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Elastic and thermodynamic properties of LaB; under pressure: a first-principles study

HE Xi"*, FUMin", YU Bai-Ru'
(1. College of Physical Science and Technology, Sichuan University, Chengdu 610064, China;
2. Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China)

Abstract: The elastic and thermodynamic properties of CsCl-type structure LaBs under high pressure are
investigated by first-principles calculations based on plane-wave pseudopotential density functional theo-
ry method within the generalized gradient approximation (GGA). The calculated lattice parameters of
[LaB; under zero pressure and zero temperature are in good agreement with the existing experimental data
and other theoretical data. The pressure dependences of the elastic constants, bulk modulus B (GPa),
shear modulus G, Young’s modulus E, elastic Debye temperature ®;, Poisson ratio ¢, compressional
wave velocity V| and shear wave velocity Vs are also presented. An analysis for the calculated elastic con-
stants has been made to reveal the mechanical stability of LaB; up to 14 GPa. The thermodynamic prop-
erties of the CsCl-type structure LaB; are predicted using the quasi-harmonic Debye model. The varia-
tions of thermal expansion coefficient ¢ and the specific heat capacity C, are obtained systematically in
the ranges of 0~14 GPa and 0~1500 K. At last, the pressure dependences of the density of states are al-
so investigated.
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1 Introduction

The rare-earth hexaborides RB; have attrac-
ted extensive experimental and theoretical interest
due to their intriguing physical properties. For
example, CeB; is a dense Kondo compound and
has interesting low-temperature magnetic pha-
sest™. SmB; is also an exemplary Kondo insulator
which features an energy gap in the electronic
density of states (DOS) whose magnitude is
strongly temperature dependent and only fully de-

veloped at low temperatures' .

EuB; is a ferro-
magnetic semiconductor with a transition temper-
ature T= 15 K. Below T the electrical resistivi-
ty is drastically reduced, above T a very large
negative magnetoresistance is observed™!. Among
these compounds, lanthanum hexaboride (LaBg)
has a special place. LaB;, which is metallic at
room temperature and becomes a superconductor
at Te= 0.45 KM *', is a hard, refractory and sta-

ble material owing to strong B-B covalent

bondst*.

with a low work function, high brightness and

And it is a thermionic electron emitter

long life compared with conventional tungsten fil-
amentst’.

The structural, elastic, and thermodynamic
properties of LLaB; have been investigated experi-
mentally and theoretically by several groups.
Early in 1977, Tanaka ez al. '™ studied the elastic
constants of LaB; for the first time by the meas-
urements of the transit time of pules of longitudi-
nal and transverse ultrasonic wave propagating in
single crystal. An early electronic structure calcu-
lation was estimated by Kubo ez al.™, using the
three-dimensional Lock-Crisp-West (LCW) fol-
ded momentum densities (3D LCW FMD’ s)
within local-density approximation (LDA) meth-
od. It’s indicated that the Fermi surface topology
plays an important role in the determination of
structures. Mandrus ez al."” explained the tem-
perature dependence of the specific heat and resis-
tivity of LaB; well by using a model of La ions as
independent Einstein oscillators embedded in a

Debye framework of boron ions. Xu et al. ™ in-

vestigated the elastic and thermal properties of
LaB; in the framework of density-functional theo-
ry (DFT) with a quasi-harmonic Debye model.
Bai et al. ™ achieved the structure and chemical
bond characteristics of LaB; by means of the den-
sity functional theory using the state-of-the-art
full-potential linearized augmented plane wave
(FPLAPW) method. In addition, Giirel et al.*
performed an ab initio study of structural, elas-
tic, lattice-dynamical, and thermodynamic prop-
erties of rare-earth hexaborides LaB; within the
density functional theory and linear-response for-
malism using pseudopotentials and a plane-wave
basis. There have been many other works to in-
vestigate the LaB; crystal and its propertiest ',

What attracts us most is the pressure induced
phase transition of LaB;, which has recently pro-
voked a great deal of controversy. By using the
Raman and angle dispersive X-ray diffraction
(ADXRD), Teredesai er al. ™™ proposed that the
pressure induced structural phase transition from
CsCl-type structure to the orthorhombic structure
occurs at around 10 GPa. While Godwal et al. "
also using the Raman and ADXRD, proposed that
there is no structural or electronic phase transi-
tion up to at least 25 GPa in CsCl-type structure.

