If p” is a prime power,
then o(p") =p" —p~ .

Lemma 2. 1(Euler)
teger and let a be an integer relatively prime to
m. Then

a*" =1 (mod m).

The following result plays a crucial role in

the proofs of Theorem 1. 2 and Theorem 1. 3.

Let m be a positive in-

Lemma 2.2 Let p be an odd prime. Let n,
k, i be positive integers such that 1 <<k <<{p —1
1<i<kp—1 and (i,p) =1. We have

v, ((kp—D? +i"") =n+1.

Proof ILet i be an integer with 1<i<<kp—1
and (i, p) =1. Since p is odd, we can deduce that

s n
(kf) *Z‘)‘D” +l./)” = E (p )(kp)] (il‘)/)”*j TLZ‘/)” _
j=0 ‘]

S(”

=1

()

P
kpt i Z

)
=2
For any integer j W1th 1< <<p", it follows from
(i, p) =1 that

v, G ) =(p" — v, () =0 (5)
Since 1<<k<<{p —1, one then derives that

v, (kp' ™t e ) =

JCkpy (=i (= i =

~.

n

A

n

[ S

)(kp)’ (— i) =

~.
Il

Ckp)? (=P (4)

v, (k) +ou,(p"") +ou, G D) =n+1 (6)
In what follows, let 2<{j <{p". Note that
(pr—G—1)»

(P”) =1
j J!

and v, (j') <n holds for any integer ;" with 1<
j'<j —1<p" —1, which infers that v,(p" —j") =
v,(j"). Thus we obtain that

w<(i> =v,(p") —v, () =n—v,() (D
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Then it follows from (5) together with 1 <<k <<
p—1 and (7) that

vp<(’;)</ep>f<i>/)” j)vp(<lj>)+j+
v, () =n+j—v,() ®

It is easy to check that j —v,(j) =2. In fact,
for the case that v,(j) =0, we have j —v,(j) =2
since j =2, and if v,(j) =1, then by p=3 one de-
duces that j = p*» =v,(j) +2. Hence by (8)

and (6) we derive that

mZ( )(/ep)f (—DF' ) =

min {v,,<(p, Jkpy (—iF )~
J

<<
n+tj—v,(j) =nt2>n+1=
v, (kp™t e 71 (9

Using the isosceles triangle principle together
with (4), (6) and (9), one then arrives at
v, (Ckp =D +i") =0, (kp™™" « i+
p n

E( JCkpy (i) =

v, (kp™™ e 71 =n 41,
This finishes the proof of Lemma 2. 2.

3 The proof of the main results

In this section, we give the proofs of Theo-
rems 1.1 to 1. 3. We begin with the proof of The-
orem 1. 1.

Proof of Theorem 1. 1
prime p, we have

S(p,2)=2r"1—

By Lemma 2. 1, one knows that

S(p,2) =2"1—1=0 (mod p).

It infers that v, (S(p,2)) =1 with the equality

For any given odd

holding if and only if
2071 —1%£0 (mod p?),
l.e.
207121 (mod p*),
which is equivalent to p being a Wieferich prime.
So Theorem 1.1 is proved.
Then we present the proof of Theorem 1. 2.
Proof of Theorem 1.2 Let p be an odd
prime. Replacing n by p” and £ by 2p in (1), one

gets that

S 2p) = <2p)v2 (—1) ( )<2p—i>ﬁ -

2p—1
(213)12 (=L < P>(2p7i),)~ -

=0

2p?” +2 (— D ( p)(Zp—i)"" —

(2p)' p
2p 2p—1
( )])/’ + E (— ( )(Zj)*z)’ )
(10)
2 2
Since ( P ) ( p) holds for 1<i<p—1, it is
2p—i l
easy to obtain that
2p—1 ) 2 .,
> o ?)<2p—i>ﬁ -
i=ptl A
v o 2p ,
(2 Yo
2 (- D ) _i)z
1 2 B
) (—1)1’( _p>iﬂ (1D
i=1 2

Then it follows from (10) and (11) that

S(p“,Zp) _

AN
J A HP
(2]))‘((2/)) (p)p +

2( ( >((2p—z)P i) (12)

=1
Let 7 be an integer with 1<i<{p —1. By set-
ting £ =2 in Lemma 2. 2 we deduce that
v, (2p—D" +i") =n+1 (13)

