Sep. 2020 Vol. 57 No. 5

doi: 10.3969/j. issn. 0490-6756. 2020. 05. 007

关于第二类 Stirling 数的 p-adic 赋值的一些新结果

赵伟1,邱敏2

(1. 保密通信重点实验室, 成都 610041; 2. 西华大学理学院, 成都 610039)

摘 要: 设 n 和 k 为任意正整数. 第二类 Stirling 数,记作 S(n,k),表示将 n 个元素划分为恰好 k 个非空集合的个数. 设 p 为奇素数,令 $v_p(n)$ 表示 n 的 p-adic 赋值,即 $v_p(n)$ 是能整除 n 的最大的 p 的方幂. 一般来说,计算 S(n,k) 的 p-adic 赋值是很困难的. 有许多作者研究了第二类 Stirling 数 S(n,k) 的算术性质,包括 Davis,Lengyel 以及 Hong 等. 在本文中,我们研究第二类 Stirling 数的 p-adic 赋值的一些性质. 事实上,我们通过对 S(n,k) 进行 p-adic 分析证明了 $v_p(S(p,2)) \geqslant 1$,其中等号成立当且仅当 p 为一个 Wieferich 素数. 当 $n \geqslant 2$ 时,我们还证明了 $v_p(S(p^n,2p)) \geqslant n$,以及 $v_p(S(p^n,4p)) \geqslant n-2(p \geqslant 5)$,这改进了 Adelberg 不久前的结果.

关键词: 第二类 Stirling 数; p-adic 赋值; 同余式; Wieferich 素数

中图分类号: O156.1

文献标识码: A

文章编号: 0490-6756(2020)05-0865-06

Some new results on the p-adic valuations of Stirling numbers of the second kind

ZHAO Wei¹, QIU Min²

Science and Technology on Communication Security Laboratory, Chengdu 610041, China;
 School of Science, Xihua University, Chengdu 610039, China)

Abstract: Let n and k be positive integers. The Stirling number of the second kind, denoted by S(n,k), is defined as the number of ways to partition a set of n elements into exactly k nonempty subsets. Let p be an odd prime, $v_p(n)$ stand for the p-adic valuation of n, i.e., $v_p(n)$ is the biggest nonnegative integer r with p^r dividing n. It is difficult to evaluate $v_p(S(n,k))$ in general. There are many authors including Davis, Lengyel, Hong $et\ al$. who investigated $v_p(S(n,k))$. In this paper, we consider the p-adic valuations of some special Stirling numbers of the second kind. In fact, by providing a p-adic analysis of S(n,k), we show that $v_p(S(p,2)) \geqslant 1$ with the equality holding if and only if p is a Wieferich prime. For $n \geqslant 2$, we also prove that $v_p(S(p^n,2p)) \geqslant n$, and $v_p(S(p^n,4p)) \geqslant n-2$ with $p \geqslant 5$, which improve the result given by Adelberg recently.

Keywords: Stirling number of the second kind; p-adic valuation; Congruence; Wieferich prime (2010 MSC 11B73, 11A07)

1 Introduction

Let n and k be nonnegative integers. The

Stirling number of the first kind, denoted by s(n,k), counts the number of permutations of n elements with k disjoint cycles. One can also

收稿日期: 2020-04-21

基金项目: 国家自然科学基金(11771304)

作者简介:赵伟(1983-),女,湖北公安人,博士,高级工程师,主要研究方向为数论与密码学. E-mail: zhaowei9801@163.com

通讯作者: 邱敏. E-mail: qiumin126@126.com

characterize s(n,k) by

$$(x)_n = \sum_{k=0}^n (-1)^{n-k} s(n,k) x^k,$$

where $(x)_n$ is the falling factorial which is defined by

$$(x)_n := x(x-1)(x-2) \cdot \cdot \cdot (x-n+1)$$

for $n \ge 1$ and $(x)_0 := 1$. The Stirling number of the second kind is defined as the number of ways to partition a set of n elements into exactly k nonempty subsets, and we have

$$S(n,k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{i} {k \choose i} (k-i)^{n}$$
 (1)

