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Investigations of 0. 7 anomaly due to Rashba effect and lateral
spin-orbit coupling in the quantum point contacts

WANG Zi-Jiang , KOU Qing-Chen, GAO Rui-Yan, HE Jian-Hong » GUO Hua-Zhong , YU Bai-Ru
(College of Physical Science and Technology, Sichuan University, Chengdu 610064, China)

Abstract: We study the abnormal quantum transport through quantum point contact systems with Rash-
ba effect and lateral spin-orbit coupling under asymmetric confinement geometries. We find that for a
certain range of Rashba interaction strength, the conductance has a weak plateau around 0. 8 X 2¢* /h.
The value of this anomalous plateau is dependent on the voltage bias of the asymmetric confinement. We
find that for a certain range of voltage bias, this weak plateau is lowered slightly with increasing the
voltage bias. Furthermore, we find that the asymmetric confinement gives rises to a nonzero spin polari-
zation due to the Rashba spin-orbit coupling. Therefore, we can make such quantum point contact spin-
polarizer by purely electrical means in the absence of any applied external magnetic field.

Keywords: Quantum point contacts; 0. 7 anomaly; Rashba interaction

. ductance from transmission in a ballistic conduc-
1 Introduction . . . r1,7]
tor was firstly investigated by Landauer''"*,

The study of electronic transport in split- Then Biittiker extended the theory to multi-lead
gates quantum point contacts (QPC) is an active system'®, resulting in the Landauer-Biittiker for-
field of research. The theoretical approach of con- malism. The quantized conductance of QPC was
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first experimentally confirmed in 1988M*). When
a negative voltage is applied on the metal split
gates, the two-dimensional electron gas (2DEG)
is depleted underneath the gates and forms one-di-
mensional channel. If the length of the channel is
short enough compared to the mean free length,
the transport of electrons is ballistic. By control-
ling the applied gate voltage, we can control the
width of the one-dimensional channel in the QPC,
while the QPC’s conductance is a function of the
width of the channel, and the conductance is
quantized in units of G, =2¢*/h.

There are many theoretical models for the
quantized conductance in QPC in the linear-re-
sponse regime. Assuming an adiabatic change in
the geometry will theoretically predict plateaus in
conductance without resonant structuret™.

Besides integer plateaus of conductance in u-
nits of Gy, there are some other features in the
conductance of QPCs. Thomas et al. firstly ad-
dressed specifically an anomalous plateau typically
observed at 0. 7 G,'"?, which is usually called 0. 7
anomaly. 0.7 anomaly appears in the conductance
of QPCs universally, and it can’t be explained by
single-particle transport theory. There are many
theoretical explanations for 0. 7 anomaly, inclu-
Kondo

phe-

ding spontaneous spin polarization-’,

physics[&m] , [11.12] ,

Wigner crystallization
nomenological spin-gap models™ ezc. Although
the physical mechanism for 0. 7 anomaly is the
subject of extensive debate, we can determine
that it is a many-body effect.

When considering the transport in 2DEG,
the spin-orbit (SO) coupling could have a great
impact on the dynamics of carriers and their
spins. Hsiao et al. consistently explained 0. 7 G,

U They ex-

plateaus by the Rashba interaction
plained that the Rashba interaction strength is
proportional to the nonuniform electric field E in
the z direction perpendicular to the 2DEG plane in
the GaAs/AlGaAs heterostructure. An effective
potential well will be formed due to the Rashba
interaction term, and when the well is sufficiently

deep it is able to trap electrons so as to provide

the local magnetic moment for the Kondo effect.
Transport properties of 2DEG in the pres-

ence of SO coupling have been reported in litera-

[15 [16,17]

ture'’™, including QPC structures Hsiao et
al. established the relationship between 0. 7 a-
nomaly and the Rashba interaction, but the resul-
ted conductance as function of the gate voltage
was not provided'"'. Among the countless inves-
tigations on 0. 7 anomaly, it is hard to find one
that confirmed the correlation between 0. 7 anom-
aly and the Rashba interaction by offering numer-
ical results of the conductance with a 0. 7-anoma-
ly-like structure.

We here provide a method to numerically cal-
culate the conductance of ballistic system with
Rashba interaction and lateral spin-orbit coupling
induced by a lateral confinement potential. Espe-

Rashba
strength, we obtain a 0. 8 G, plateau. This plat-

cially, by adjusting the interaction
eau is dependent significantly on the voltage bias
between the split gates. We find that for a certain
range of voltage bias, with increasing the bias,
this weak plateau is lowered slightly. The asym-
metric confinement gives rise to a nonzero spin
polarization due to the Rashba interaction. Calcu-
lations show that we can make such quantum
point contact spin-polarizer by purely electrical
means in the absence of any applied external mag-

netic field.

