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Research based on batch fully homomorphic encryption-symmetric encryption

TAO Meng-Long , HU Bin
(PLA Information Engineering University, Zhengzhou 450001, China)

Abstract: All homomorphic encryption schemes proposed so far suffer from a very large ciphertext ex-
pansion, which is a very significant bottleneck in practice. In order to improve the transmission efficien-
cy, Naehrig et al. proposed an idea of hybrid encryption, i. e. a user encrypt some plaintext m with a
symmetric encryption scheme E under some private key %, and encrypt the private key # with a homo-
morphic encryption scheme under some public key pk, transmit a much smaller cipertext ¢’ =(HE , (k) ,
E,(m)) that cloud decompresses homomorphically into the HE ,, (m) through a decryption circuit Cg-t.
In this paper, we extend the Fully Homomorphic Encryption-Symmetric Encryption framework into a
batch one, i. e. we use the Chinese Remainder Theorem to pack / ciphertexts E,(m,),+*+,E,(m,—,) into
a single C, send C'=(HE , (k) .C) to the cloud. Given C’, cloud only needs to homomorphically evalu-
ate Cg1 for once to recover all HE ,, (m;), rather than [ times in original scheme. By this way, we can
greatly reduce the times of homomorphically evaluating decryption circuit, which costs a lot of computa-
tion. We also give out an instance of batch GSW13-FLIP scheme to explain in detail. Comparing to orig-

inal scheme, our batch scheme can reduce the computational complexity from O(A*) to O(A*), where A is
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security parameter of FLIP.
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theorem; Homomorphic evaluate

1 Introduction

With the development of communication
technology, many users with limited storage and
computing facilities emerge, as well as cloud ser-
vices with extensive storage and computing capa-
bilities. Cloud service and secure multi-party
computation (MPC) have become the current hot
research. In this case, the outsourcing of data
and the delegation of data processing are becom-
ing more and more interesting. In this process,
however, for privacy reasons, users do not want
the cloud service to know their specific data, allow-
ing only the ciphertext to be processed. The tra-
ditional encryption scheme does not allow the ho-
momorphic computation of ciphertext. For this
purpose, Gentry proposed the first fully homo-
morphic encryption (FHE) scheme' based on i-
deal lattices. This scheme proceeds in several
steps. First, one constructs a somewhat homo-
morphic encryption scheme, which only supports
a finite number of multiplications. Second, squas-
hing the decryption circuit so that it can be pres-
ented as a low degree polynomial. Finally, the
key step of Gentry, called bootstrapping, consists
in homomorphically evaluating the squashed de-
cryption circuit to refresh the ciphertext, resul-
ting in a new ciphertext associated with the same
plaintext, but with reduced noise. Since the
breakthrough result of Gentry, many works have
been published, introducing new hard problem,
improving homomorphic efficiency. Dijk et al.*
proposed fully homomorphic encryption scheme
over integers based on approximate GCD prob-

[3-4]

lem. Brakerski and Vaikuntanathan proposed

the scheme based on the learning with errors
(LWE) and ring learning with errors (RLWE)
problems. Gentry ez al. ) introduced the scheme
based on LWE using a new technique from ap-

proximate eigenvector problem. Full homomor-

phic encryption plays an important role in privacy

571 However, the huge computation

protection
and storage cost of homomorphic encryption are
still the main limitation for the deployment of
cloud services based on such FHE frameworks.

In these cloud applications, we often send
some data encrypted under a FHE scheme to the
cloud to process in further. Typically, a user
(Alice) encrypts some plaintext m under some
other’s public key pk (Bob) and sends some ho-
momorphic ciphertext ¢ = HE , (m) to a third-
party evaluator in the Cloud (Charlie). However,
all homomorphic encryption schemes suffer from
a very large ciphertext expansion, which greatly
restricts the practical application. Naehrig et al.
first considered the problem of reducing the size
of ¢ as efficiently as possible in Ref. [8]. We
could encrypt m with a symmetric encryption
scheme E under some secret key k£, then send a
much smaller compressed ciphertext ¢ = (HE
(k) ,E,(m)) to the cloud. By utilizing the homo-
morphic property of FHE, cloud can homomor-
phically evaluate the decryption circuit Cg—! to re-
cover the original c=HE ,, (m) =Cg—1 (HE ,, (k)
E. (m)), this can be assimilated to compressed
encryption method and ciphertext decompression
procedure. Obviously, for long messages, the ex-
pansion rate of ciphertext

|(HE 4 () Ey(m ) EyGmy) s ) |/ Gny s

My .. |

is approaching 1. In this way, we greatly reduce
the storage and transmission complexity for the
long messages.

