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Abstract: It is well known that the hardware and time complexity of multiplication using normal bases
depends on the structure of the normal basis used, particularly on the complexity of the normal basis.
Therefore to determine the complexity for normal bases, especially Gauss normal bases over finite
fields, is interesting. By properties for finite fields and elementary techniques, we obtain the upper and
lower bounds of the complexity for the dual basis of a class of the type (nn,k)(k = 3) Gauss normal ba-
ses, and determine the explicit complexity of the dual basis for the type (n,k)(k = 1,2) Gauss normal
bases over finite fields, which is an elementary proof for the main results given by Wan and Zhou
in 2007,
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forms a basis for Fy over F, , then we call N a

1 Introduction . ,
normal basis and ¢ the normal basis generator.

Let ¢ be a power of the prime p and let F, be
the finite field with q elements. For any element «

€ F; . the conjugates of q are given by a* , i =

Ov...anil. IfN:{a, :llq’ |Z‘:09...97’171}

S EHI: 2014-08-08

For the normal basis N there is an associated ma-

trix T, = (¢;,;) given by the relations

n—1

a; = E tijajst = 0,...

J=0

N _1.
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The number of nonzero entries in T, is called
the complexity (also sometimes called the densi-
ty) of the basisN [,

the complexity of any normal basis of F; over F,

Mullin et al.™ prove that

is at least 2n — 1. Normal bases which achieve
this lower bound are called optimal normal bases.
Mullin et al. also give two constructions of opti-
mal normal bases, named Type I and Type II op-
timal normal bases, and conjecture that there are
no other optimal normal bases. Gao and Lenstra
2 later prove this claim.

It is well known that normal bases over finite
fields have been implemented efficiently in soft-
ware, see, for example, Refs. [3~15]. The hard-
ware and time complexity of multiplication using
normal bases depends on the structure of the nor-
mal basis used, particularly on the complexity of
the normal basis. Therefore optimal normal bases
are the most desirable since they have the lowest
complexity. While optimal normal bases exist but
not in every finite extension field, thus in the ab-
sence of optimal normal bases it is desirable to
know the normal basis with the least complexity.
In 1989, Ash, Blake and Vanstone'® introduce
the Gauss period, and then by using Gauss period
they generalize optimal normal bases to be Gauss
normal bases, which are just with lower complex-

e 1", Liao

ity . Recent years, Christopolou et a
and Hu!*! obtain the explicit computing formula
for the complexity of a class of Gauss normal ba-
ses over finite fields.

In the present paper, we obtain the upper and
lower bounds for the complexities of Gauss normal
bases over finite fields, and determine the explicit
complexity of the dual basis for the type (n,k) (b =
1,2) Gauss normal bases, which is an elementary

proof for Theorem 2. 2 given by Wan and Zhou™'*'.

2 Preliminary and main results

Definition 2. 1" Let r = kn + 1be a
prime not dividing q. Furthermore, let Abe the
unique subgroup of order £ inZ, and A; = {¢' * x
| x € A} ©Z). Also let Bbe a primitive r -th root

- Euéz\lﬂd’o <

of unity in F». The elements a;

i <n — 1, are called to be the type (n,%k) Gauss
period of Fy over F,. Furthermore, if the order e
of ¢ modulo r satisfies ged (nk/e,n) =1 , then the
set

N =Aayssa,1t = {asa’s = sa” )
forms a normal basis of F over F, , called the
type (n,k) Gauss normal basis of F» over F,. It is
well known that Gauss periods of type (n,1), for
any g, and type (n,2), forqg = 2, define the opti-
mal normal bases given by Mullin, et al. " For
general cases, the multiplication table of the
Gauss normal basis over finite fields is closely re-
lated to the cyclotomic numbers.

Proposition 2.2 Let N = {q; | 0 <i <n
— 1} be the type (n,k) Gauss normal basis of Fp
over F,. Suppose that j, < n is the unique index
such that =1 € A; . Then

_ 0,2 | k&,
Jo n/2,otherwise,

and the form of the multiplication table T, of N is
n—1 n—1

aa; = 0t + Emg_,aj = 2(7711,]» —0i)a;
=0 im0

@D
wherem,; =| (1 +A,) N A, | is the cyclotomic
numbers, and

0.7 # Jos

1,otherwise.

i

Therefore the explicit determination of the multi-
plication table T, depends on studying the cy-
clotomic numbers m; ;.

Remark 1 Note thatm;,;, > 1is the same as
| (14+A;,) NA,]|>1. In this case, it is enough to
show that if x,y € A;then1 +x,1 +y € A,. In
other words, we require x # y such thatx/y € A
and (1 +2)/(1 +y) € A.

Proposition 2, 3™ Letn > 2 be a positive inte-
ger, and let r = fn + 1 be an odd prime. Let w be a
primitive £ -th root of unity inZ,’ and A = [w].