2 Theoretical model

We consider a two-dimensional system in
which a 2DEG is confined in a plane perpendicular
to the 2z axis. The longitudinal direction is defined
as the x direction, and the transverse direction is
defined as the y direction. The split gates of QPC
is on the surface of the device and the distance
from the 2DEG to the QPC’s surface gate is d.

We model the electrostatics around the chan-
nel region with Davis’ method"**’. In our calcula-
tions, we use this model to calculate the potential
applied on the 2DEG, and put it into the Hamil-
tonian to calculate the scattering matrix. The e-

lectrostatic potential of an infinite triangle gate
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with one edge along the x axis whose vertex at
the origin includes an angle 2A is given by:
Viz,y,d,A,Vg)=
dsinA
(R —x)cosA —ysinA
where r and y are the two-dimensional coordi-

nates, d is the distance from the 2DEG to the

(D

Ve
arctan
i

QPC’s surface gate, V, is the voltage applied on
the gates, and R= " +d*.

In our model, to describe QPCs we adopt a
pair of triangular split gates which include a top
gate and a bottom gate on the surface of the Al-
GaAs/GaAs heterostructure. The 2DEG is as-
sumed to be an ideal plane under the surface of
the QPC. The distance from the 2DEG to the
QPC’s surface is d. The scattering region is in a
shape of rectangle with a width of 1500 nm and a
length of 2000 nm. The channel for conducting e-
lectrons is parallel to x axis. Each gate is in the
shape of an equilateral triangle, and their shapes
are symmetrical about the x axis. The shortest
distance between vertexes of the two gates is 300
nm, and the height of each equilateral triangle is
2000 nm. Fig. 1(a) shows the sketch of the scat-
tering region. The two red triangles represent the
surface split gates. The channel for conducting e-
lectrons is formed when the 2DEG underneath the
surface gates was depleted, and P denotes the
momentum of conducting electrons. We introduce
a ‘deltaV’ term as the bias shift between the top
and bottom gates. In this case, the potential on
the top gate is V, whereas the potential on the
bottom gate is V, +deltaV. The potential genera-
ted by the split gates can be written as:

V' (2vysd) :V’<x,y—%,d,vg> +

V’<x,—y+&‘2‘ﬁ,d,v,,, +deltaV) (2)

where gap is the shortest distance between verte-
xes of the two gates that is 300 nm, and function
V'(x. v, d, V,) is the potential generated by one
upside-down equilateral triangle gate which is
shown as triangle BCO in Fig. 1(b). The triangle
gate BCO in Fig. 1(b) can be obtained by subtrac-

ting infinite triangle gate EOD and ABF from
AOD and then adding another infinite triangle
gate ECF. Since the potential can be added or
subtracted linearly as gates!'™, we can do the
same thing as above to get the potential generated
by triangle BCO. Therefore V' (z, y, d, V,) can

be derived and written as:

V/(:C,y,dng) :V(I9y7d7§nsvg) -

V(I’y,d,%,Vg) -

h
V(ﬁﬁ,y—h,d,g",\@) -

h
Vie—"=
G

7y_h7da€nvvg) (3)

(a)
A A E
B @ F
) D
(b)

Fig. 1 (a) Sketch of the scattering
region, the channel for con-
ducting electrons is formed
when the 2DEG underneath
the surface gates was deple-
ted; (b) sketch of an upside-
down equilateral triangle gate

BCO

where h is the height of the equilateral triangle
and V is the function in Eq. (1). With these pa-
rameters we can calculate the potential V (z, y,
d). Fig. 2(a) is the potential at a depth of 100 nm
calculated by Eq. (2) with V,=4.2 V and a zero
bias and Fig. 2(b) is the potential with V,=4.2 V
and deltaV=—1.5 V.
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Fig. 2 Color map of potential calculated by Eq. (3) with V,=4.2 V and (a) a zero bias; (b) the potential with V,=4.2 V

and deltaV=—1.5V

The usual Rashba interaction associated with

the interfacial electric field is given by'*),

HY, =% (,P,—06,P.) (4)

h
where ¢, and ¢, are Pauli matrices, P, and P, de-
note the kinetic momentum, and « denotes the
spin-orbit coupling strength. It is a spin-orbit
coupling term induced by the electric field in the 2
direction due to the heterostructure band align-
ments and surface gates.