The framework of homomorphic encryption
- symmetric encryption leaves an open question
of how to choose symmetric encryption scheme E
to minimize the decompression overhead, while
preserving the same security level as originally in-
tended.

Some work has been done to investigate the
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cost of a homomorphic evaluation of AES and sev-

1 including

12]

eral optimized implementations
some lightweight block ciphers Simon''?’ and
Prince'™® ezc. These lightweight block ciphers
seem to be natural candidates for the framework,
however, they may lead to worse result than
AES. Specifically speaking, existing homomor-
phic encryption schemes use noisy encryption,
where the noise of ciphertexts grows along with
homomorphic operations. Normally, homomor-
phic multiplication increases the noise much faster
than homomorphic addition. The noise of homo-
morphic evaluation depends mostly on the multi-
plicative depth of the circuit. However, many
lightweight block ciphers have a large number of
rounds for security, which is prohibitive in the
FHE context. Albrecht ez al. " observed that the
standards of designing lightweight block ciphers
does not applies to design a symmetric encryption
with a low-cost homomorphic evaluation. Both
the number of rounds and the number of binary
multiplications required to evaluate an Sbox effect
the complexity of homeomorphic evaluation of de-
cryption circuit. Taking both criteria into ac-
count, Albrecht ez al. ™ design a family of block
ciphers called LowMC with very small multiplica-
tive size and depth. Later, stream ciphers are also
seemed to be candidates, Trivium and Kreyvi-
umt" are proposed for low multiplicative depth of
decryption that is appropriate for homomorphic e-
valuation,

Unfortunately, these two types of schemes
are still limited by complementary drawbacks.
The noise produced by homomorphic evaluation of
the decryption circuit of block ciphers is high and
constant, while stream ciphers have a low initial
noise that grows with each successive encryption.
In consideration of combining the best of these

161 proposed a

two previous works, Méaux et al.
new stream cipher construction named filter per-
mutator and a family of stream ciphers denoted as
FLIP, based on the filter generator construction,
It combines both advantages from the constant

noise property offered by block ciphers, and the

lower noise levels of stream ciphers. Overall, fil-
ter permutators in general and FLIP instances in
particular open a large design space of new sym-
metric constructions with low-cost homomorphic
evaluation.

In practical application, every time we trans-
mit a compressedciphertext, we need to homo-
morphically evaluate the decryption circuit Cp1
once to recover the original ciphertext HE ,, (m).
When we transmit a long message, this procedure
brings a considerable amount of computation. In-
spired by previous works, packing technique can
combine many operations into one operation,
which greatly improves the efficiency of calcula-
tion. For this reason, we consider extending the
homomorphic encryption-symmetric encryption
framework into a batch one, i. e., we use the
Chinese remainder theorem to pack [ ciphertexts
E,(my) -, E.(m,—) into a single C=CRT(E,
(mo)s. .. yEyGn—1))1, then we sent new com-
pressed ciphertext (HE , (k), C) to the cloud,
any operation we do with C can be reflected on E,
(m;). At last, given (HE , (k),C), utilizing the
property of FHE, we get C' by homomorphically
evaluate the decryption circuit Cg—t with (HE
(k),C). Then we can simply recover each HE ,
(m;) by (C" mod p;) mod 2. That is to say, by
introducing a new calculation of packing, we can
reduce the homomorphic evaluation from / times
to once. We also give out an instance of GSW13-
FLIP framework for more specific analysis. When
we need to transmit [/ ciphertexts, in original
scheme, it requires [ times of homomorphic evalu-
ation, the computational complexity of each ho-
momorphic evaluation of decryption circuit is
roughly O(Q), so the computational complexity of
recovering all HE ,, (m,) is roughly O(2*). In
batch scheme, we reduce the homomorphic evalu-
ation of decryption circuit for only once. But
meanwhile, we also introduce a new calculation C
=CRT(E;(my),...,E,(m,—1)), the computa-
tional complexity of batch scheme is roughly
OQM).
ational complexity from O(2*) to O(A*). Actual-

In this instance, we reduce the comput-
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ly, the more ciphers we pack, the more computa-

tional costs we save.