The most common assessment of mechanical
properties can be made by the determination of its
elastic constants. Especially, the elastic constants
of materials at high pressure are essential in order
to predict and understand material response,
strength, mechanical stability, and phase transi-
tion. The comprehensive analysis of elastic con-
stants can provide a deeper insight into the hard-
ness of materials. Furthermore, elastic properties
are also related thermodynamically to the specific
heat, thermal expansion, Debye temperature,
melting point, and so on. Thus in this work, we
put our investigation emphases mainly on the e-
lastic and thermodynamic properties of CsCl-type
structure LaB; (space group Pm 3 m) under pres-
sure. From the calculated elastic constants, we
will study its mechanical stabilities and anisotrop-

ic behaviors, as well as the bulk modulus, shear
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modulus, Young’s modulus, Poisson’s ratio, e-
lastic Debye temperature of LaB; at diverse pres-
sures. Because the mechanical properties of this
substance are studied in detail for the first time,
we hope that our work can provide useful help for
future research in both experimental and theoreti-
cal studies. The rest of the paper is organized as
follows.

The theoretical method is introduced and the
computation details are given in Section 2. Some
results and discussion are presented in Section 3.
Finally, the summary of our main results and

conclusions are given in Section 4.

2 Theoretical method and calcula-
tion details

2.1 Total energy electronic structure calculations

In the electronic structure calculations, we
employ the plane-wave pseudopotential density
functional theory method'™ through the Cam-
bridge Total
(CASTEP)™ code together with both the gener-
alized gradient approximation (GGA) proposed

Serial Energy Package

by Perdew et al.

1 and the local density approxi-
mation (LDA) proposed by Vosko er al.™ for
exchange-correlation potentials. A plane-wave
basis set with energy cut-off 390 eV is applied.
Pseudo-atom calculations are performed for lLa
5d'6s* and B 2s*2p. For the Brillouin-zone sam-
pling, we use the 6 X 6 X 6 Monkhorst-Pack
mesh"*”, where the self-consistent convergence of
the total energy is at 5. 0 X 10 7 eV/atom. The
tolerance for geometry optimization is set to with-
in 5. 0X10 %eV/atom, the maximum ionic force
within 0. 01 eV/A, the maximum ionic displace-
ment within 5. 0 X 107" A, and the maximum
stress within 0. 02 GPa. The tolerance for elastic
constants is set to within 1. 0X10 eV /atom, the
maximum force within 0. 0002 eV/A, and the
maximum strain amplitude within 0. 003 GPa.
These parameters are carefully tested. It is found

that these parameters are sufficient to lead to a

well-converged total energy.

2.2 Elastic properties

To calculate the elastic constants under hy-
drostatic pressure p, we use the symmetry-de-
pendent strains that are non-volume conserving.
The elastic constants, C;y s with respect to the
finite strain variables are defined as'?

90‘,’]’ (I)
(/)(:'k[

Ciu=( ). (@Y

where 5; and ey are the applied stress and Euleri-
an strain tensors, and X, x are the coordinates
before and after deformation, respectively. Under

the hydrostatic pressure p, we have
Cijk{ :Cz,kl +§(281,8k1 78[[8% 78&6]'[) (2)

where C;;, denote the second-order derivatives
with respect to the infinitesimal strain (Euleri-
an), ¢ is the finite strain variable. The fourth-
rank tensor C generally greatly reduces when tak-
ing into account the symmetry of the crystal. In a
cubic crystal, it is reduced to three components,
ive. Cyyy Ciyy and Cy,.
The bulk modules B and the shear modules
of the LaB; are taken as™®*
B = (Bg +Bv)/2 3
G = (Gg +Gy)/2 €]
where R and V represent Reuss and Voigt bound-

aries, respectively.