When the ‘deltaV’ term is nonzero, the re-
sulted confinement potential is asymmetric. The
asymmetric field gives rise to a lateral spin-orbit
interaction (LSOC) which further couples the
spin and orbital degrees of freedom-*-?". This

lateral SO potential takes the form'? .
Vip =2V y.2) + (63 P) (5)

where B=h*/4m " *c* and 6 =(5,+ 0, 0.). m" is
the effective mass of conducting electrons. U(x,
v, 2) is the potential energy of electrons and can
be derived from V" in Eq. (2) (2=0 corresponds

to the surface of QPC, sod=—2):

Ulxsy,z)=—eV (xyy, —2) (6)
The total Hamiltonian is then given by:
H=L D) g, UGy, V8 (D

In our model, the leads’ directions are paral-

HZE[(U(a;uau,z) 4D [ proy > sy

23

dz

Y2

lel to the x axis and they are semi-infinite, while
in the y direction there is a hard-wall boundary
condition. For simplicity of calculation, the SO
coupling « is set to zero at the infinite leads but is
turned on at the scattering region. We use a py-
thon package-Kwant-to calculate the wave func-

23] within the frame of

tions and conductance
tight-binding approximation. The distance be-
tween nearest lattice points is set as a. The coor-
dinates of every lattice point (4, v) correspond to
real-space coordinates (apus av).

In order to calculate the transmission, we
have to obtain the discretized Hamiltonian. The
system is described by the two-dimensional
Schrédinger equation

hZ
2m

Introducing the discretized positional states
v >=lapsay> =z, y> 9

in the limit ¢ — 0, the partial derivative operators

H:Ho +H§) +V'9g) =

(22 +2%) +

can be expressed as

9, = Xt 1) powl — Ly > 1)

(10
and an equivalent expression for d,. Substituting

it in the discretized Hamiltonian gives

*t(|#+1,v><;uv\ +|;uv><;z+1,v| +‘lllvl/+l><lll’l/‘ +

|/Js»><y,u+1\)]+2[( ig 2 amavs) _ Za)

d ) )
BM ]( | oy 1> pyw| —
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> 1D 3 —iﬁw+ﬂ)5},+iﬁwaz]< 1o ><pov| — |

dz

v >t 1))

where t =#%/2m* «*. For a smaller a, the dis-
cretized Hamiltonian approximates the continuous
Hamiltonian to a higher accuracy. The approxi-
mation is good enough for quantum states of Fer-
mi wave length much larger than a. Hence a <
Ars» and we get t =h*/2m " a* > K*/2m” A%, Ac-
cording to De Broglie formula A =h/p, we gett >
p/8n*m* =E;/4x*, which leads to E ;<< 4x’t.

In our simulation the Fermi energy is set to be
lower than ¢. For simplicity, in our model we set 1=
1. Thus the unit of energy is t=Hh*/2m " a°.

Kwant uses Python codes to define the tight-
binding discretized Hamiltonian. First we define
the type of the system’s lattice and the shape of
scattering region, and then define the onsite and
hopping in the Hamiltonian. We use non-atomis-
tic model in our calculation. For the simulation of
2DEG system we use a two-dimensional mesh
with spacing a=5 nm. Considering spin-depend-
ent conductances, we calculate the spin polariza-

tion by the current polarization
_GM G (G G Y
G G +GY Gy
G —GY
TG HGY

12

3 Results and discussion

We present results for a QPC, using the pa-
rameters stated below. The distance from the
surface gate to 2DEG is d=100 nm. To calculate
transmission function we need the Fermi energy
of electron E,. In all our calculations the energy
unit is ¢, t =h2/2m " a*. We consider 2DEG made
out of GaAs/AlGaAs heterostructure, thus m* =
0.067m,. We set E,=0. 247 ~ 0. 0054 eV, which
corresponds to an electron density ngs about 4, 8 X
10 ¢~ /em®. According to Ref. [24], the value
for @ in -V semiconductors is no more than a
few 10 " eV + m. In our calculation the spin-or-
bit coupling strength ¢ is around 9. 67 X 107! eV

*m and B is around 5 X 107" m”,

2a dy

1D

In our results, the unit of voltage will be the
energy unit . Fig. 3 shows curves of conductance
G as function of the top gate voltage V, under the
last second integer plateau. Each curve corre-
sponds to a different deltaV of the Davies’s po-
tential. The rightmost curve on the left of the
break point corresponds to deltaV = 2. 2t whilst
the leftmost curve corresponds to deltaV =2. 6t.
Fig. 3 also shows the curve with deltaV=0 as a
reference. For the left five curves, the difference
of deltaV between two adjacent curves is 0. 1z.
The left five curves are arranged from right to left
with an almost constant spacing of V,, which can
be explained by electrostatics. For a same V,, the
bottom gate voltage rises by increasing deltaV
while the top gate voltage is fixed. As deltaV is
positive, a larger deltaV leads to a more open
quasi-1D channel, which in turn results in a lar-
ger G. It can be also concluded that the curve
with a larger deltaV has a more negative pinch-off
voltage V.

