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Crossover of three percolation transitions types in random networks
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Abstract: Based on a simple piecewise linear weighted function, we unified two different types of tricriti-
cal percolation with a parameter « in one model, in which by tuning « from 1 to 0 the phase transition can
switch from continuous to multiple discontinuous to discontinuous. By calculating the relative variance
of the order parameter with different system sizes, we find that it collapses to a singular peak at the crit-
ical point in the thermodynamical limit at «=0. 6, and interlaces together on a supercritical interval at =
0.5, and becomes larger on an extended interval at ¢=0. 4 with increasing system size, respectively. It
shows that the tricritical value of « is between 0. 6 and 0. 5 as well as between 0. 4 and 0 from continuous
to multiple discontinuous as well as from multiple discontinuous to discontinuous respectively. Our
framework provides insights into understanding the crossover behaviors between different types of phase
transition in random networks.
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. physics and has been widely applied in various
1 Introduction )

systems-"%/. As one of the most classical percola-

Percolation, describing the onset of large- tion models, the Erdos-Rényi (ER) random
scale connectivity of networks as edges are added, graph'” chooses one edge uniformly and randomly
is one of most studied problems in statistical at each time step and the resulting phase transi-
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tion is continuous. Instead of selecting one edge
at each time step, a competitive percolation
process with a given number of candidate edges
can lead to so-called explosive percolation'® where
the order parameter is seemingly discontinuous in
a relatively large system size. Stimulated by this

[9-18]

work, various competition rules are pro-

posed, and some authors introduced weighted

rules 9?4

where the edges are added with a cer-
tain probability. Later, it is shown that the phase
transition induced by Achlioptas process is con-

(251 Moreo-

tinuous in the thermodynamical limit
ver, they have made clear that the percolation
phase transition can be discontinuous if the num-
ber of the competition edges grows with the sys-
tem size ®,

Although any rule based on picking a fixed
number of random nodes would lead to a continu-

%1 the authors also pointed

ous phase transition"
out that there are Achlioptas processes whose or-
der parameter has random fluctuations even in the
thermodynamic limit"?*). Nagler ez al. analyzed a
devil’s staircase model, in which the order param-
eter generates a multiple discontinuous phase
transition accompanied by an infinite number of
discontinuous jumps in the supercritical re-
gion?™. After that, Schroder et al. studied a
fractional growth percolation model** that gener-
ates a multiple discontinuous phase transition
where the locations and sizes of the jumps are
randomly distributed in the supercritical region.
Moreover, in the supercritical region the relative
variance of the order parameter is tending to a
nonzero constant in the thermodynamical limit,
implying non-self-averaging effect®!. It is also
reported that the relative variance of the order pa-
rameter oscillates with amplitudes even in the
thermodynamical limit, both in the subcritical and
supercritical region"*-,

Recently, continuous and multiple discontin-
uous and discontinuous phase transitions are ob-
served in one model with a parameter a. In the
model®" with appropriate value of s due to a de-

creasing edge on the interval (N*, N) the clusters

with linear size are suppressed to grow in the su-
percritical region and the mergence between them
leads to a multiple discontinuous phase transition.
In this paper, we consider a percolation model
based on a rather simple piecewise linear weighted
function with a rising edge on the interval [ 1,
N¢] and a lever edge on the interval (N*, N), in
which the percolation phase transition can change
from continuous to multiple discontinuous to dis-
continuous as the value of ¢ is tuned from 1 to 0.
Distinctly different from the physical mechanism
in the paper [ 30], in this work the selected prob-
ability of each cluster with size on the interval
(N¢, N) is equal due to a lever edge, which pro-
vides insights into understanding the crossover

behaviors of multiple phase transitions.

2 Model

The network starts with N isolated nodes,
and at each time step add an edge between two
different nodes, and in the adding-edges process
the intracluster edges are excluded. In order to
add an edge to the network, two nodes without
having been connected in the present network are
sequentially selected with a certain probability,
which depends on the size and the corresponding
number of the cluster containing the node. If a
cluster contains 7 nodes, this cluster is named as
i-node cluster, and the number of the i-node clus-
ters is written as n;. Thus the selected probabili-

ty of the node belonging to the i-node clusters can
be expressed as n; f (i)/ E »; f (i), in which
[ (1) is called the weighted function and defined as