By = Bx = (Cy, +2C;,)/3 (5)
Gy = (C;, —Cy, +3Cy)/3 (6)
Gy =
5(Cyy —C,)Cy/[4C, +3(Cy —C) ]
@)

The polycrystalline Young’s modulus E and
the Poisson’ s ratio ¢ are then calculated from

these elastic constants using the following rela-

tions™*’,
 9BG
E= 3B +G (8
3B —2G
T 2BB+G6) X

The elastic Debye temperature ®; may be es-

timated from the average sound velocity V, /%
_ hpr3n Napyqus

where h is Planck’ s constants, k Boltzmann’s
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constant, N, Avogadro’s number, n the number
of atoms per formula unit, M the molecular mass

per formula unit, 0 the density, and V., is ob-

tained from"**

m = [?(‘7 +7)] 1 (11)

where Vg and V| are the shear and longitudinal
sound velocities, respectively. The probable val-
ues of the average shear and longitudinal sound

velocities can be calculated by™*!

_ Gy~ [BEUBRG (g,
o o

2.3 Thermal properties

To investigate the thermal properties, we
change the cell volume to obtain the correspond-
ing energy, and then export them into the quasi-
harmonic Debye model™” to calculate the thermal
properties. In this model, the non-equilibrium
Gibbs function G (V; p, T) has the following
from:

G (Vip.T) =

E(V) +pV + A, (OV);T) 13

where E(V) is the total energy as a function of
the call volume V', p is the hydrostatic pressure,
B(V) is the Debye temperature as a function of
V', and A, is the vibrational Helmholtz free ener-
gy.

Based on this model, the specific heat C,,
C,. and the thermal expansion coefficient a can be

deduced from the following expressions:

c, fSnx[ZlD(@/T)* 3@/_T1] (14)

_C.
BV

where Br is the static bulk modulus, ¥ is the

(15)

a

Griineisen parameter. They can be derived from

IG (Vip,T) _
— v >p‘T and ¥

—d In ®(V)/ d InV, respectively.
Through the quasi-harmonic Debye model,

By (p.T) = V(

one could obtain the thermodynamic quantities of
LaB; under pressure and high temperature. By ap-
plying the method, we have investigated the ther-
modynamic properties of several materials suc-

cessfullyt?¥%

3 Results and discussion

3.1 Structural properties

To investigate the elastic and thermodynamic
properties, we must determine the structures of
LaB; at first. LaB; has a bee-like structure (space
group Pm 3 m) with La at the position (0, 0, 0)
and B at the position (0.5, 0.5, x), where x is
the positional parameter of the B atoms. The
structure information can be absolutely described
by lattice parameter a and positional parameter x.
To determine the ground state structure of LaB;,
we use the following steps. Firstly, we fix the
lattice parameter a and take a series of different
values of positional parameters x to calculate the
total energies E, so that we can obtain an E —x
curve and find a lowest energy E.,. The posi-
tional parameter x with the energy E..is what we
require. Secondly, with the obtained positional
parameter x, we take a series of different values
of lattice parameter a and repeat the above steps.,
the lattice parameter a also can be obtained. And
for each a, we can calculate its corresponding
primitive cell volume V', and then obtained the
energy-volume (E —V) curve of LaB;.

By fitting the calculated E —V data to the
third-order Birch-Murnaghan equation of state
(EOS)P, the bulk modulus Boat p=0 and T=0
can be obtained. All the equilibrium structure pa-
rameters and bulk moduli are listed in Tab. 1. It
can be seen that our results of lattice parameter
a, positional parameter x and bulk modulus B,
from GGA calculations are well consistent with

[34.35]

the experimental data and other theoretical

datat'

And the errors of lattice parameter a
are less than 0. 1%, respectively. On the other
hand, our LDA results are not satisfactory,
which are a little small when compared with the

[11]