2 Background

In this section, we introduce the filterpermu-
tator, a new stream cipher construction. We de-
scribe the general filter permutator structure and
specify a family of filter permutators (donated as
FLIP). Next, we introduce the batch DGHV
scheme what we utilize to extend the fully homo-
morphic encryption-symmetric encryption frame-
work into a batch one.

2.1 Description of the FLIPfamily of stream ci-
phers

In order to design a symmetric construction com-
patible for FHE applications, we consider both block
and stream ciphers, each with advantages and disad-

vantages, as discussed in Refs. [17-18].

PRNG Key register K
Y VY YV VYV VY Y
Permutation P
Generator i
YV VY VYV VY v v
F
mi—> Zj.
C

Fig. 1 The general structure of FLIP

Since the growth of noise is one of the most
important factors restricting the application of
FHE, our main purpose is to limit the growth of
noise as much as possible. In other words, we
need a symmetric construction whose circuit has a
lower multiplicative depth. This ideal property is
also considered to be a high homomorphic capaci-
ty, which is difficult to obtain with block ciphers
because of the large algebraic degree of the output
due to the round iterations. However, the good
point is that noise is a constant for each block,
which means that noise does not add any limita-
tion to the number of generated -ciphertext

blocks. On the other hand, the homomorphic ca-

pacity of stream ciphers is usually very high for
the first ciphertext bit, but as more bits are gen-
erated, this requires reinitializing the cipher or u-
sing techniques such as bootstapping.

Taking the best from both types of schemes,
Méaux et al. '™ designed an innovative stream ci-
pher, which has a very good homomorphic capaci-
ty and remains the noise of homomorphic evalua-
tion constant with time. The new stream cipher is
based on the filter generator construction, the
general structure of filter permutators is repre-
sented in Fig. 1.

FLIP is composed of three main components:

(1) A register storing the N-bit K.

(2) A (bit) permutation generator controlled
by a Pseudo Random Number Generator
(PRNG), which is initialized with a public 1V,
producing an N-bit permutation P; at each
clock 1.

(3) A filtering function which generates a
key stream z;.

Comparing to the filter generator construc-
tion, FLIP drops the register update part to avoid
the algebraic degree increase. Instead, the regis-
ter bits are permuted rather than updated by
means of LFSR. In details, when the PRNG is
initialized with an IV, at eachclock 7, the permu-
tation generator produces a permutation P;, key
bits are permutated by P; before they enter the
filter function F. XORing m; and z; generated by
F, we produce the c;.

The decryption process is similar to encryp-
tion. We generate the keystreams z;, XOR them
with ¢; to recover the m;. When homomorphically
evaluating decryption circuit, the permutation
part produces none noise, the main component
that affects homomorphic efficiency is filter func-
tion. F is an N-variable Boolean function defined
by the direct sum of three specific Boolean func-
tions f1, f> and f5"%.

Definition 1 (Linear functions) Let 7>>0 be
a positive integer, the L, linear function is an n-

variable Boolean function defined as:
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n—1

L;,(Io e e e 9.T7h1) - 21‘,’
i=0

Let n>0

be a positive integer, the Q, quadratic function is

Definition 2 (Quadratic functions)

a 2n-variable Boolean function defined as:

n—1
Qn (I() e o 9127h1) - 2121'1‘2['1
i=0
Definition 3 (Triangular functions) Let £#>0
be a positive integer, the k-th triangular function

k(k+1)

T, is a 5

variable Boolean function

defined as:

Ti(xps. .. 71‘@ ) = ZfH;:OIHEEM

For example, the 4th triangular function
T, is

T, =20 Bx1xs Drsxs a5 Dasar xsxy

These three types of function have good
property of several security criteria, non-lineari-
ty, resiliency and algebraic immunity etc. Three
parts of filter function respectivelyhave n,, n,,

ns variables.