where $\binom{k}{i}$ represents the binomial coefficient, which is defined by

$$\binom{k}{i} = \frac{(k)_i}{i!} = \frac{k!}{i! (k-i)!}, \ k \ge i.$$

Note that the exact value of Stirling number of the second kind S(n,k) equals the sum of all products of n-k not necessarily distinct integers from $\{1,2,\dots,k\}$, i.e., the following explicit formula holds:

$$S(n,k) = \sum_{\substack{c_1+c_2+\cdots+c_k=n-k\\(c_1,c_2,\cdots,c_k)\in \mathbf{N}^k}} 1^{c_1} 2^{c_2} \cdots k^{c_k},$$

where N stands for the set of all the nonnegative integers. One can also characterize the Stirling number of the second kind by

$$x^n = \sum_{k=0}^{\infty} S(n,k) (x)_k,$$

and there holds the recurrence relation

$$S(0,0) = 1, S(n,0) = 0$$

and

$$S(n,k) = kS(n-1,k) + S(n-1,k-1), n \ge k \ge 1.$$

Furthermore, we have the following two generating functions of Stirling numbers of the second kind:

$$(e^{x} - 1)^{k} = k! \sum_{j=k}^{\infty} S(j,k) \frac{x^{j}}{j!},$$

$$\prod_{i=1}^{k} \frac{1}{1 - ix} = \sum_{i=0}^{\infty} S(j+k,k) x^{j}.$$

The Stirling numbers of the first and second kind can be considered to be inverse of one another:

$$\begin{split} \sum_{i \geqslant 0} (-1)^{n-i} s(n,i) \cdot S(i,k) &= \\ \sum_{i \geqslant 0} (-1)^{i-k} S(n,i) \cdot s(i,k) &= \delta_{nk} \,, \end{split}$$

where δ_{nk} is the Kronecker delta function, which is defined by $\delta_{nk} := 1$ if n = k and $\delta_{nk} := 0$ if $n \neq k$. See Refs. [1-14] for more results on this topic.

Divisibility properties of Stirling numbers have been studied from a number of different perspectives. Amdeberhan, Manna and Moll^[1] studied the 2-adic valuations of Stirling numbers of the second kind, they also conjectured that $v_2(S(4n,5)) \neq v_2(S(4n+3,5))$ if and only if $n \in \{32j+7:j \in \mathbb{N}\}$. Hong *et al.* proved this conjecture in Ref. [7]. Lengyel^[9] conjectured, proved by Wannemacker^[12], a special case of the 2-adic valuation of S(n,k): $v_2(S(2^n,k)) = s_2(k) - 1$, independently of n, where $s_2(k)$ means the base 2 digital sum of k. By using Wannemacker's result, Hong *et al.* [7] proved that

$$v_2(S(2^n+1,k+1)) = s_2(k)-1$$

holds for all k with $1 \le k \le 2^n$, which confirmed another conjecture of Amdeberhan, Manna and Moll^[1]. We also note that the 2-adic valuation of the Stirling number of the second kind was studied by Zhao, Hong and Zhao in Refs. [13-14].

Given a prime p and a nonzero integer m, there exist unique integers a and r, with $p \nmid a$ and $r \geqslant 0$, such that $m = ap^r$. The number r is called the p-adic valuation of m, denoted by $r = v_p(m)$.

Define $v_p(0) := \infty$. If $x = \frac{m_1}{m_2}$, where m_1 and m_2 are integers and $m_2 \neq 0$, then we define $v_p(x) := v_p(m_1) - v_p(m_2)$ (see, for example, Ref. [15]). It is easy to see that

$$v_p(m_1m_2) = v_p(m_1) + v_p(m_2).$$

Furthermore, for any rational number x and y we have

$$v_p(x+y) \geqslant \min\{v_p(x), v_p(y)\},$$

and if $v_p(x) \neq v_p(y)$ then one has

$$v_p(x+y) = \min\{v_p(x), v_p(y)\}.$$

The above property is also known as the isosceles triangle principle^[16].