1) and other theoretical datat'", ex-

experimenta
cept for bulk modulus B,. Therefore, in this
work, the GGA functional forms are applied in

the following calculations.
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Tab. 1  Calculated equilibrium lattice parameters of
LaB; . together with the experiment data and

other theoretical results

a /A x Bo/GPa B
Present GGA
4.151 0.1995 181.15 3.68
(PBESOL)
Present LDA
4. 140 0.1991 179. 97 3.76
(CA-P2)
Cal. @ 4.1277 0.1997 180 3.79
Cal.® 4.1605 0. 2009 182. 4
Cal.© 4.1557 0.1998 173.6 3.72
Exp. ¢ 4.1568 172.0
Exp. © 4.1569 0.1996

aggregate elastic modulus B of the cubic structure
LaBs at 0 K and 0 GPa in Tab. 2. It can be seen
clearly that our results are in agreement with the

]

11214 and experimental data™®!,

other theoretica
which indicates that our results are reasonable. In
addition, from the Eq. (3), the bulk modulus B
(in Tab. 2) obtained by our elastic constants is
177. 9 GPa, which is consistent with the value es-
timated by fitting the E —V data mentioned a-
bove.
Tab. 2 Calculated elastic constants C; of LaB; at 0 K
and 0 GPa, in comparison with the experi-

mental data and other theoretical results

@ Calculated through Linear-response theory within LDA?; b Cal-
culated through PW-PP method within GGA(RPBE)[!Y; ¢ Calcu-
lated through PAW method within GGA(PBE)'*); 4 Measured by
X-Ray diffraction measurementst33]; ¢ Measured by PLD and XRD

measurementst3],

The pressure and temperature dependence of
the relative volume V/V, of LaB; are illustrated in
Fig. 1. It is shown that, as the applied pressure
increases from 0 to 14 GPa, the volume of LaB;
decrease linear at the giving temperature, and the
relative volume V/V, of higher temperature is less
than that of lower temperature at the same pres-
sure. This means, under higher temperature,
LaBy is easier to be compressed, as temperature

could make LaB; soft.

100

0.98

= 0.96

0.94

0.92 - w

P(GPa)

Fig.1 Normalized primitive unit cell volume V/V,

as a function of pressure

3.2 Elastic properties

We list our calculated elastic constants and

Cn/GPa  Cyu/GPa Cy2/GPa B/GPa
Present 460. 6 94. 0 36.6 177.9
Cal. ® 466 88 37 180
Cal.® 473 92 24 173.6
Exp. © 463 89 45 184

« Calculated through Linear-response theory within LDAL2); b Cal-
culated through PAW method within GGA (PBE)[); ¢ Measured

by X-Ray diffraction measurements36J,

The pressure dependences of the elastic con-
stants (Cy;, C;and C,,) of LaBy under pressure
up to 14 GPa are summarized in Tab. 3. Unfortu-
nately, to our knowledge, no experimental and
theoretical data of the elastic constants are availa-
ble to compare with our results in high pressure.
The elastic constant C;, represents the elasticity in
length, while C,,and C,,are related to the elastic-
ity in shape. We find that all three elastic con-
stants increase almost linearly with the increasing
pressure which also can be observed from Fig. 2.
Among them, C,, is more sensitive to pressure
than C,, and C,,. For a cubic crystal, the me-
chanical stability leads to restrictions on the elas-
tic constants under isotropic pressure as fol-
lows®™, C,, > 0,Cy, > |[Cy,|.Cyy + 2C,, > 0,
where C; =C; —p(i=1,4),C,, =Cyp, +p. It is
obvious from Tab. 3 that the elastic constants of
LaB; satisfy all of these conditions at pressure up
to 14 GPa. It is known that being a fourth-rank
tensor property, elasticity is anisotropic for a cubic
crystal, and it is conveniently expressed by the di-

mensionless parameter A = 2C,,/(C,; —C,,). For
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isotropic elasticity, double C,; are equal to (C,, -
C.,), thus A=1. Through the calculated elastic
constants, one can obtain the Zener’s anisotropy
parameter A at different pressures and 0 K,
which is also presented in Tab. 3. Our calculated
A being 0. 443 at 0 GPa and 0 K is in agreement
with the value obtained by Duan ez al. " (A=0.
42 at 0 GPa and 0 K). It is showed that the Ze-
ner’ s anisotropy parameter A almost doesn’ t
change with the elevated pressure p at 0 K, indi-
cating that A deviates from 1 and the anisotropy
of the cubic structure LaB; almost keeps stable in

the processes of increasing pressure.

