首 页    学报简介    作者投稿    专家审稿    编辑办公    读者须知    联系我们
引用本文格式: 于璐,何祥,刘嘉勇. 基于时空语义挖掘的城市功能区识别研究 [J]. 四川大学学报: 自然科学版, 2019, 56: 246~252.
 
基于时空语义挖掘的城市功能区识别研究
Discovering urban functional regions based on sematic mining from spatiotemporal data
摘要点击 191  全文点击 63  投稿时间:2018-06-06  修订日期:2018-12-18
查看全文  查看/发表评论  下载PDF阅读器
DOI编号   
中文关键词   时空数据挖掘  城市功能分区  主题模型  签到数据
英文关键词   Spatiotemporal data mining  Urban district  Topic Model  Check-in data
基金项目   
作者单位E-mail
于璐 四川大学电子信息学院 im.izzie.yu@gmail.com 
何祥 四川大学电子信息学院  
刘嘉勇 四川大学网络空间安全学院 ljy@scu.edu.cn 
中文摘要
    针对目前城市功能区划分大多依靠人工完成,且未充分使用城市中时空数据的问题,提出一种基于时空语义挖掘的城市功能区识别方案.首先,选取某城市矩形区域为研究样本,并以建筑物为划分依据将研究样本划分为有效的基础区域;然后,对各基础区域内的新浪微博位置签到数据及POI(Points of Interest)数据进行时空语义挖掘,采用狄利克雷多项式回归(DMR)主题模型生成区域的功能性向量;最后,通过向量聚类,依据POI类别比例完成区域的功能性识别.实验结果表明,本方案相比基于POI密度的k means聚类方案和基于潜在狄利克雷分布(LDA)主题模型的城市功能区识别方法具有更高的准确性,位置签到数据所表征出的人们活动模式可以揭示城市功能区之间的差异,在城市地理空间分析上具有良好的效果.
英文摘要
    To tackle the problem that the current urban functional regions division are manual completed and do not fully use the spatiotemporal data in urban regions, an approach for detecting urban functional regions is proposed based on sematic mining from spatiotemporal data. In which, a rectangular area of the city is first selected as a research sample and divided it into some valid basis region units according to its buildings. Dirichlet multinomial regression (DMR) topic model is then implemented for the check in and POI(points of interest) data from Sina weibo in these basis region units and the functional vectors of the basis region units are obtained. Finally,the functional regions are discovered with vector clustering algorithm and POI’s category proportion. The experimental results show that this approach has higher accuracy compared with the k means clustering method based on POI density and urban functional area detecting approach based on latent Dirichlet allocation (LDA) topic model. Therefore,The activity patterns of people identified by location check in data can reveal the differences between urban functional areas and have a good effect on urban geospatial analysis.

您是第 3300426 位访问者

版权所有 @ 2007《四川大学学报 (自然科学版)》编辑部
地址: 四川省成都市武侯区四川大学望江校区文科楼330至342室  邮编: 610064
电话: (028)85410393  传真: (028)85410393  E-mail: scdx@scu.edu.cn
本系统由北京勤云科技发展有限公司设计