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Thermodynamics of the rainbow black string

WANG Peng , WEI Xin
(Center for Theoretical Physics, College of Physical Science and Technology,
Sichuan University, Chengdu 610064, China)

Abstract: Doubly special relativity (DSR) is an effective model to describe quantum gravity in flat space-
time. One way to incorporate this formalism into curved spacetime is the “rainbow gravity”, where the
background spacetime is dependent on the energy of the probing particles. The form the energy depend-
ent metric actually depends on the choice of the orthonormal frame. In this paper, we consider the rain-
bow static cylindrical black hole, namely the rainbow black string, in the free-fall frame scenario. Spe-
cifically, we obtain the rainbow corrections to the Hawking temperature and entropy of the rainbow
black string.
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1 Introduction

After almost forty years since Hawking pre-
dicted that the black holes could emit radiation at
temperature T = hx/2nks, where x is the surface

21, the thermodynamics of such objects

gravity !
is still of great interest to researchers in the direc-
tion of theoretical physics. At the very begin-
ning, the Hawking radiation was calculated using

quantum field theory in curved spacetime with the
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metric of the background spacetime being fixed.
In other words, this formalism is semi-classical.
However, there is a consensus among researchers
that the framework of the smooth manifold and
metric of general relativity is no longer applicable
at very high energy scales. Instead, a nontrivial
quantum gravity theory will play an important
role. Although such a theory has yet been availa-
ble, there are several candidates under study, in-

41,

cluding string theory-*', loop quantum gravity!
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and so forth.

Before we find the fundamental quantum de-
scription of gravity, it is worth exploring the ef-
fective models in terms of classical general relativ-
ity. Doubly Special Relativity (DSR), proposed
by Amelino-Camelia® ', is one of them. In this
model, the Lorentz transformations are modified
at very high energies. In fact, there is not only an
observer-independent maximum velocity ( the
speed of light), but also an observer-independent
minimum length scale (the Planck length). Con-
sequently, the energy-momentum dispersion rela-
tion ( MDR) for a particle of mass m is
modified to

E*f*(E/m,) —p'g*(E/m,) =m*, @D
where m, is the Planck mass, and the general
functions f(x) and g(x) satisfy

limf(x) =1, linolg(x) =1. (3)

>0 x

To incorporate DSR into the framework of
general relativity, Magueijo and Smolin proposed

” 171 In this proposal, the

the “Gravity’s rainbow
spacetime is described by a one parameter family
of metrics

g(E) =p%e, (E) Qe, (E), 3
where the energy-dependent orthonormal frame
fields are given by

1 1 ~
JS(E/m,) g(E/mP)ei'
Note that E is the energy of the probing particle.

0 (E) = ers e.(E) = )

This is to say that particles with different ener-
gies move in different backgrounds. For more
studies on the gravity’s rainbow, please refer to
Ref. [8, 9], etc.

In the following, we first consider the rain-
bow black string in free-fall frame, and then the
effective temperature is obtained. After that, we
of modified

take account of an example

dispersion relation

f(x)=1and g(x) =+ 192", (5)
which is proposed by Amelino-Camelia et al.

Ho- 1 - Thermodynamics of the free-fall rainbow

black string under this MDR is explored. We take
Geometrized units ¢ =G =1 throughout this pa-

per.

2 Free-fall frame black string in
gravity’s rainbow

The Einstein-Hilbert action in four dimen-
sions, with a negative cosmological constant A is

given by
szflnj d' z v/ —g (R—2A), 6)

where g is the determinant of the metric, and R is
the Ricci scalar. Assuming that the spacetime is
cylindrically symmetric and time-independent,
Lemos derived the solution of the static uncharged
black string “'*. When we generalize the metric
to the gravity’s rainbow in the static orthonormal

frame scenario, the line element can be written as

2 (0127’2*6%) 7 <a2r2—£>71

S 4 — ar -
ds fZ(E/m,))d[ & (E/m,) dr
2
r ]
2 1 o2d2?),
& E/m,) (do® +a°dz”) D)

where
ol = f%, b—4M, — o< < oo,

0<r<{oo, —oo<z<(o0,0<0<2n. (8
Note that M is the mass density along the z line
of the black string. This rainbow black string in
static frame has been studied in Ref. [13]. How-
ever, there is another natural choice for the or-
thonormal frame, which is the one anchored to
freely falling observers (FFO) along the radial di-
rection. To describe FFO, it is better to use the
Painleve-Gullstrand (PG) coordinate "'** /. The
rainbow metric of Schwarzschild black hole in the
free-fall frame scenario was obtained in Ref.
[15]. Similarly, in the PG coordinate anchored to
the FFO along the radial direction, the rainbow
metric of black string in the free-fall frame sce-

nario takes the form of

di, Ldr—odt,]*

ds® =

CfX(E/m,) g (E/m,)
r 2 2 7.2
gZ(E/m/))(de +adz), (9

where v(r) is the velocity of the FFO with re-
spect to the static observer, and ¢, is the proper
time measured by the FFO. We assume that the

observers is infalling toward the black string,
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namely v<<0. The value of v(r) is given by

1—a?r +2 (10)

v(r) =— .
ar
For radial null curves with ¢ and z being con-
stant, one has that ds* =0 leads to

dt’, _Ldr—v(dt,
fE(E/m,) g (E/m,)