Fig. 3 also shows that each curve has a shoul-
der-like plateau around 0. 8G,, which is accounted
for the Rashba interaction term HE,. This shoul-
der-like short plateau looks just like the 0.7 a-
nomaly. We also find that the exact conductance
value of the 0. 7 anomaly is dependent on the spin-
orbit coupling strength «, although the results is
not presented here, We can find that with in-
creasing the bias between top and bottom gates,
the 0. 7 anomaly is lowered slightly. For deltaV
=2.2t, the 0. 7 anomaly is a little more than 0. 8
G, , while for deltaV =2. 6t it is some value be-
tween 0. 7G, and 0. 8G,. For other value of del-
taV, this conductance changes in a mode that I
have not figured out. These results prove that
0. 7 anomaly is dependent significantly on the bias
between the split gates when introducing the lat-
eral SO potential. The origin of this dependence
is obvious, since the lateral SO potential intro-

duces electric field — VV in the term V&, and
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—VV is related to the bias.

We have also studied the relation between

the spin polarization and deltaV as shown in

WY T (e , ,
Fig. 4. In Fig. 4(a), we show conductance curves
deltaV(t) ) ) ) )
0.84 0 of spin-up, spin-down and the sum with different
—_22 deltaVs. In the case of symmetric confinement
= —_2.3 . . . .
< 0.6 B (deltaV=0), the spin polarization is zero, where-
o — L.
% —2.5 as the asymmetric confinement obtained a nonzero
0.49 —2.6 . . . . . .
spin polarization as shown in Fig. 4(b). When G
0.2 is below Gy, the maximum current polarization P
is around 0. 08. The contrast between the results
0.0 : - - /4 . of symmetric and asymmetric potential landscapes
6.4 <62 -6.0 -5.0 -4.8 -4.6 , . ,
V(1) shows that the lateral spin-orbit coupling or the
. Rashba interaction is responsible for the appear-
Fg. 3 Conductance as function of the top gate o P pp
voltage with different deltaVs. ance of polarization.
0.10
104 oo --
deltaV(t) AR5 SCICICICICICIE eIt ICe
0.84 o s deltaV(t)
= - 05 'g 0.06+ 0
T 0.6 = —-0.5
o <
) < 0.044
) -
0.44
0.02+
0.24
0.00+
0.0 T T T Y T T T : Y N o Y i o
5.1 -5.0 -4.9 -4.8 -4.7 -4.6 -4.5 -4.4 el <30 A2 48 4T b8 47 44
V(1) V(1)
(a) (b
Fig. 4 (a) Spin-dependent conductance curves with different deltaVs; (b) the current polarization P with different deltaVs

One possible origin for the polarization under
asymmetric potential landscape can be attributed
to the effective magnetic field By, induced by the
LSOC™J. By, can be deduced by

Vi, = =BG+ (EXVU)=—B5 + (EXE)=

:c; 'ES’)
where U is the confinement potential energy, =
B2 /4m 72t ,_BS() is proportional to kX L.

As shown in Fig. 5, Bs has opposite direc-
tions at the opposite transverse edges of QPC due
to the opposite directions of the electric field E in
the transverse direction. This will result in an ac-
cumulation of electrons with opposite spin direc-
tions at opposite transverse edges as shown in
Fig. 5(a). This is the signature of the spin Hall
effect. When the potential energy of one edge,

for example the right edge as shown in Fig. 5(b),
is lowered, the potential becomes the asymmetric
full line from the dashed line. Major spin-up elec-
trons on the right edge experience less scattering.
Thus the spin-up current exceeds the spin-down
current.

On the other hand, studies have shown that
the Rashba interaction has a similar spin Hall ac-
cumulation effect’®?”!. The authors of Ref. [27]
calculated nonequilibrium spin density in the
2DEG strap based on the Rashba SO coupling
model and found that the spin density is polarized
along the opposite directions at both edges of the
strap. In our model, we need to differentiate ei-
ther the Rashba SO coupling or the LSOC domi-

nates in the spin polarization effect.
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U(0, y)4

y=0 y
(a)
Fig. 5

U(0, y)4

y=0
)

(a) Schematic representation of the potential energy U in the transverse direction at x=0 for a symmetric potential

landscape; (b) the potential energy for an asymmetric potential landscape. The dashed line is potential energy for a

symmetric potential landscape.