For every odd prime p, we have $2^{p-1} \equiv 1 \pmod{p}$. An odd prime p such that $2^{p-1} \not\equiv 1 \pmod{p}$

 p^2) is called a Wieferich prime, see Ref. [17]. For example, 3, 5 and 7 are Wieferich primes. We have the following result, which gives a new method of determining Wieferich prime.

Theorem 1.1 For any odd prime p, we have $v_p(S(p,2)) \ge 1$,

where the equality holds if and only if p is a Wieferich prime.

Let p be an odd prime. For any given real number y, let $\lceil y \rceil$ be the smallest integer no less than y. Recently, by using the study of the higher order Bernoulli numbers $B_n^{(l)}$, Adelberg^[18] proved that

$$v_{p}(S(n,k)) \geqslant \lceil \frac{s_{p}(k) - s_{p}(n)}{p - 1} \rceil$$
 (2)

where $s_p(k)$ and $s_p(n)$ stand for the base p digital sum of k and n, respectively. Now for the case that n is a power of p, we arrive at the following two results, which improve Adelberg's result in this case, and are the main results of this paper.

Theorem 1.2 Let n be an integer with $n \ge 2$. For any odd prime p, we have

$$v_p(S(p^n,2p)) \geqslant n.$$

Theorem 1.3 Let n be an integer with $n \ge 2$. For any prime $p \ge 5$, we have

$$v_p(S(p^n,4p)) \geqslant n-2.$$

Evidently, for $n \ge 4$, the lower bounds of $v_p(S(p^n, 2p))$ and $v_p(S(p^n, 4p))$ in Theorems 1. 2 and 1. 3 are better than Adelberg's result (2).

We organize this paper as follows. Firstly, in Section 2 we show some preliminary lemmas which are needed in the proofs of Theorems 1.1 to 1.3. Then in Section 3, we give the proofs of Theorems 1.1 to 1.3.

2 Preliminaries

In this section, we present several auxiliary lemmas that are needed.

Let n and k be positive integers. By convention, we set S(0,0) = 1 and S(n,0) = S(0,k) = 0. It is also clear to see that S(n,k) = 0 if n < k and S(n,n) = 1. Equation (1) also gives us that

$$S(n,1) = 1$$

and

$$S(n,2) = 2^{n-1} - 1, \ n \geqslant 2$$
 (3)

Let m be a positive integer. The Euler phi function $\varphi(m)$ counts the number of integers in the set $\{1,\ldots,m\}$ that are relatively prime to m. For example, we have $\varphi(1)=1$ and $\varphi(6)=2$. If p is a prime number, then (a,p)=1 holds for any a with $a\in\{1,\ldots,p-1\}$, and so $\varphi(p)=p-1$. Let $r\geqslant 2$ be an integer. If p^r is a prime power, then $\varphi(p^r)=p^r-p^{r-1}$.

Lemma 2.1(Euler) Let m be a positive integer and let a be an integer relatively prime to m. Then

$$a^{\varphi(m)} \equiv 1 \pmod{m}$$
.

The following result plays a crucial role in the proofs of Theorem 1. 2 and Theorem 1. 3.

Lemma 2.2 Let p be an odd prime. Let n, k, i be positive integers such that $1 \le k \le p-1$, $1 \le i \le kp-1$ and (i,p)=1. We have

$$v_p((kp-i)^{p^n}+i^{p^n})=n+1.$$

Proof Let *i* be an integer with $1 \le i \le kp-1$ and (i, p) = 1. Since *p* is odd, we can deduce that

$$(kp-i)^{p^n}+i^{p^n}=\sum_{j=0}^{p^n}inom{p^n}{j}(kp)^j(-i)^{p^n-j}+i^{p^n}=\ \sum_{j=1}^{p^n}inom{p^n}{j}(kp)^j(-i)^{p^n-j}+(-i)^{p^n}+i^{p^n}=\ \sum_{j=1}^{p^n}inom{p^n}{j}(kp)^j(-i)^{p^n-j}=\ \sum_{j=1}^{p^n}inom{p^n}{j}(kp)^j(-i)^{p^n-j}=$$

$$kp^{n+1} \cdot i^{p^n-1} + \sum_{j=2}^{p^n} {p^n \choose j} (kp)^j (-i)^{p^n-j}$$
 (4)