The condition that dt,/dr—> + o= gives the posi-

1D

tion of the event horizon r,, which reads

20 b _ g (E/my)
L (E/m,) (12)

One can see that in the freely falling frame
the event horizon depends on the energy of the
probing particle. Note this event horizon radius is
different from that in the static frame scenario,
which gives [

s b
1

a’r

=0. (13

ary
We now apply the HamiltonJacobi method to

calculate the Hawking temperature of the rainbow

2,000 +52.00.0 =1,
a

black string (9). This method was developed by
Srinivasan et al. to investigate the tunneling process

0618] T the Hamilton-Jacobi

of Hawking radiation
method, the self-gravitation of emitted particles is ig-
nored, and the action of the particles is assumed to
satisfy the relativistic Hamilton-Jacobi equation. The
tunneling probability for the classically forbidden traj-
ectory from inside to outside the horizon is obtained
by using the Hamilton-Jacobi equation to calculate the
imaginary part of the action for the tunneling process.
It has been shown in the metric ds* =g, (E)dax*dx*
that the Hamilton-Jacobi equation for massless field
was given by /%

g*(E)d, 19,1 =0, 1
where I is the action of the field. Taking Eq. (9)
into consideration and making the ansatz for I
which is I = —FEt, +W () +0@(0,2), we have dif-

ferential equations for W(r) and ©(4,2) :

2 2 2
e G & Emy) (AT L g (E/my) g (E/m,)
IW. () — TN P E ) R fZ(E/mP)]f?(E/m,,) a5
o & (E/m )/ (E[m,) =" () ’
|
where +/— denotes the outgoing/ingoing solu- concept of Boltzmann factor:
tions, and A =J +p?/a® with J, being the angular T k[ 2a°7r +b/Cari) 1 f(E/m ) (18)
BS T

momentum along z-axis. The periodicity condi-
tion gives J, =j and p. =2xl/a with j, [€ Z.
Here a is the length of the black string. It can be
(15) that 9,W. (r) is singular

when r=r,. Integrating d,W. () along the semi-

seen from Eq.

circle around the singularity, we get

2nE g(E/m,)
2a° 75, +[1/(ar}2,)f(E/mp) ’

ImW _ () =0. (16)
As shown in Ref. [19], the probability of a parti-

ImW+ (7’) =

cle tunneling from inside to outside the horizon is
P Nexp[ *%(lmW+ —ImW_ )}. a7

Taking kg =1, we can get an effective Hawking

temperature of the rainbow black string with the

4 g(E/m,)’

3  Thermodynamics of the rainbow
black string

We now estimate the black string’s tempera-
ture with the help of Heisenberg uncertainty prin-
ciple. For a massless particle, the MDR in Eq.

(1) becomes

£f(E/m,,):£ (19)
m,g(E/my) m,
The Heisenberg uncertainty principle gives a

relation between the momentum p of an emitted

particle and the event horizon radius /%" 2",

p/m,~0p/m,~h/(mdx) ~m,/r. 20

Consequently, we have
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T 21
where x =E/m, and h (z) =g (2)/f (x) =
W. We need to solve Eq. (21) for x in
terms of M, since our goal is to express the black
string’s temperature in terms of M. For conven-
ience, we introduce a new variable y, which is
defined as y=m,/(4M). Solving Eq. (12) for r,
in terms of x and plugging it into Eq. (21)
leads to
1.3
Y ha (R AR e my)

which gives

22

1‘:a(miy)%* —
"+1<m2y>”?[1+W]+O( ). (23)
™ » 2 3m?, s
Thus we get the temperature of the black string
in terms of M from Eq. (23)

1 2z
T ZW[H%(%)? +0G1 |

24

Using the first law of black hole thermodynamics

dSpn =dM/T gy » we find that the entropy per u-

nit length of the z line of the rainbow black string

(up to an irrelevant constant) is

- dM
SPS—J% -
T z_ Tt(am,,)”(llM)zg”
oha M T G ke
()('772)97/1#2
e (25)
S (VDT —p S In (UMD +
()(772),77:2

In the standard gravity, we have (=0, and
the event horizon r, = (4M)"?/a. Since the circ-
umference of the standard black string is A =

2narf, Eq. (25) becomes

Sps =
A wlam)" (eA\T ,

szﬁ 772(71*2)#0((27() TG ) 72 6
A wlam,)", (dA 2y

1 TR AT 1“<2n) +OG) =2

The leading terms of Eq. (26) are the famil-
iar Bekenstein-Hawking entropy. For n =2, we

obtain the logarithmic term, in accordance with

the result in Ref. [22-24].

4 Conclusions

In this paper, we considered the rainbow
black string in free-fall frame scenario. Being dif-
ferent from the event horizon in static frame sce-
nario, it shows that the position of the event hori-
zon depends on the energy of the probing particles
in free-fall frame scenario. By means of Hamil-
ton-Jacobi method, we studied the effects of grav-
ity’s rainbow on the temperature and entropy of a
free-fall frame black string. The temperature de-
pends on the energy of the probing particles. Fo-
cusing on the AC dispersion relation, we obtained
the effective temperature and entropy of the black
string in terms of the mass density M or circunr
ference A. For n=2, the leading correction on
the entropy due to the effect of gravity’s rain-
bow, has a logarithmic dependence on the circum-
ference of the black string. This condition is the
same as the one in Ref. [13, 15].
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