The polarization of spins and the accumula-
tion of electrons in the real space can be investiga-
ted from the transmitted wave-function square
modulus. Fig. 6(a) shows the calculated normal-
ized spin-up and spin-down transmitted wave-
function square modulus when « is around 9. 67 X
107" eV + m and B is zero and Fig. 6 (b) shows
the normalized spin-up and spin-down transmitted
wave-function square modulus when ¢ is zero and
Bis around 5 X 10" m’.

to be around the 0. 7G, region (where the spin po-

In both cases V, is set

larization is obvious in the conductance curves for
a none zero deltaV in Fig. 4). In Fig. 6(a) deltaV
is zero while in Fig. 6(b) deltaV is 0. 5¢. In Fig. 6
(a), we find a clear signature of the accumulation
polarization of the opposite spins at the opposite
edges of the conducting channel, whereas in
Fig. 6(b) there does not exist a similar phenome-
non. These calculations prove that the Rashba in-

teraction strength is essential in generating spin-

300 1.0
0.8

; 0.6

0.2

0.0

(a)

dependent currents polarization when the split
gates are biased. From Fig. 6(a) we find that in
the QPC channel spin-down density is more con-
centrated on the up edge while the spin-up density
is more concentrated on the down edge. When
deltaV is zero, the QPC channel locates at y=0,
and the confining potential has a symmetric effect
on the spin-up and spin-down electron waves.
Thus the spin-up conductance equals to spin-down
conductance. When deltaV is not zero, the confi-
ning potential has different influence on the wave
function of spin-up and spin-down electrons,
leading to a spin polarization. On the other hand,
the LSOC does not show an effect of polarizing
the spin, even with an asymmetric potential, as
shown in Fig. 6(b). One possible reason may be
that the LSOC is too weak to influence the con-
ducting electrons due to a small absolute value of

deltaV.

300
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£ 0 =
= =l 04
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-300
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Fig. 6 (a) Normalized transmitted wave-function square modulus (left for the spin-up and right for the spin-
down) when V, is in the region of around 0. 7G,. The « is around 9. 67 X 10" eV + m,
B and deltaV is zero; (b) The same as (a) while the a is zero, g is around 5 X 10~

m?, deltaV is 0. 5¢.

It can be deduced that with a reversed asym-
metric potential the spin-dependent conductance is
reversed too. This effect is shown in Fig. 7. In
Fig. 7, we show conductance curves of spin-up,
spin-down and the sum with deltaV=1. 5¢, and
the equivalent curves with a reversed potential.
The spin-orbit coupling strength o is around 9. 67
X 107" eV » m and B is around 5 X 107" m*. In
Fig. 7, each curve is the coincidence of two
curves. The spin-up conductance with deltaV=—
1. 5¢ is almost equal to spin-down conductance
with deltaV=1. 5¢, whereas spin-up conductance
with deltaV=1. 5¢ is almost equal to spin-down
conductance with deltaV = —1. 5t. Note that in
our numerical results, there is a shift of gate volt-
age between deltaV= —1. 5t and deltaV=1. 5¢
curves, because our bias deltaV is only applied on
the bottom gate while the gate voltage is applied
on both gates. Considering the voltage shift, we
have processed our data so that three pairs of

curves coincide.

4 Conclusions

In summary, our calculation demonstrates
that for a reasonable Rashba interaction strength,
the Rashba effect can generate a weak plateau a-
round 0. 8 X 2¢?/h in the conductance of a QPC
system. Furthermore, when introducing a lateral

SO potential, this weak plateau is dependent sig-

0.8 4

= IdeltaV:-l.St
0.64 “deltaV=1.5t 4

G(2¢*/h)

0.4 -

0.2 4

Y

0.0 4

deltav=1.5¢ = ,deltaV=-1.5t

T

T v T v Ll T v
-5.80 -5.75 -5.70 -5.65 -5.60 -5.55 -5.50 -5.45
20

Fig. 7 The spin-dependent conductance curves with
deltaV=1. 5t and deltaV= —1. 5t. In this
figure we have considered the voltage shift.

nificantly on the bias between the split gates. We
find that for a certain range of bias, with increas-
ing the bias, this weak plateau is lowered slight-
ly. The asymmetric confinement gives rise to a
nonzero spin polarization due to the Rashba inter-
ation. With a reversed asymmetric potential the

spin-dependent conductance is reversed too.
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