For any integer j with $1 \le j \le p^n$, it follows from (i, p) = 1 that

$$v_p(i^{p^n-j}) = (p^n - j)v_p(i) = 0$$
 (5)

Since $1 \le k \le p-1$, one then derives that

$$v_p(kp^{n+1} \bullet i^{p^n-1}) =$$

$$v_p(k) + v_p(p^{n+1}) + v_p(i^{p^n-1}) = n+1$$
 (6)

In what follows, let $2 \le j \le p^n$. Note that

$$\binom{p^n}{j} = \frac{p^n(p^n-1)\cdots(p^n-(j-1))}{j!}$$

and $v_p(j') < n$ holds for any integer j' with $1 \le j' \le j - 1 \le p^n - 1$, which infers that $v_p(p^n - j') = v_p(j')$. Thus we obtain that

$$v_{p}\left(\binom{p^{n}}{i}\right) = v_{p}\left(p^{n}\right) - v_{p}\left(j\right) = n - v_{p}\left(j\right) \tag{7}$$

Then it follows from (5) together with $1 \le k \le p-1$ and (7) that

$$v_{p}\left(\binom{p^{n}}{j}(kp)^{j}\left(-i\right)^{p^{n}-j}\right) = v_{p}\left(\binom{p^{n}}{j}\right) + j + v_{p}\left(i^{p^{n}-j}\right) = n + j - v_{p}\left(j\right)$$
(8)

It is easy to check that $j-v_p(j) \ge 2$. In fact, for the case that $v_p(j) = 0$, we have $j-v_p(j) \ge 2$ since $j \ge 2$, and if $v_p(j) \ge 1$, then by $p \ge 3$ one deduces that $j \ge p^{v_p(j)} \ge v_p(j) + 2$. Hence by (8) and (6) we derive that

$$v_{p}\left(\sum_{j=2}^{p^{n}} {p^{n} \choose j} (kp)^{j} (-i)^{p^{n}-j}\right) \geqslant \min_{2 \leqslant j \leqslant p^{n}} \left\{ v_{p}\left({p^{n} \choose j} (kp)^{j} (-i)^{p^{n}-j}\right) \right\} = n+j-v_{p}(j) \geqslant n+2 > n+1 = v_{p}(kp^{n+1} \cdot i^{p^{n}-1})$$

$$(9)$$

Using the isosceles triangle principle together with (4), (6) and (9), one then arrives at

$$egin{align} v_p((kp-i)^{p^n}+i^{p^n}) &= v_p(kp^{n+1}ullet i^{p^n-1}+\ &\sum_{j=2}^{p^n}inom{p^n}{j}(kp)^j \ (-i)^{p^n-j}) &= \ & \end{aligned}$$

 $v_p(kp^{n+1} \cdot i^{p^n-1}) = n+1.$

This finishes the proof of Lemma 2.2.

3 The proof of the main results

In this section, we give the proofs of Theorems 1.1 to 1.3. We begin with the proof of Theorem 1.1.

Proof of Theorem 1.1 For any given odd prime p, we have

$$S(p,2) = 2^{p-1} - 1.$$

By Lemma 2.1, one knows that

$$S(p,2) = 2^{p-1} - 1 \equiv 0 \pmod{p}$$
.

It infers that $v_p(S(p,2)) \ge 1$ with the equality holding if and only if

$$2^{p-1}-1\not\equiv 0 \pmod{p^2}$$
,

i. e.,

$$2^{p-1} \not\equiv 1 \pmod{p^2}$$
,

which is equivalent to *p* being a Wieferich prime. So Theorem 1.1 is proved.

Then we present the proof of Theorem 1. 2.