1 .
£ {N“’Kl - (D

1, N*<G<N
where ¢ is a continuously tunable parameter on
the interval [0, 1]. In the percolation process,
the occupied edge density is defined as t=L/N
where L indicates the number of the occupied ed-
ges, and the order parameter is written as ¢, =
C,/N where C, represents the size of the largest

cluster at each time step.
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3 Results and analysis

Typical evolution of the order parameter c;is
plotted in Fig. 1 with the system size N=2%. At
a=1, the percolation model becomes the classical
ER random graph model that leads to a continu-
22 When ¢=0. 6 (the red

point in Fig. 1), the order parameter exhibits

ous phase transition

some jumps in the supercritical region, but the
phase transition is fact continuous in the thermo-
dynamic limit, as will be explained in the later
paragraph. When ¢ = 0.5 (the blue point in
Fig. 1) and «=0. 4 (the purple point in Fig. 1),
due to the distinctly multiple jumps of the order
parameter in the supercritical region, they are
considered as multiple discontinuous phase transi-

tions, which will be explained in detail later.
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Fig. 1 Typical evolution of the order parameter ¢; with dif-
ferent ¢ under N=2%

We first show that the phase transition of ¢=
0 (the green point in Fig. 1) is discontinuous at
the very end of the adding-edges process. As ¢ in-
creases from 0, the cluster size heterogeneity "
(the number of distinct cluster sizes) increases till
the lower pseudotransition point z; (N) when it
becomes maximum and just after z, (N) many
clusters with different sizes merge into one giant
cluster with linear size. Fig. 2 shows the log-
binned cluster size distribution with an average o-
ver 100 times at t,(N) and the corresponding fit-
ting curves of different system sizes N. It is clear
that the cluster size obeys the exponential distri-
bution by the fitting curve equations, indicating a
first order phase transition. On the other hand,
according to the fitting curve equations with dif-
ferent system sizes N in Fig. 2, it is reasonable to

conclude that n;,~4exp(—p,), in which 3 depends

on the system size N. Due to the fact that E an; =

N, we immediately have Z; dexp(—p:)i~N. By

changing the summation symbol into integral in
Fur-
thermore, let nym (£, (N)) denote the total num-
ber of the clusters at ¢, (N), and thus 7w (z; (N))

= 2 ni~2 N®®. Note that with one edge added to

the above equation, one can get f~2N""7,

the network the total number of the clusters

10'

®)
10°4
<
10"
a N=22 . N=22 .
,|—m~4.03078exp(-0.0018i)  |* i ni ~ 3.90453exp(-0.0013i)
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Fig. 2 For =0 log-binned cluster size distribution at the lower pseudotransition point and

the corresponding fitting curves of different system sizes
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accordingly reduces one, thus it is easy to obtain
that ;(N)=1—nyy, (£; (N))/N. Combining with
Nem (t; (N)) ~ 2N%°, we find that the lower
pseudotransition point ¢,(N) is converging to 1 in
the thermodynamical limit. It is also worth noting
that the percolation model with initially N isola-
ted nodes becomes connected at t= (N —1)/N
converging to 1 in the thermodynamical limit.
Therefore the percolation process at o= 0 leads to
a first order phase transition at the very end of
the adding-edges process in the thermodynamical
limit.

According to the weighted function in equa-
tion (1) with appropriate value of ., two clusters
with size 7 and j(j=>7>>N*) are generated at a cer-
tain occupied edge density z. From ¢ it might be e-
qual probability for inode cluster and j-node
cluster to be chosen in the subsequent adding-ed-
ges process, implying that the order parameter
might be non-self-averaging even in the thermo-
dynamical limit. Non-self-averaging is an impor-
tant concept due to its applications in a broad
range of real systems, ranging from spin grasses
and neural networks to polymers and population

28] In network percolation, non-self-av-

biology
eraging describes the phenomenon where the or-
der parameter does not converge to a defined
function of the occupied edge density ¢ in the ther-
modynamical limit. Instead in the supercritical re-
parameter has random

gion, the order

fluctuations even in the thermodynamical lim-
it'?2) " Fig. 3 depicts several distinct realizations
of the order parameter with ¢=0. 5 and «=0. 4. It
is clear that the order parameter has tremendous
variation from one realization to another in the su-
percritical region, indicating non-self-averaging
phenomenon. Also note that the tail of the order
parameter presents the shape of the continuous
curve. The reason is, according to equation (1),
fGH> (1) if j7=>N*, and thus the largest cluster
continuously absorbs small clusters with size ap-
proaching to one when the occupied edge density ¢

is approaching to 1.
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Fig. 3 For N=2%six simulations of the order parameter c
as a function of 7 for @=0. 5(a) and «=0. 4 (b)