2

Also note that “u,)(< ?)) —1 and v,((2p)1) =2,
1

Hence (12) and (13) tell us that

. 2P\ .
0, (S(P"2p)) = 0, ((2p)” —(p)pP +
2( 1>'( )<<2p—z>P ) 0, (@) =
min{vp((Zp)’)”),vp(<2p)p””),
»
vp<2< 1)( )<<2p—z>P i) —

2
min{p", p", min {Wp(( j))
<i=p—1 1
(2p =D +i" )}y —2 =
‘ 2p N
mln{f)”a“up(( _>)+vp((2p—z)p +i# )y —2=
1

min{p",n +2} —2 = n.
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This completes the proof of Theorem 1. 2.
Finally, we give the proof of Theorem 1. 3.
Proof of Theorem 1.3 Let p =5 be an odd

prime. Replacing n by p” and £ by 4p in equation

(1), one obtains that

SCpp) = (4p),2< ( Pap—ir -

=0
4p—1
1

4 ,
e C U )ap o =

i=0

Ap
(4p>'((4p)" +Z <—1>( )(4p—z)P —

251

(;)(3]3)” 3 1y ( p)(ﬂfp—z)f)
i=ptl
3p—1

(4 )(Zp)” > o
)

Up =¥ —
2 i=2pt+1 l) P !

(s

4p—1

o+ 2 Co(P)ap - -

i=3ptl

(4p)'(A1+A9+A3) (14)

where

A=(4p)” —(4;)(3p)/’" +

(e (0

1

A=) (1) ( p)<4p—l>ﬂ
=1
4p—1
SRCEH| _p>(4p—i)"”
i=3pt1 )
and
2p—1
Ap=>) (— ( )(4;)—1)# v
i=ptl
3p—1 v 4 .,
> (—1)’( ?)(41)—1')/’.
i=2pH
4p 4p
Note that( P ) ( ) holds for any integer i
-1 1
with 1<ii<<p—1 and p +1<i<<2p —1. We de-
duce that
ip-1
D (=D ( p>(4])*z)” =
i=3p+
& AP N
(Y
; S PP
ol Apy
> fb)iﬁ (15)
- i
and
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3p—1
3N - >(‘b)<4p—m =
i=2p+1
2p—1 4 .
> o P~
i=ptl 4]) 1
2p—1 4 .,
3 <—1>f‘( fb)i” (16)
i=ptl 2

Then it follows from (15) and (16) that

A>—2(

( ) (Up — D" + i)

an
and
=y 4 " "
Ay= D) (—1)1( ?)((4;;—1')/) it
i=ptl t
(18)

For any integer ¢ such that 1<G<<p—1 or p+1<<
i<<2p—1, by using Lemma 2. 2 one derives that

v, (Up—DP +i" ) =n+1 (19)
Now from (19) together with (17) and (18) we
obtain that

0, (A mz( 1)1( Pap -+ =

n {o,((—1) ( )<<4p P iy =

1< 1<p*l

4 o
min_ (o, ([ .p)>+v,,<<4p—i>f’ i) =
1

1<i<p1
n-+2 (20)
and
251
0, (B) =9, <—1>l( )<<4p—z>ﬁ i) =
=ptl

min {0, ((— 1>( )(<4p—z>ﬁ ) =

pH=i=2p1
min | ((4[))) +u,(Up —DF +i")) =

PpH<i<2p-1 Ur i vp(RAp !

n+2 Q2D
. 4p . o
since v, (( . )) =1 holds for any integer : with

i

1<G<p—1and p+1<i<<2p—1. Also note that

. dp ,1
0, (A =0, ((4p)? —( p)(fﬂp)/’ +

(;i)@p)/’” —(iz)p/’”»

,, 1 ,,
min{v,((4p)? m,x( ;)(Bp)’” ),
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v,,<(:z)(2p>ﬁ”>,vp<(§i)pp”>>—p" (22)

It then follows from (14) together with wv,
((4p)1) =4 and (20) to (22) that

v, (S(p",4p)) =

v, (AT TA, TA) —v,(Up)) =
min{‘Up(Al)7U/)(A2)yv/;(A3)} 74>
min{p",n+2,n+2} —4=n—2,

This complete the proof of Theorem 1. 3.
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