Proof of Theorem 1. 2 Let p be an odd prime. Replacing n by p^n and k by 2p in (1), one

gets that

$$S(p^{n},2p) = \frac{1}{(2p)!} \sum_{i=0}^{2p} (-1)^{i} {2p \choose i} (2p-i)^{p^{n}} = \frac{1}{(2p)!} \sum_{i=0}^{2p-1} (-1)^{i} {2p \choose i} (2p-i)^{p^{n}} = \frac{1}{(2p)!} ((2p)^{p^{n}} + \sum_{i=1}^{p-1} (-1)^{i} {2p \choose i} (2p-i)^{p^{n}} - {2p \choose p} p^{p^{n}} + \sum_{i=p+1}^{2p-1} (-1)^{i} {2p \choose i} (2p-i)^{p^{n}})$$

$$(10)$$

Since $\binom{2p}{2p-i} = \binom{2p}{i}$ holds for $1 \le i \le p-1$, it is easy to obtain that

$$\sum_{i=p+1}^{2p-1} (-1)^{i} {2p \choose i} (2p-i)^{p^{n}} =$$

$$\sum_{i=1}^{p-1} (-1)^{2p-i} {2p \choose 2p-i} i^{p^{n}} =$$

$$\sum_{i=1}^{p-1} (-1)^{i} {2p \choose i} i^{p^{n}}$$
(11)

Then it follows from (10) and (11) that

$$S(p^{n},2p) = \frac{1}{(2p)!} ((2p)^{p^{n}} - {2p \choose p} p^{p^{n}} + \sum_{i=1}^{p-1} (-1)^{i} {2p \choose i} ((2p-i)^{p^{n}} + i^{p^{n}}))$$
(12)

Let *i* be an integer with $1 \le i \le p-1$. By setting k=2 in Lemma 2. 2 we deduce that

$$v_p((2p-i)^{p^n}+i^{p^n})=n+1$$
 (13)

Also note that $v_p(\binom{2p}{i}) = 1$ and $v_p((2p)!) = 2$.

Hence (12) and (13) tell us that

$$\begin{aligned} v_{p}(S(p^{n},2p)) &= v_{p}((2p)^{p^{n}} - \binom{2p}{p}p^{p^{n}} + \\ &\sum_{i=1}^{p-1} (-1)^{i} \binom{2p}{i} ((2p-i)^{p^{n}} + i^{p^{n}})) - v_{p}((2p)!) \geqslant \\ &\min\{v_{p}((2p)^{p^{n}}), v_{p}(\binom{2p}{p}p^{p^{n}}), \\ &v_{p}(\sum_{i=1}^{p-1} (-1)^{i} \binom{2p}{i} ((2p-i)^{p^{n}} + i^{p^{n}}))\} - 2 \geqslant \\ &\min\{p^{n}, p^{n}, \min_{1 \leq i \leq p-1} \{v_{p}(\binom{2p}{i}) \\ &((2p-i)^{p^{n}} + i^{p^{n}}))\}\} - 2 = \end{aligned}$$

$$\min\{p^{n}, v_{p}(\binom{2p}{i}) + v_{p}((2p-i)^{p^{n}} + i^{p^{n}})\} - 2 =$$

$$\min\{p^{n}, n+2\} - 2 = n.$$

This completes the proof of Theorem 1.2.

Finally, we give the proof of Theorem 1.3.

Proof of Theorem 1. 3 Let $p \ge 5$ be an odd prime. Replacing n by p^n and k by 4p in equation (1), one obtains that

$$S(p^{n},4p) = \frac{1}{(4p)!} \sum_{i=0}^{4p} (-1)^{i} {4p \choose i} (4p-i)^{p^{n}} = \frac{1}{(4p)!} \sum_{i=0}^{4p-1} (-1)^{i} {4p \choose i} (4p-i)^{p^{n}} = \frac{1}{(4p)!} ((4p)^{p^{n}} + \sum_{i=1}^{p-1} (-1)^{i} {4p \choose i} (4p-i)^{p^{n}} - {4p \choose p} (3p)^{p^{n}} + \sum_{i=p+1}^{2p-1} (-1)^{i} {4p \choose i} (4p-i)^{p^{n}} + {4p \choose 2p} (2p)^{p^{n}} + \sum_{i=2p+1}^{3p-1} (-1)^{i} {4p \choose i} (4p-i)^{p^{n}} - {4p \choose 3p} p^{p^{n}} + \sum_{i=3p+1}^{4p-1} (-1)^{i} {4p \choose i} (4p-i)^{p^{n}} - \frac{1}{(4p)!} (\Delta_{1} + \Delta_{2} + \Delta_{3})$$