‘fZ (:I:n] e o 7171] \112*1) = QIIZ/Z =
712/2*1
2 . X2 2441
=0
S50 4y 2e v o 3Ty 1, —1) 18 the direct sum

of nb triangular function T, each T, has differ-
ent and independent variables, we donate f;
as nbT,.
We define F as the direct sum of f}, f, and
f3» such that:
Flxosoiszyinn—1) = [1 D2 @ fs =

nh
L”l +Q712,/’2 + ZTk’ n3 j— nb o k(kf;l)

i=1

Since the filterpermutators is similar with a filter
generator, Méaux et al. provide an initial analysis
of FLIP filter permutators against a couple of the
most common attacks on filter generators. Some
instances of attack complexities and the selection
of parameters aiming at 80- and 128-bit are pres-
ented in Tab. 11", where FLIP (n,sn,,nbT})
donates the FLIP with n,, n;, n; variables for

each part.

. n,—1
fl(froa--- 91'11171) :Ln] = Eiio L
Tab. 1 Attack complexities and parameters of two concrete instances of FLIP
Key size N AA [ FAA [ HOC [ Security A
FLIP(46,136.,4T15) 662 91 52 81 52 90 48 80
FLIP(86,238.,5T 23) 1704 149 105 137 105 128 74 128

AA, FAA, HOC stand for Algebraic At-
tacks, Fast Algebraic Attacks, Higher-Order Cor-
relation attacks, respectively. [ represents the
number of bits to guess that leads to the optimal
complexity of guess and determine attacks. Final-
ly, A stands for the security parameter of F,
which is taken as the minimum between these at-
tacks.

Low multiplicative depth of circuit is the lar-
gest advantage of FLIP. In most previous
schemes, the noise produced byhomomorphically
evaluating decryption circuit is too high to per-
form more homomorphic operation.

2.2 Batchfully homomorphic encryption over
the integers

In the original DGHV scheme'*, a cipher-

text has the form ¢ =q « p +2r +m, where p is

the secret key, ¢ is a large random integer, and r
is a small random integer (noise), the plaintext
bit m € {0, 1} is recovered by computing m =[ ¢
mod p Jmod 2.

We use the Chinese Remainder Theorem to
pack [ bits m; into a single ciphertext with a set of
[+1 coprime integers qos pos***» pi—1. The batch
ciphertext has the form

c¢=CRT .p.....p,, (qs2ro Tmg,...

my1)

727”171 +

where g=c¢ mod q¢, 2r;—1 +m;,—; =c mod p,, for
1< <<l. Therefore, the addition or multiplication
of two ciphertext produces a new ciphertext,
which is decrypted to the componentwise sum or
product modulo 2 of the original plaintexts.

As for publickey encryption, the original

DGHYV scheme masks the message m with a ran-
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dom subset sum of the public key elements x; =g;
« p+r;, has the form

c=[m+2r+22x;]1,,

jes

with x; =q; * p +r;. Decryption outputs m=<—[c
mod p ;.

Next we describe the batch DGHV scheme
(BDGHV) ",
tively denate[ x 7, L x ] and [ x ] as the upper, low-

For a real number x, we respec-

er, and nearest integer part of x. For integers z
and p, we denate * mod p by [ 2], with —p/2<
[z],<p/2. Let A be the security parameter, r be
the number of elements in the public key, ¥ the
bit-length of integers z; in the public key, 5 the
bit-length of secret key p and p the bit-length of
the noise 7, {0/ the bit-length of the noise in a re-
fresh ciphertext.

BDGHYV. KeyGen(1*). Generate a collection
of / random 7bit prime p;,0<j </, and denote =
their product. We define a noise-free public key

element xy =¢q, * w, that does not contain prime

factor and is less than 2°°, where qo<—27 N[0,27/
.

Generate the integers z;, x;" and II; with a
quotient by 7 uniformly and independently dis-
tributed in Z N[0,q,), and with the following
distribution modulo p; for 0<<j </

1< <z, a;, mod p; =2r;;

0<i<l—1, x; mod p; =2r;;" +5,,

0<i<</—1, I, mod p; =2w,,; +¢&,,; + 2°"",
with 7, ;<~Z N(—2/"1,2"Y), and r;; v, ;< Z
NC—2¢,2)

Finally, let pk={x0, (x)1cicrs (21 Docicr1 s
(II)ocici1 ) and sk= (pi)o<icu.