Non-self-averaging is previously reported in

26291 where the relative

some percolation models
variance of the order parameter is larger than zero
in the supercritical region when the system size N
is tending to infinite. To clearly illustrate the
non-self-averaging effect in our model, we inves-
tigate the relative variance of the order parameter
¢1 5 defined as

Rl,:<cf>7<fl>2 2)

(c17°

where the brackets denote ensemble averaging.
With an ensemble of 500 realizations Fig. 4 pres-
ents the relative variance R, of the order parame-
ter in dependence on the occupied edge density ¢
at =0.6, 0.5 and 0. 4. In Fig. 4(a) with ¢=0.
6, R, is converging to zero in the supercritical re-
gion when the system size N becomes large. In
Fig. 4(b) with ¢=0. 5, although R, is rapidly
converging to zero at the end of the occupied edge
density when the system size N becomes large,
but there exists a supercritical interval where R,
(##0) of different system sizes interlaces togeth-
er, indicating the non-self-averaging effect. In
Fig. 4(c) with «a=0. 4, with increasing system
size R, becomes larger on an extended interval in-
dicating non-self-averaging effect. For continuous
phase transition, it is universally known that

large fluctuations in the relative variance R, are
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observed only in the critical window, and at the
critical point they collapse to a singular peak in
the thermodynamical limit®!. From the distinctly
different supercritical behaviors of R, in Figs 4(a)
and 4(b) and 4(c), it is indicated that the tricriti-
cal value of ¢ is between 0. 6 and 0. 5 for the phase
transition from continuous to multiple discontinu-
ous. Also note that the phase transition at =0 is
discontinuous, thus the tricritical value of « is be-
tween 0. 4 and O for the phase transition from

multiple discontinuous to discontinuous.
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Fig. 4 The relative variance R, of the order parameter in
dependence on the occupied edge density ¢ at a=0. 6
(a), a=0.5 (b) and « =0. 4 (c)

4 Conclusions

In conclusion, based on a rather simple
piecewise linear weighted functioncontinuous and
multiple discontinuous and discontinuous phase
transitions are unified into one percolation model
with parameter a@. At @=0, we obtain an empiri-
cal formula of the cluster size distribution at the
lower pseudotransition point, and based on the
formula we show that the percolation process at

«=0 leads to a discontinuous phase transition at

the very end of the adding-edges process in the
thermodynamical limit. To understand how the
phase transition changes from continuous to mul-
tiple discontinuous to discontinuous, we further
calculate the relative variance of the order param-
eter with different system sizes. The results show
that it collapses to a singular peak at the critical
point in thermodynamical limit at ¢=0. 6, and in-
terlaces together on a supercritical interval at o=
0.5, and becomes larger on an extended interval
at ¢=0. 4 with increasing system size, respective-
ly. Therefore it shows that the tricritical value of
« is between 0. 6 and 0. 5 for the phase transition
from continuous to multiple discontinuous, and
that for the phase transition from multiple discon-
tinuous to discontinuous the tricritical value of «

is between 0. 4 and 0.
References:

[1] Stauffer D, Aharony A. Introduction to percolation
theory [M]. London: Taylor & Francis, 1994.

[2] Sahimi M. Applications of percolation theory [ M.
London: Taylor & Francis, 1994.

[3]  Albert R, Barabdsi A. Statistical mechanics of com-
plex networks [J]. Rev Mod Phys, 2002, 74 47.

[4] Newman M E J. Networks: An introduction] M ].
New York: Oxford University Press, 2010.

[5] D'Souza R M, Nagler J. Anomalous critical and su-
percritical phenomena in explosive percolation[ J].
Nat Phys, 2015, 11: 531.

[6] Boccaletti S, Almendral J A, Guan S, etal. Explo-
sive transitions in complex networks’ structure and
dynamics: percolation and synchronization [ ] ].
Phys Rep, 2016, 660; 1.

[7] Erdés P, Rényi A. On the evolution of random
graphs [ J]. Publ Math Inst Hungar Acad Sci,
1960, 5. 17.