$$(14)$$

where

$$\Delta_{1} := (4p)^{p^{n}} - {4p \choose p} (3p)^{p^{n}} + {4p \choose 2p} (2p)^{p^{n}} - {4p \choose 3p} p^{p^{n}},$$

$$\Delta_{2} := \sum_{i=1}^{p-1} (-1)^{i} {4p \choose i} (4p-i)^{p^{n}} + {4p-1 \choose 2p} (-1)^{i} {4p \choose i} (4p-i)^{p^{n}}$$

and

$$\Delta_{3} := \sum_{i=p+1}^{2p-1} (-1)^{i} {4p \choose i} (4p-i)^{p^{n}} + \sum_{i=2p+1}^{3p-1} (-1)^{i} {4p \choose i} (4p-i)^{p^{n}}.$$

Note that $\binom{4p}{4p-i} = \binom{4p}{i}$ holds for any integer i with $1 \le i \le p-1$ and $p+1 \le i \le 2p-1$. We deduce that

$$\sum_{i=3p+1}^{4p-1} (-1)^{i} {4p \choose i} (4p-i)^{p^{n}} =$$

$$\sum_{i=1}^{p-1} (-1)^{4p-i} {4p \choose 4p-i} i^{p^{n}} =$$

$$\sum_{i=1}^{p-1} (-1)^{i} {4p \choose i} i^{p^{n}}$$
(15)

$$\sum_{i=2p+1}^{3p-1} (-1)^{i} {4p \choose i} (4p-i)^{p^{n}} = \sum_{i=p+1}^{2p-1} (-1)^{4p-i} {4p \choose 4p-i} i^{p^{n}} = \sum_{i=p+1}^{2p-1} (-1)^{i} {4p \choose i} i^{p^{n}}$$
(16)

Then it follows from (15) and (16) that

$$\Delta_{2} = \sum_{i=1}^{p-1} (-1)^{i} {4p \choose i} ((4p-i)^{p^{n}} + i^{p^{n}})$$
(17)

and

$$\Delta_{3} = \sum_{i=p+1}^{2p-1} (-1)^{i} {4p \choose i} ((4p-i)^{p^{n}} + i^{p^{n}})$$
(18)

For any integer i such that $1 \le i \le p-1$ or $p+1 \le i \le 2p-1$, by using Lemma 2. 2 one derives that $v_p((4p-i)^{p^n}+i^{p^n})=n+1$ (19)

Now from (19) together with (17) and (18) we obtain that

$$v_{p}(\Delta_{2}) = v_{p}(\sum_{i=1}^{p-1} (-1)^{i} {4p \choose i} ((4p-i)^{p^{n}} + i^{p^{n}})) \geqslant \min_{1 \leq i \leq p-1} \{v_{p}((-1)^{i} {4p \choose i} ((4p-i)^{p^{n}} + i^{p^{n}}))\} = \min_{1 \leq i \leq p-1} \{v_{p}({4p \choose i}) + v_{p}((4p-i)^{p^{n}} + i^{p^{n}})\} = n+2$$

$$(20)$$

and

$$v_{p}(\Delta_{3}) = v_{p}(\sum_{i=p+1}^{2p-1} (-1)^{i} {4p \choose i} ((4p-i)^{p^{n}} + i^{p^{n}})) \geqslant \min_{p+1 \leqslant i \leqslant 2p-1} \{v_{p}((-1)^{i} {4p \choose i} ((4p-i)^{p^{n}} + i^{p^{n}}))\} = \min_{p+1 \leqslant i \leqslant 2p-1} \{v_{p}({4p \choose i}) + v_{p}((4p-i)^{p^{n}} + i^{p^{n}})\} = n+2$$

$$(21)$$

since $v_p(\binom{4p}{i}) = 1$ holds for any integer i with

 $1 \le i \le p-1$ and $p+1 \le i \le 2p-1$. Also note that

$$v_{p}(\Delta_{1}) = v_{p}((4p)^{p^{n}} - {4p \choose p}(3p)^{p^{n}} + {4p \choose 2p}(2p)^{p^{n}} - {4p \choose 3p}p^{p^{n}}) \geqslant$$