BDGHYV. Encrypt ( pk, m € {0,1}"). Choose
random integers vectors b= (b;) € (—2*,2*)" and
b =)oy € (—2¢7,2¢)! and output the ci-
phertext;

=1 =1 T
c':[%m, . 1f —0—2)6; o I, -0—21/% . :(,-]1.0

i= i=( i=
BDGHYV. Decrypt ( sk, c).

,m,;—1) where mje[cj,)j mod 2.

Output m =
(mgs. ..

BDGHV. Add(pk,(l s Co ). Output C1 +('2 mod
o

BDGHV. Mult (pk, Cls C2 ). Output c1 * C2

mod .

The parameters in the scheme must satisfy
the following constraints:

(1) p=0Q() to avoid brute force attack on
the noise "%/,

(2) p=p » O log® A) for homomorphically
evaluating the “squashed decryption” circuit,

(3) 7720/ Jr,o/ +1+ log (1) for correct de-
cryption,

(4) y=w(y® + log 1) to avoid lattice-based
attacks'>?!,

(5) p=p+2a and o’ =a +2 in order to prove
the semantic security,

(6) a*r=A+yand c=1[ » ({o’ +2) +2 in or-
der to apply leftover hash lemma to prove the se-
mantic security of the scheme,

To satisfy these constraints above, we can
take p =22, 1/:@()(2) , y=0"), a=00%), r=
OQ®) as in References [187], with p/ =0, o =
O*) and [=0(A*), where A is the security pa-

rameter.

3 Batch FHE-symmetric encryption
framework

In this section, we describe our contribution
on batch FHE-symmetric encryption framework.
Using Chinese remainder theorem, we can pack /
ciphertexts E,(m¢) .+, E; (m,—)) into a single C,
then send C’ =(HE, (k),C) to the cloud. Fur-
thermore, we give out an instance of batch
GSWI13-FLIP framework, and analyze the effect
of this improvement on computational efficiency.
3.1 Description

In original compressed encryption, we en-
crypt m with a symmetric encryption scheme E,
and secret key £ with a fully homomorphic en-
cryption. Then the compressed ciphertext ¢ =
(HE , (k) ,E,(m)) is sent to the cloud instead of
HE . (m). Receiving ¢’, Cloud utilizes the homo-
morphic property of FHE to homomorphically e-
valuate the decryption circuit,

Ce ' (HE 4 (k) ,e) =E '"(HE , (k).

HE , (¢)) =HE 4 (E '(k,c)) =HE , (m)

As for [ messages m,;,0<<i<</—1, we send
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compressed ciphertext ¢’ = (HE, (&), E,(m;)),
then / times homomorphic evaluation are needed
to recover the HE ,, (m;).

Considering that ciphertexts ¢; =E, (m;) are
single-bit, we can imitate batch FHE over inte-
gers, and use the Chinese remainder theorem to
pack ¢; into a C,

C=CRT .p.....p, , (q+2r0 Tcoseves2riy Te1)
with a set of [ +1 coprime integers qo, pos ***»
pi—1» and c=qg mod ¢q,» C=q * p,— +2r— +ci,
for 1<<i<</""®). The new compressed ciphertext is
(HE ,; (k),C), we can recover ¢; by (C mod p;)
mod 2.

Next, the main problem is how to recover
the HE ,, (m;) when given the (HE 4 (£).(C). It
is clear that C and ¢; have homomorphic property,
our operation on C can be reflected on ¢;, i. e. Dec
(Evaluat;(C)) = f(¢;). Treating decryption cir-
cuit as a function, ciphertext and secret key are
inputs. Similarly, Cg—! can be seen as a function,
HE , (k) and C are inputs. Ultilizing the homo-
morphic property, there are two steps to get
HE , (m,) .

(1) C'=Cg1 (HE 4 (k) ,0),

(2) HE  (m;) =(C" mod p;)mod 2

First, we homomorphically evaluate decryp-
tion circuit with HE 4 (k) and C to get C’. it
means that we take a functional operation on C,
which can be reflected on ¢;. Then, according to
the relationship between C and c¢;, we can simply
recover HE ,, (m;) by (C" mod p;)mod 2. Intro-
ducing an extra packing operation, we only need
homomorphically evaluating decryption circuit for
once, which is [ times in previous view.

