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g-C;N, and P25 organic-inorganic composite for improved visible

light-induced photocatalytic conversion of CQO,
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Abstract; g-C;N, and P25 organic-inorganic composite with varying the content of g-C; N, has been syn-
thesized through facile mixing and heating method. The composite was characterized by X-ray diffrac-
tion, high-resolution transmission electron microscopy (HRTEM) and UV-vis diffuse reflection spec-
troscopy., Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS)
and BET surface area measurements. The activity of composite photocatalyst g-C;N,-P25 with 60% or
80% g-C;N, for photoreduction of CO, is higher than that of either single-phase g-C5 N, or P25 under vis-
ible light irradiation. The as-prepared organic-inorganic composite exhibits an improved photocatalytic
activity due to enhancement of electron-hole separations both at the interface and in the semiconductors.
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. has a promising application for the removal of
1 Introduction . .
contamination, water splitting for hydrogen gen-

In recent years, the photocatalysis technique eration, and also photoreduction of CO, into fuels
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by using solar energy. The photogenerated elec-
tron-hole pairs form and transfer to the surface of

which

gives rise to the photooxidation-reduction reac-

semiconductor under light irradiation,

tion'. While, the key factor to realize the tech-
nique for large-scale industrial application is to
obtain highly efficient and low-cost photocata-
lysts. So far, various techniques, such as increas-

L2.s] L6l loading

[9-11]
b

ing surface area , element doping
cocatalyst””*! and forming solid solution
were used to improve the photocatalytic activity
for the photocatalyst.

Recently, an organic polymer photocatalyst,
graphite-like carbon nitride (g-C;N, ), has been
reported™?!, which possesses the performance of
hydrogen or oxygen production from water split-

ting and the removal of pollutantst®:'

under visi-
ble light irradiation, and such low-cost photoca-
talysis materials have potential application in the
field of civil engineering. The simple polymer cat-
alyst may have potential applications in photoca-
talysis field if some methods can be found for im-
proving the photocatalytic activity of this cata-
lyst. Some composite catalysts have shown better
catalytic activity than that of single component
catalyst, e. g. » g-C;N,and TaON composite pho-
tocatalyst was prepared and showed better photo-
catalytic activity for photodegradation of rhoda-
mine B than g-C;N,or TaON"); Other composite
photocatalysts such as graphene/C, N7, go-
CsN,/Bi, WO, g-C;N,-SrTiO; : Rh™, MWN
Ts/g-C;N*, g-CyN, /ZnO"", BiOBr-C;N*/, g-
C,N,/SmVO* and AgX/g-C;N, (X = Br, DV
have been synthesized. g-C;N, and TiO, compos-
ite showed better performance for photocatalytic
H, evolution under visible light irradiation than g-
C,N,or TiO;*'. Furthermore, in situ synthesis of
graphitic carbon nitride (g-C;N,;)-N-TiO, hetero-
junction as an efficient photocatalyst for photore-

Therefore,

it is expected to further improve the photocatalyt-

duction of CO, has been reported™®™.

ic activity of g-Cy;N, through forming composite

photocatalysts. Using simple mixing-heating

method to prepare the g-C;N, and P25 composite

and studying the photoreduction of CO, has not
been reported till now. In this paper, g-C;N,and
P25 composite photocatalysts with varying the
content of g-C;N, were prepared. Based on the
experimental results, the possible mechanism for
the improved photocatalytic activity in photore-

duction reactions of CO, was proposed.

2 Experimental

Synthesis of g-C;N,-P25 composite: In a typ-
ical process, the photocatalyst of g-C;N, was pre-
pared by directly heating melamine at 500 °C
(heating rate: 20 °C /min) for 2 h. and the fur-
ther deammonation treatment was set at 520 °C
for 2 h"*, respectively in the semiclosed system
to prevent sublimation of melamine. The P25
(TiO,, commercial degussa P25) and g-C;N,
powders were mixed by ball-milling and then cal-
cined at 400 °C for 2 h in a muffle furnace.

Characterization of samples: The products
were characterized by X-ray diffraction (XRD) for
phase identification on a Rigaku Ultima III dif-
fractometer with Cu Ka radiation (A = 0. 154
nm, 40 kV, 40 mA) and a scan rate of 10 ° «
min'. X-ray photoelectron spectroscopy (XPS)
data were collected on a THERMO FISHER SCI-
ENTIFIC K-Alpha instrument. The specific sur-
face area of the as-prepared powders was obtained
on a Micromeritics TriStar 3000 instrument
(USA) at 77 K and Brunauer-Emmett-Teller
(BET) equation was used to calculate the specific
surface area. The infrared optical properties were
measured on NEXUS870 IR spectrometer using
KBr pellet technique. Ultraviolet visible (UV-
vis) diffuse reflection spectra were measured u-
sing a UV-vis spectrophotometer (Shimadzu UV-
2550, Japan) and converted from reflection to ab-
sorbance by the Kubelka-Munk method. The mi-
crostructure of the sample was observed by a high
resolution transmission electron microscope (HR-
TEM; JEM-2100, 200 kV, JEOL Ltd. ).