550 |-
500 |-
Cll

450 |
g S
400
g 00 Clz
2 350 —~—B
S 300} el €
g
o BOf
2
g 200} M
2
150 | o - -~

100 - ¢——@ * *
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1 1 1 1 1 1 1
0 2 4 6 8 10 12 14
Pressure (GPa)

Fig. 2 Pressure dependencies of elastic constants of
LaB; at 0 K

Tab. 3 Calculated elastic constants C; (GPa) . bulk modulus B (GPa) , shear modulus G (GPa), B/G, acoustic veloci-

ties, and V| and Vs(km/s), and elastic Deybe temperature @ (K) of LaB;,nder pressure p (GPa)

» 0 2 4 6 8 10 12 14
Cn 460. 6 474.4 488. 3 501. 6 514. 8 527.6 540. 2 552. 6
Cus 94. 0 97.5 99. 6 102.3 104. 1 106. 4 108.8 111. 0
Ci 36. 6 10.7 15.0 19.2 53.4 57.6 61.7 65.9
B 177.9 185.3 192.8 200. 0 207.2 214.3 221.2 228. 1
G 131.0 135.1 138.1 141. 4 144.1 147.0 150. 0 152.9
B/G 1.35 1.37 1.39 1.41 1.43 1.45 1.47 1.49
E 315. 6 326. 1 334.4 343.3 350. 9 358.9 367. 1 374.9
- 0. 204 0. 207 0.211 0.214 0.218 0.221 0.223 0.226
Vi 8.63 8.75 8. 84 8.93 9.01 9.09 9.17 9.24
Vs 5.26 5.32 5.35 5.39 5.41 5.44 5.47 5.50
O 898 911 920 929 937 945 954 962
A 0. 443 0. 449 0. 449 0.452 0. 451 0.452 0. 454 0. 456

In Tab. 3, we also list the bulk modulus and

shear modulus, which can easily describe the

hardness of a crystal in an indirect way.

is

found that both bulk modulus B and shear modu-
lus G increase gradually with the increasing pres-
sure. This implies that the compressibility of
LLaB; becomes lower as the pressure increases.
From the ratio of B/G, one can distinguish the
ductility and brittleness of metals. The threshold
is around 1. 75%%, When B/G >1. 75, the mate-
rial behaves in a ductile manner, otherwise the
material behaves in a brittle manner. Duan ez
al.™ obtained the B/G is 1. 33 at 0 GPa and 0
K. The B/G as a function of pressure is displayed
in Tab. 3. It can be seen that the value of B/G in-

creases with the increasing pressure, indicating

that it becomes much harder with the increasing
pressure, and it is brittle in nature up to 14 GPa.

Young’s modulus is defined as the ratio of
stress to stain, and is used to provide a measure
of the stiffness of the solid, i. e. the larger the
value of E, the stiffer the material. Tab. 3 illus-
trates that Young’s modulus increases with pres-
sure when p<C14 GPa, indicating that the pres-
sure can, to some extent, improve the stiffness of
this material. Poisson’s ratio is defined as the ab-
solute value of ratio of transverse strain to longi-
tudinal strain, when materials subject to longitu-
dinal stress. Poisson’s ratio ¢=0. 25 is the lower
limit for central force solids and 0. 5 is the upper
limit. The previous work obtained the Poisson ra-

tio is 0. 19 at 0 GPa and 0 K, which is in a-
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greement with our work. Tab. 3 shows us that
the Poisson’s ratio of LaB; increases from 0. 204
to 0. 226 with the pressure up to 14 GPa. This
means the interatomic forces in LaBs is now-cen-
tral forces.