We can also achieve the operation between
the slots to get HE, (m;) + HE,; (m;) and
HE . Gn,) « HE ; (m;). For two packed cipher-
texts C, and C,, we pack (cy,cps. ..
C, and (¢)schs. .. sciy) into Cys i.e.
Ci=CRT .p.....p, , (qs2ro Tcos oo s2r1 o)
C, =CRT v (@o2r0 el 2 el )

Here, we respectivelydenote E, (m;) and
E.(m}) as ¢; and ¢}, 1<<i<<[. As introduced a-

bove, there are homomorphic properties between

s C1—1 ) il’ltO

9 .,1')0 E

C, and ¢;, as well as C, and ¢}.
Ci=pi*qt2rite, Co=p, + qt2r +
It is clear that,

. (mod pi)mod 2
C, +C,

’
¢; T

(mod p;)mod 2 ,
C; ®C;

C1°C2

According to homomorphic properties, the

operation we process on C; +C, and C, * C, can
be reflected on ¢; +¢; and ¢; * ¢;. That is to say,
we can homomorphically evaluate the decryption
circuit Cg—1 with C; +C, and C, * C, to get
Cr1 (c;+ci) and Cp—1(c; = ¢i).

(mod p;)mod 2
—_———

Ce—1(Cy +Cy) Cp 1 (e +el)

(mod p;d)mod 2 ,
C]—;fl (C1 . Cz) (/1-;71 (C,' . C,')

In the process of recovering the HE ,, (m,),
we use the homomorphic properties. When it
comes to operate Cp! on ¢; +c..

Cp (¢, Te))=

E '(HE (k) HE (¢, +¢))) =
E"'(HE (k) HE , (¢,) +HE , (¢/)) =
E"'"(HE (k) ,HE , (¢;)) +
E '(HE, (k) HE 4, (¢)) =
HE . Gm;) +HE 4 (m))
sl Cpi (e v cl) =
HE, (m;) « HE, (m;). By this way., we can

parallel operate on [ slots at the same time, which

It is the same for ¢;

reduces a lot of extra calculation. We can get all
of the HE ,, (m;) + HE ,, (m}) and HE , (m,)
HE ,, (m}) through only one homomorphic evalu-
ation,

Next, we give out an instance of batch
GSW13-FLIP framework, in this context, the ef-
ficiency of batch scheme and original scheme is
analyzed in detail.

3.2 Efficiency analysis

3.2.1 Original GSW13-FLIP scheme. In the
absence of packing operation, when we need to
transmit / compressed ciphertexts, we usually
take [/ times homomorphic evaluation of decryp-
tion circuit to recover HE , (m;), which causes a

great deal of calculation.
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k k
| |

FLIP FLIP
IR I
m,—» @ m., —» @
| |

Send (HE,(k),c,,"**, ¢..y)

Fig. 2 [ Compressed ciphertexts

Given compressed ciphertext ( HE, (%),
Cose..sCi—1)s we then homomorphically evaluate

the decryption circuit Cp1 to recover the

HE ,(m;) =Cr (HE, (k). ¢;). In this con-
struction, the cost of decomp-ression per plain-
text is fixed and roughly equals one single evalua-
tion of the decryption circuit; more specifically,
the multiplicative depth of the decompression cir-
cuit is also fixed and equals to the decryption cir-
cuit.

As showing in Tab. 1, FLIP (46,136,4T5)
and FLIP (86, 238, 5T,;) separately satisfy 80-
and 128-bit security. That is to say, when securi-
ty parameter A = 80, we choose parameters as
FLIP (46,136,4T ;).
FLIP with 662 inputs, linear part of n; =46 bits,

It denotes the instance of

quardratic part of n, =136 bits and 4 triangular
functions of degree £ =15; when security parame-
ter A=128, FLIP (86,238,5T,;) denotes the in-

stance with 1704 inputs, the linear and quardratic

parts respectively of n;, =86 and n, =238 bits,
and 5 triangular functions of degree £ =21.
We recall that three parts of filter function

respectively have n,, n,, n; variables.