In the photocatalytic reduction of CO,, the
composite powder (0.1 g) was uniformly dispers-

ed on a glass reactor with an area of 4. 2 cm®. The
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light irradiation system contains a 300 W Xe lamp
with cut-off filter L42 for visible light. The vol-
ume of the reaction system was about 230 mlL.
The reaction setup was vacuum-treated for several
times, and then high-purity CO, gas was intro-
duced into the reaction to achieve ambient pres-
sure. Deionized water (0.4 ml) was injected into
the reaction system as reducing agent. About 1
mL of gas during the irradiation was taken from
the reaction cell at given intervals for subsequent
CO concentration analysis with a gas chromato-
graph (GC-2014, Shimadzu Corp. , Japan).

3 Results and discussion

The powder XRD patterns of g-C;N,, P25
and g-C;N,-P25 composites are shown in Fig. 1.
It can be seen that there are two peaks in sample
with 100% g-C;N, at 27. 41°and 13. 08°, which
can be indexed to (002) peak (the characteristic
inter-layer staking peak of aromatic systems) and
(100) diffraction planes (the in-plane structural
packing motif) of the graphite-like carbon ni-
tride™™® respectively. No impurity phase was ob-
served in the pure P25 sample, which is consist-
ent with the XRD pattern of anatase (JCPDS No.
21-1272) and rutile (JCPDS No. 21-1276) mixed
phases. The g-C;N,-P25 composite samples pres-
ent a two composition; g-C;N, and P25, and with
the increase of the content of g-C,;N,, the intensi-

ty of the (002) peak becomes stronger.

o Anatase
= Rutile

100 % g-CN,

‘ A 80%g-CN,
" 60 % g-C\N,
A 40 %g-CN,
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Fig.1 XRD patterns of the P25 and g-C; N, com-

posites with different proportions

(100)
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Intensity / a.u.

Fig. 2 shows the Fourier transform infrared
(FT-IR) spectra of g-C;N,, P25 and g-C,N,-P25
composites respectively, The FT-IR spectra of
the as-prepared g-C;N, show the features very
similar to those of the published results®”. The
absorption band near 1640 cm ™! is attributed to C-
N stretching, while other three absorption bands
near 1240, 1320 and 1408 cm ™' are attributed to
aromatic C-N stretching. A broad band near 3140
cm ! corresponds to the stretching modes of ter-
minal NH, or NH groups at the defect sites of the
aromatic ring"*!. The band near 810 cm ! is at-
tributed to out-of plane modes of C-N heterocy-
cles. The FT-IR spectra of g-C;N,-P25 compos-
ites show that the intensities of the peaks at 810,
1240, 1320, 1408 and 1640 cm ™' which are attrib-
uted to g-C; N, become stronger with the increase
of the content of g-C,;N,. And for the pure P25,
the broad absorption band near 500-1000 cm ™' is

clearly shown, which is attributed to the stretc-
hing vibration of Ti-O-Ti bond™".
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Fg.2 FTIR spectra of the P25 and g-C; N, com-

posites with different proportions

UV-vis diffuse reflectance spectroscopy was used
to investigate the optical properties of the samples.
Fig. 3 shows the UV-vis absorption spectra of g-
Cy;N,, P25 and g-C;N,-P25 composites. The absorp-
tion edge of the P25 sample occurs at ca. 380 nm,
and the band gap energy is estimated to be 3. 26 eV.
After coupled with g-C,;N,, the absorption edge
shifts to the lower energy region. It can be seen that
the absorption edges of the composite samples shift

remarkably to longer wavelength with increasing the
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amount of g-C;N,. The decrease in band gaps of the
samples is from 3. 26 eV of P25 to 2. 70 eV of g-C,; N,
when the content of g-C,N, is increased from 0%

to 100%.

a0% g-CN,
b 20% g-C N,
€ 40% g-C,N,
d 60% g-C N,
€80%g-CN,
£100% g-C N,

Absorbance (a.u.)
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Fig. 3 The UV-vis diffuse reflectance spectra of
the P25 and g-C; N, composites with differ-
ent proportions

The morphology of 60 wt. % g-C,;N,-P25
composite material was investigated using TEM
and high-resolution TEM (HRTEM), as shown
in Fig. 4a and b respectively. The particle size of
the P25 was estimated to be in the range of ap-
proximately 20-40 nm. The HRTEM image (Fig.
4b) shows that the lattice fringes have a spacing
of 0. 352 nm corresponding to interplanar spacing

of (101) plane of anatase TiO,.