According to the elastic constants obtained,
we can also obtain the compressional and shear
wave velocities of LaB; under pressure. We list
them in Tab. 3, and the results of them are V| =
8.63 km/s and Vs= 5. 26 km/s at 0 GPa, which
is also in agreement with previous study (V =
8.625km/s and Vs = 5. 306 km/s at 0 GPa, 0
K)H,

creasing pressure, the shear wave velocities in-

It is shown that in Fig. 3 that with the in-

crease. The compressional wave velocities change
slowly with the elevated pressure. Unfortunate-
ly, there are no experimental data or theoretical

date to be compared with our results.
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Fig. 3 The compressional and shear wave velocities

of LaB; as a function of pressure at T=0 K

As is known, the Debye temperature is an
important fundamental parameter and closely re-
lated to many physical properties of solids, such
as the specific heat and melting temperature.
From the elastic constants, one can obtain the e-
lastic Debye temperature @ %!, The obtained e-
lastic Debye temperatures of LaB; under pressure
are also presented in Tab. 3. For LaB; at 0 K and
0 GPa, we yield 898 K from the elastic constants
of GGA calculations, which has discrepancy com-
paring with 1165 K obtained through quasi-har-
monic Debye model at 0 K and 0 GPa by Xu et

al .M, but is consistent with the experiment val-

ue 878 K through ultrasonics and XRD at room

1.7 Obviously,

temperature by Petropoulos et a
the Debye temperature increases monotonically
with increasing pressure up to 14 GPa.
3.3 Thermodynamic properties

The thermal expansion coefficient and specif-
ic heats C, are the important reference to predict
material properties, especially for the thermody-
namic properties. We present the variations of the
thermal expansion a and specific heats C, with
temperature and pressure in Figs. 4 and 5 respec-
tively. Our calculated value for « is equal to 2. 14
X 107" K™! at 300 K, which is in agreement with
the value obtained by Chen ez al. (a= 2.10X10°°
K" at 298 K)™" and Xu et al. (¢= 2.11X10°°
K ™' at 298 K)"J,

en pressure, g increases exponentially at low tem-

Seen from the Fig. 4, at a giv-

peratures and gradually approaches a linear in-
crease at high temperatures. As the pressure in-
creases, the growth trend of ¢ with temperature
becomes smaller and smaller, especially at high
temperatures. However, at a given temperature,
a decreases drastically with the increasing pres-
sure. When the pressure increases to above 10
GPa, the thermal expansion « of 900 K is just a
little larger than that of 600 K, and the curves of
600, 900, and 1200 K seem to be consistent at
high pressure, which means that the temperature
dependence of ¢ is very small at high pressures

and high temperatures.

—=—0GPa |
—e—4GPa
8 GPa

Thermal expansion (10°K™)

1 1 1 1 1 1 1

0
0 200 400 600 800 1000 1200 1400

Temperature (K)

(a)
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Fig. 4 Thermal expansion versus temperature and

pressure of LaB;

In Fig. 5, we can find that the C, rise rapidly
with the temperature at low temperatures, but at
high temperatures, the anharmonic effect on C, is
suppressed, C, converges slowly to the Dulong-
Petit limit, about 173 ] » mol™! « K™, is consist-
ent with the theoretical value 175 J « mol ™' « K™
by Xu et al.™ Tt also shows that the effect of
temperature on the special heat capacity C, is
much larger than that of pressure.

In Fig. 6, we plotted the temperature de-
pendence of the Debye temperature. It is well
known that the Debye temperature is proportional
to the bulk modulus and that hard materials ex-
hibit elevated Debye temperatures. Our calculated
Debye temperature @pequals 1100 K at 300 K, in
good agreement with the @ calculated by Xu et
al. (Op=1161.5 K at 300 K)""'.
is clearly that when T<C200 K, @, remains nearly

