引用本文格式: 陈珏伊,朱颖琪,周刚,崔兰兰,伍少梅. 基于迁移的联合矩阵分解的协同过滤算法 [J]. 四川大学学报: 自然科学版, 2020, 57: 1096~1102.
 
基于迁移的联合矩阵分解的协同过滤算法
Collaborative filtering recommendation based on transfer learning and joint matrix decomposition
摘要点击 122  全文点击 88  投稿时间:2020-09-08  修订日期:2020-09-15
查看全文  查看/发表评论  下载PDF阅读器
DOI编号   
中文关键词   数据稀疏  协同过滤  迁移学习  联合矩阵分解
英文关键词   Data sparsity  Collaborative filtering  Transfer learning  Joint matrix decomposition
基金项目   南方电网公司科技项目(GZKJXM 20170162); 2018四川省新一代人工智能重大专项(18ZDZX0137)
作者单位E-mail
陈珏伊 贵州电网有限责任公司贵阳供电局物流服务中心 346056114@qq.com 
朱颖琪 贵州电网有限责任公司信息中心  
周刚 四川大学计算机学院  
崔兰兰 78123部队, 成都 610017  
伍少梅 四川大学计算机学院 wu_scdx@126.com 
Author NameAffiliationE-mail
CHEB Jue-Yi Logistics Service Center of Guiyang Power Supply Bureau Guizhou Power Grid Limited Liability Company 346056114@qq.com 
ZHU Ying-Qi The Information Center of Guizhou Power Grid Limited Liability Company  
ZHOU Gang College of Computer Science Sichuan University  
CUI Lan-Lan No.78123 Military of P.L.A, Chengdu 610017  
WU Shao-Mei College of Computer Science Sichuan University wu_scdx@126.com 
中文摘要
    早期的协同过滤算法利用矩阵分解来解决数据稀疏问题,但是严重的稀疏问题导致矩阵分解的性能很难满足应用的需求.随后,迁移学习被引入到协同过滤的研究中,它主要利用辅助域和目标域的公共用户的各种信息来解决目标域的数据稀疏问题.虽然通过引入辅助域的信息能够帮助目标域获取更多的知识,但是在公共用户包含的公共商品项目少的情况下,只利用公共用户的浅层特征来度量用户的相似性,不能很好地捕捉用户的潜在特征,相似性度量效果不好.为此,本文提出了一种基于迁移的联合矩阵分解协同过滤模型,以公共用户为锚,将两个领域的用户和商品映射到一个潜在的语义空间.模型通过对两个领域的用户 商品评分矩阵在以公共用户信息作为约束项的情况下,进行联合矩阵分解,在实际基准数据集上的实验结果表明,本文所提出的方法明显优于现有基于相似度计算的迁移学习方法,也证明了模型的有效性.
英文摘要
    Matrix decomposition was used in the early collaborative filtering algorithms in order to solve the problem of data sparsity. But it performed poorly in handling serious sparsity problem and cannot meet the application requirements. Then, transfer learning was introduced into collaboration filtering to deal with the data sparsity in the target domain by utilizing common users’ information in the auxiliary and target domains.Although the introduced auxiliary information would prompt knowledge acquisition in the target domain, these methods only use shallow features to measure the users’ similarity. As a result, these methods could not capture the potential features when the users have only a few common items and would result in poor performance in similarity measurement. In order to address these problems, this paper proposes a collaborative filtering recommendation method based on transfer learning and joint matrix decomposition. In this method, the information of common users and items in the two domains is mapped into a potential semantic space with the information of users as anchors; the user item joint rating matrix of two domains is decomposed with the user information as the constrain. The experiment was performed to validate the proposed method and the method showed superior performance over the state of the art migration learning methods based on similarity calculation on benchmark data set, proving its effectiveness.

您是第 3872770 位访问者

版权所有 @ 2007《四川大学学报 (自然科学版)》编辑部
地址: 四川省成都市武侯区四川大学望江校区文科楼330至342室  邮编: 610064
电话: (028)85410393  传真: (028)85410393  E-mail: scdx@scu.edu.cn
本系统由北京勤云科技发展有限公司设计