Fig.4 TEM image (a) and the high-resolution
TEM image (b) of the 60 wt. % g-C;N,-

P25 composite

Fig. 5 shows that CO, can be photoreduced to
CO in the presence of water vapor by using the a-
bove-mentioned g-C;N,-P25 composite samples as
photocatalysts. From Fig. 5, it is obvious that 60
wt. % g-C;N,;-P25 (301. 4 ppm h ' CO) and 80
wt. % g-C;N,-P25 (166. 2 ppm h™!' CO) exhibit
higher activity than g-C;N,(106.4 ppm h™' CO).
The mechanism of photoreduction of CO, into CO
can be described as follows: under the visible
light irradiation, the photogenerated hole on the
valence band top (potential: 1. 50 V vs. NHE got
from the XPS VB spectrum shown in Fig. 6) of g-
C;N, can lead to the oxidation of water to produce
hydrogen ions via H,O—>1/20, + 2H" + 2e~
(E%x=0.82 V vs. NHE)"/, and the photoge-
nerated electron on the conduction band bottom
(potential; — 1. 20 V vs. NHE) of g-C;N, can
drive the reduction of CQO, into CO via CO, + 2e~

+ 2H" - CO + H,0 (E’%n= —0.53 V vs.
NHE)™, The BET specific surface area of the g-

C;N,, 20, 40, 60 and 80 wt. % g-C;N,-P25 sam-
plesis 8.2, 44.4, 37.3, 28.2, 21.6 m* » g ',
respectively. Thus, the improved photocatalytic
activity is not attributed to the effect of the spe-
cific surface areas. The enhancement of perform-
ance of the composite materials is supposed to be
attributed to the more effective separation of the
photogenerated electron-hole pairs. From Fig. 5,
the photocatalytic activity of 60 wt. % g-C,N,-
P25 sample is much higher than that of 80 wt. %
g-C3N,-P25 composite. For the g-C;N,-P25 com-
posite, the content of g-C;N, was important to a-
chieve the high photocatalytic activity. The suit-
able content of g-C;N, caused the better disper-
sion of P25, and that may promote the transfer
and separation of photogenerated electrons and
holes. However, at content higher than 60
wt. %, the heterojunction structures and inter-
faces between g-C;N, and P25 particles decreased
and thus the interfacial charge transfer was sup-

pressed, which reduced the photocatalytic activi-

ty.
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Fig. 5 CO, photoreduction over the P25 and g-
C3; N, composites with different proportions
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Fig.6 VB XPS spectrum of g-C; N,

The scheme for electron-hole separation and
transport at the g-C;N,-P25 composite photocatalyst
interface is shown in Fig. 7. As shown in Fig. 7, the
CB and VB edge potentials of g-C;N, are at —1. 20
and 1. 50 eV, respectively. The CB and VB edge po-
tentials of TiO, are at —0. 29 and 2. 91 eV, respec-
tively"®’. Under irradiation by simulated sunlight, e-
lectrons are excited from VB to CB in both g-C;N,
and TiO, , generating holes in the VBs of both semi-
conductors. The photogenerated electrons in g-C, N,
can easily migrate to the TiO, surface. This process
can effectively improve the separation of photogener-
ated electron-hole pair and greatly decrease the possi-
bility of photogenerated charge recombination, resul-
ting in the high photoactivity of g-C;N,-P25 compos-
ites. This mechanism also explains the promotion
effects of TiO, under visible light. Under the irradia-

tion of visible light, only g-C,;N, can generate elec-

tron-hole pairs for photocatalytic CO, reduction,

Since the CB edge potential of g-C;N, (—1. 20 V) is
more negative than that of TiO, (—0. 29 eV), the
photogenerated electrons on g-C,;N, particle surfaces
transfer more easily to TiO, via the well developed in-
terface and reduce CO, to CO.

Photo- -C.N
VS. P‘HE reduction 9-%3M
: -1.20 e € CB
_ 0.29 CB 2
opP—-------=-------- --- H*/H,
| hv
1—+1.23
";1’_50 """"""""" == H2OI02
, - h+ VB
+2.91 VB h” Photo-
/ oxidation
+
TiO,

Fig. 7 The schematic illustration for the electron-
hole separation and transport at the g-C; N, -
P25 composite photocatalyst interface.

4 Conclusions

In summary, the g-C,N,-P25 composite materials
with varying the content of g-C; N, were prepared. The
absorption edge of the coupling materials shifts to the
lower energy region compared with pure P25 and to
longer wavelengths with increasing the amount of g-
C;N,. The photocatalytic result shows that the visible
light-induced reduction of CO, rate is remarkably en-
hanced by coupling P25 with g-C;N, due to the effective

separation of photogenerated electron-hole pairs.
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