$$\min\{v_p((4p)^{p^n}),v_p(\binom{4p}{p}(3p)^{p^n}),$$

and

$$v_p(\binom{4p}{2p}(2p)^{p^n}), v_p(\binom{4p}{3p}p^{p^n})\} = p^n \quad (22)$$

It then follows from (14) together with v_p ((4p)!)=4 and (20) to (22) that

$$v_{p}(S(p^{n},4p)) =$$
 $v_{p}(\Delta_{1} + \Delta_{2} + \Delta_{3}) - v_{p}((4p)!) \geqslant$
 $\min\{v_{p}(\Delta_{1}), v_{p}(\Delta_{2}), v_{p}(\Delta_{3})\} - 4 \geqslant$
 $\min\{p^{n}, n+2, n+2\} - 4 = n-2.$

This complete the proof of Theorem 1. 3.

References:

- [1] Amdeberhan T, Manna D, Moll V. The 2-adic valuation of Stirling numbers [J]. Experiment Math, 2008, 17: 69.
- [2] Carlitz L. Congruences for generalized Bell and Stirling numbers [J]. Duke Math J, 1955, 22: 193.
- [3] Comtet L. Advanced combinatorics: the art of finite and infinite expansions [M]. Dordrecht/Boston: D Reidel Publishing Co., 1974.
- [4] Feng Y L, Qiu M. Some results on *p*-adic valuations of Stirling numbers of the second kind [J]. AIMS Math, 2020, 5: 4168.
- [5] Hong S F. On the p-adic behaviors of Stirling numbers of the first and second kinds [J]. RIMS Kokyuroku Bessatsu, 2020, 2162; 104.
- [6] Hong S F, Qiu M. On the *p*-adic properties of Stirling numbers of the first kind [J]. Acta Math Hungari, 2020, 161: 366.
- [7] Hong S F, Zhao J R, Zhao W. The 2-adic valuations of Stirling numbers of the second kind [J]. Int J Number Theory, 2012, 8: 1057.

- [8] Hong S F, Zhao J R, Zhao W. The universal Kummer congruences [J]. J Aust Math Soc, 2013, 94: 106.
- [9] Lengyel T. On the divisibility by 2 of Stirling numbers of the second kind [J]. Fibonacci Quart, 1994, 32: 194.
- [10] Lengyel T. On the 2-adic order of Stirling numbers of the second kind and their differences [J]. DMTCS Proc AK, 2009, 561.
- [11] Qiu M, Hong S F. 2-Adic valuations of Stirling numbers of the first kind [J]. Int J Number Theory, 2019, 15: 1827.
- [12] Wannermacker S D. On 2-adic orders of Stirling numbers of the second kind [J]. Integers, 2005, 5: A21.
- [13] Zhao J R, Hong S F, Zhao W. Divisibility by 2 of Stirling numbers of the second kind and their differences [J]. J Number Theory, 2014, 140: 324.
- [14] Zhao W, Zhao J R, Hong S F. The 2-adic valuations of differences of Stirling numbers of the second kind [J]. J Number Theory, 2015, 153: 309.
- [15] Zhu C X, Li M, Tan Q R. Congruence properties of polynomials over residue class ring [J]. J Sichuan Univ: Nat Sci Ed, 2019, 56: 21.
- [16] Koblitz N. p-adic numbers, p-adic analysis and zeta-functions [M]. New York: Springer-Verlag, 1984.
- [17] Nathanson M B. Elementary methods in number theory [M]. New York: Springer-Verlag, 2000.
- [18] Adelberg A. The *p*-adic analysis of Stirling numbers via higher order Bernoulli numbers [J]. Int J Number Theory, 2018, 14: 2767.

引用本文格式:

中 文: 赵伟, 邱敏. 关于第二类 Stirling 数的 p-adic 赋值的一些新结果[J]. 四川大学学报: 自然科学版, 2020, 57: 865.

英文: Zhao W, Qiu M. Some new results on the *p*-adic valuations of Stirling numbers of the second kind [J]. J Sichuan Univ: Nat Sci Ed, 2020, 57: 865.