From Fig. 6, it

constant. And then, @, decreases as the tempera-
ture increases, when T>400 K, the variation of
@, with temperature is almost linearly increased.
We can find the Debye temperature keeps above
1010 K when the temperature is up to 1500 K,
which means that the effect of temperature on De-
bye temperature is moderate. We note the differ-
ence between the elastic Debye temperature O
calculated by elastic constants (in Tab. 3) and the
Debye temperature @ estimated by thermody-
namic methods. The elastic Debye temperature

®: and the Debye temperature ®, are 898 and

1110 K at 0 K and 0 GPa. This difference also ap-

1. 40]

pears in some other materials’ This is par-
tially because the Debye temperature @, is ob-
tained under the assumption that the material is i-
sotropic, but LaB; is anisotropic. These results

are consistent with the elastic anisotropic parame-

ter A.

200
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Fig. 5 The heat capacity C, of LaB; as a function of

temperature T at several pressures

3.4 Electronic structure

The density of states (DOS) plays an impor-
tant role in the analysis of the physical properties
of materials. The calculated partial density of
states (PDOS) for LaB; is shown in Fig. 7. Our
calculations at 0 GPa are consonant with the re-
sults obtained by Hossian et al.™. It is clear
from the figure that the valence band can be divid-

ed into two parts. The isolated part is around
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—15.0 eV with a narrow width, which arises
mainly from an equal contribution of both B 2s
and 2p states. The main part of valence band has
a width of about 9 eV, and consists mainly of the
B sp states and slightly of the La d state which is
completely occupied and a small contribution of
the La 6s states. It can be divided into two parts,
the first part is located in the range of —11 to —
7.5 eV (part [ ); the second one is between —7. 5
and —1 eV (part]] ), and the bands located at a-
round —10 and —5 eV have a remarkably local-
ized characteristic. The part | originates from al-
most equal contributions of B 2s and 2p orbitals,
while the part [[ is dominated by the B 2p orbital
weekly hybridized with La 5d orbitals. Around
the Fermi level, it is clearly that the B 2p state
shows a strong hybridization with the La 5d
states. Similarly, the conduction band can be di-
vided into two parts depending on the weight of
the PDOS, the first part is located in the range of
1 to 6 eV (part [l ); the second one is between 6
and 11 eV (part V). In part [[, the band has a
remarkably localized characteristic at 3 eV and it
is dominated by L.a 5d hybridized with the B 2sp
states. While the part [V is populated with all the

states of both B and La atoms.
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Fig. 6 Debye temperature versus temperature for

LaB; at zero pressure

The calculated total density of states ( TDOS)
and partial density of states (PDOS) at high pressure
(14 GPa) are also illustrated in Fig. 7. It is found
that; (1) the TDOS values become larger at the

sharp —5 eV when the pressure is increased, as well

as the peak value of B—2s, thus, we can predict that
the obtained peak is due to 2s of B; (2) all the DOS

peak moves left slowly.

Density of states (electrons/eV)
= =
P
T

Energy (eV)
(a)

Density of states (electrons/eV)

Energy (eV)

(b)
Fig. 7 Calculated total and partial density of states
of structure LaB;at 0 GPa (a) and 14 GPa
(b)

4 Conclusions

We have investigated the electronic structure
and elastic properties of LaB; under pressure in
the frame of the density functional theory. The
calculated lattice parameters of LaB;at zero pres-
sure and zero temperature from GGA are in agree-
ment with the available experimental and theoret-
ical data. The pressure dependences of elastic pa-
rameters (including elastic constants, bulk modu-
lus, shear modulus, Young’s modulus and Pois-
son’ s ratio) are also obtained. We have found
that they all increase linearly with the increasing

pressure. With these elastic parameters, we have

studied the mechanical properties of LaB; under
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pressure, and predicted that they are stable under
pressure up to 14 GPa. We also have investigated
the thermal properties of LaB; by utilizing quasi-
harmonic Debye model. The thermal calculations
show that the thermal expansion coefficient is
positively related to the temperature, and nega-
tively related to the pressure. And the effect of
temperature on the special heat capacity C, is
much larger than that of pressure. Finally, we in-
vestigate the variety of the total density of states
and the partial density of states of LaB; at diverse

pressures.
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