[8] Achlioptas D, D’'Souza R M, Spencer J. Explosive
percolation in random networks []J]. Science, 2009,
323. 1453.

[9] Ziff R M. Explosivegrowth in biased dynamic perco-
lation on two-dimensional regular lattice networks
[J]. Phys Rev Lett, 2009, 103 045701.

[10] Friedman E J, Landsberg A S. Construction and a-
nalysis of random networks with explosive percola-

tion [ J]. Phys Rev Lett, 2009, 103: 255701.



908

W KFFHCA RAF R

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Radicchi F, Fortunato S. Explosive percolation in
scale-free networks [ J]. Phys Rev Lett, 2009,
103 168701.

Cho Y S, Kim J S, Park J, et al. Percolation tran-
sitions in scale-free networks under the Achlioptas
process [ J]. Phys Rev Lett, 2009, 103; 135702,
D’Souza R M, Mitzenmacher M. Local cluster ag-
gregation models of explosive percolation [J]. Phys
Rev Lett, 2010, 104: 195702.

da Costa R A, Dorogovtsev S N, Goltsev A 'V, et
al. Explosive percolation transition is actually con-
tinuous [ J]. Phys Rev Lett, 2010, 105; 255701.
Cho Y S, Hwang S, Herrmann H J, et al. Avoi-
ding a spanning cluster in percolation models [ ]].
Science, 2013, 339: 1185.

Zimmer P, Kruse K, Nagler J. Anomalous percola-
tion features in molecular evolution[ J]. Phys Rev
E, 2018, 98. 022408.

Fan ] F, LiuM X, Li L' S, etal. Continuous perco-
lation phase transition of random networks under a
generalized Achlioptas process [ ]J]. Phys Rev E,
2012, 85. 061110.

Nagler J, Levina A, Timme M. Impact of single
links in competitive percolation [ J ]. Nat Phys,
2011, 7. 265.

Manna S S, Chatterjee A. A new route to explosive
percolation [ J]. Physica A, 2011, 390; 177.

Cho Y S, Kahng B. Cluster aggregation model for
discontinuous percolation transitions [ J]. Phys Rev
E, 2010, 81: 030103.

Aratjo N A M, Herrmann H J. Explosive percola-
tion via control of the largest cluster [J]. Phys Rev

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Lett, 2010, 105: 035701.

Jia X, Hong J S, Gao Y C, et al. Percolation tran-
sition of random networks under a piecewise linear
weighted function [ J ]. J Stat Mech, 2015,
10, 10016.

Cho Y S, Mazza M G, Kahng B, er al. Genuine
non-self-averaging and ultraslow convergence in ge-
lation [J]. Phys Rev E, 2016, 94: 022602.

Roy B, Santra S B. First-order transition in a perco-
lation model with nucleation and preferential growth
[J]. Phys Rev E, 2017, 95: 010101.

Riordan O, Warnke L. Explosive percolation is con-
tinuous [J]. Science, 2011, 333; 322.

Riordan O, Warnke L. Achlioptas processes are not
always self-averaging [ J ]. Phys Rev E, 2012,
86: 011129.

Nagler J, Tiessen T, Gutch W H. Continuous per-
colation with discontinuities [ J]. Phys Rev X,
2012, 2. 031009.

Schréder M, Rahbari S H E, Nagler J. Crackling
noise in fractional percolation[ J]. Nat Commun,
2013, 4. 2222.

Schréoder M, Chen W, Nagler J. Discrete scale in-
variance in supercritical percolation [ J ]. New ]
Phys, 2016, 18: 013042.

Jia X, Gao Y C, Yang H C, et al. Unification of
multiple classes of explosive percolation [ J]. EPL,
2019, 127. 56002.

Lee H K, Kim B J, Park H. Continuity of the ex-
plosive percolation transition [ J]. Phys Rev E,
2011, 84: 020101.

{5 AA g :

Do S B EARRE. TR BEALRL b SRRSO LT ] PR EAARREIR. 2020, 57: 903,

+

ST

j, P& . Jia X, Wang R J, Zhang T. Crossover of three percolation transitions types in random networks [ J]. J Si- +
+ chuan Univ: Nat Sci Ed, 2020, 57 903.

e e —en—meeee s s —pmereer e —hse—her—mer st er—pmse—esr s —hsr—pms0—sr—fets s —h s o1 —re—se s —} st —er—prr—re st —peer—pmrepee

}