n 1
fl (xo 9. 0 91'”1—1) - L”l - 2570 X
fZ (Iul LR "l‘?IlJﬂlE*l) -
) /2—1
an /2 = E i—g L2t
S5(y a, 00 oo 2T a0, —1) 18 the direct sum

of nb triangular function T,

Ty(xps... ’IM;“H) = Efn:oxj+2;‘;lol

As for FLIP (46,136,4T5), security param-
eter A is 80, multiplication comes mainly from
quardratic and triangular parts of filter functions,
that is 432. Moreover, the number of addition is
172. Similarly, security parameter A of FLIP (86,
238,5T,3) is 128, the number of multiplication is
1274 and the number of addition is 313. Obvious-
ly, gate computational complexity of homomor-
phically evaluating decryption is O(1). To satisfy
the constraints of batch scheme, we take [ =
O(*). So that, the computational complexity of
decompression is roughly O(*).
3.2.2 Batch GSWI13-FLIP scheme.

the Chinese remainder theorem to pack ¢; into a

Utilizing

C, we only need to homomorphically evaluate de-
cryption circuit for once, but introduce the new
computation of BDGHV,

Tab. 2 Capability of somewhat and fully BDGHV scheme

Scheme Security Hard problem Gate computational complexity
Somewhat BDGHV IND-CPA Error-free approximate-GCD, SSSP OL5)
Fully BDGHV IND-CPA Error-free approximate-GCD, SSSP OL5)

As showing in Tab. 2:%*', both schemes have
gate computational complexity of O(1"").

Comparing the original scheme with the
batch scheme, although the computational com-
plexity of a homomorphic evaluation is O(Q) , less
than O(1"°) that of BDGHV scheme, we have to
homomor phically evaluate decryption circuit for
{—1 more times to recover all HE  (m;). So that

the computational complexity of original scheme

is roughly O(1*). By packing ¢; into a C, we only
need once homomorphic evaluation to get C', the
extra introduced operation has computational
complexity of O(A%°). Given C’, We can simply
get HE ,, (m;) by (C" mod p;) mod 2. Twice
multiplication is required for once modular opera-
tion, therefor the computational complexity of
batch scheme is roughly O(A*). Through packing

operation, we reduce the computational complexi-
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ty from OX*) to O(A?).

When we need HE , (m,;) + HE (m)) and
HE ,(n;) « HE, (m’), utilizing the parallel op-
eration on slots, we can just operate once homo-
morphic evaluation of decryption circuit on C; +
C, and C, * C, instead of 2/ times in original

scheme.

4 Conclusions

In the context of fully homomorphic encryp-
tion-symmetric encryption framework, we usually
send compressedciphertext ¢ = (HE 4 (%), E,
(m;)) to the cloud to get over the expansion of
homomorphic ciphertexts, then cloud homomor-
phically evaluate decryption circuit / times to re-
cover all HE , (m;), where 0<<i <</ —1. In this
process, a great deal of operations are consumed
on homomorphic evaluation.

In this paper, utilizing the Chinese remainder
theorem to pack ¢; into a C, we extend the fully
homomorphic encryption-symmetric encryption
framework into a batch one, we only need to ho-
momorphically operate Cp—' on C, which can be
reflected on ¢; by the homomorphic property be-
tween ¢; and C. So that, while introducing an ex-
tra operation of BDGHV, we can reduce the ho-
momorphic evaluation of decryption to only once.
Meanwhile, we can also parallel operate compo-
nents in packed ciphertexts to get HE , (m;) +
HE ,, (m}) and HE, (m,;) « HE ,Gn) through
Cp1(C;+Cy) and C—1 (Cy « Cy).

More specifically, we give out an instance of
batch GSW13-FLIP framework, analyze the com-
putational complexity of original scheme and the
batch one. Although the computational complexi-
ty of once homomorphic evaluation of decryption
is less than the complexity of BDGHV, we have
to operate [ times to recover all HE ,, (m;), 0<<
<</ —1. Compared to the original scheme, our
contribution of batch scheme can reduce the com-
putational complexity from O(1*) to O(A*). And
the more message we transmit, the more benefit
we get from the batch scheme.

Beside this, we can operate our batch tech-

nique on other fully homomorphic encryption-
symmetric encryption frameworks for different
FHE schemes or symmetric encryption schemes.
As for parallel operation, we have implemented
the calculation of the corresponding components
in slots of different packingciphertexts. Utilizing
the pattern in Ref. [ 23], we can also realize the
calculation of different components in a packing

ciphertext.
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