(1) mj o =m,—j, forall0 <j < n/2;

(2) H kis even, thenm;,;, =m,,;forall0 <j,
h<n—1;

(3) There are (k — 1) (k& — 2)/2 distinct sub-
sets {x,y} € Z,\{0, —1} such thatx £ y,x/y €
Aand (1 +2)/(1 +y) € A, given by S, ;

= {Ii.j ’
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v} » where

w —1 ; .
Xij — Vi :wl‘i.,sl <l’] <k—1,
1 —w™
i<k
. .k —1
Furthermore, Sy »,,; € A,1 <j < o

Till now, we can only determine some special
cycloyomic numbers. In 2012, by computing the
cyclotomic numbers m;; one by one, Chris-

1. ®J present the multiplication tables

topolou, et a
and the complexities of the type (n,k) Gauss nor-
mal bases fork = 3,4,5 and give a slightly weaker
result for the type (n,6) Gauss normal bases. Re-
cently, wel'® generalize their main results to the
general case, and obtain the explicit computing
formula for the complexity of the type (n,k)
Gauss normal bases over finite fields when the
sets S,,; are disjoint to each others. As examples,
wel* show that the type (n,k) with # < 6 Gauss
normal basis satisfies the condition, and the type
(n,7) Gauss normal basis satisfies the condition if
and only if n # 4.

On the other hand, dual bases are very im-
portant in finite fields and their applications. For
two bases N = {a; | i = 0,+*,n — 1} and B = {g,
| i =0,,n—1} of Fp over F,. Bis the dual basis
of Nif for anyi,j = 0,++,n —1,

Tria,B;) = b )
0,otherwise,
where Tr (@) is the trace map ofa € F» over F,. N
is a self-dual basis when B = N. In particular, if
N is a normal basis, then B is the dual basis of N
if and only if for any: = 0,++,n — 1,

Tragn = |00

0,otherwise.

It is well-known that for a basis N of F;» over
F,, the dual basis B is unique and also a normal
basis whenN is a normal basis. It is well-known
that for a fixed normal basis N, it is not easy to
determine the unique dual basis of N. In 2000,
Gao et al. " obtain the dual basis of the type (n,
k) Gauss normal basis over finite fields. In 2012,

[12]

Liao''*! obtains the dual basis and its trace basis of

a Gauss normal basis for arbitrary medium sub-

fields F» over F, withm | nand 1 < m < n.

Proposition 2. 4" Suppose that 1 <k < n
and N = {a = aos***sa,1 ) is the type (n.,k) Gauss
normal basis ofF» over F,. Then the dual basis of

N is generated by
B =

Jﬁ711+1a—kni1, if & =0(mod2).

1/’71 1+ 9% o /: 1 otherwise. (2)

In particular, from Proposition 2. 4, whenq = &

= 2 we can get§ = ﬁa, which means that the
type II optimal normal basis is self-dual. When &
=1, i.e., for the type I optimal normal basis N
of F» over F,, through determining the multipli-
cation table of the dual basis of N, Wan and
Zhou™*! prove that the complexity of the dual basis B
is 3n — 3 or 3n — 2 depending on ¢ is even or odd, re-
spectively. While in general cases, even if the multi-
plication table or the complexity of a normal basis o-
ver finite fields is given, to determine the complexity
of the dual basis is not easy. In recent years, for the
case the normal basis and its dual have linear genera-
tors, the relationship between their multiplication ta-
bles is given.
Proposition 2. 517 Let ¢ be a power of the
prime pand let N = {a; =a’ | i =0,1,++,n—1} be
a normal basis of Fy over F,. Suppose that the dual
basis B of N is generated by 8 = a +lx for somea € F,
and b € F, . Denote T, = (¢;;) and H; = (h;;) to be
the multiplication tables of N and B, respectively.
Then for anyi,j = 0,+,n —1,
a+tbi,.j =0,
B - Ja + bty st
a+b;.;vi=j=1,+,n—1,
1 1. £ 0. (3

In 2011, Su and Liao"'" generalize the above

=0,j =1, —1,
bt st = 1,0 sm

result to the case = a +ba,, wherea € F,, b €
F, andr € {1,--,n —1}.

Proposition 2. 6 " Let ¢ be a power of the
prime and let N = {q; — o |i=0,1,+yn—1} be
Suppose that the

dual basis B of N is generated by § = a + ba, for

a normal basis of F over F,.
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andr € {1,+,n—1}. De-
note T, = (¢,;) and H, = (h,,;) to be the multipli-

somea € F,,b € F,.

cation tables of N and B, respectively. Then for
any i,j = 0,+y,n —1,

2a +bty,.1 =37 =0,

bto;si =0,7 =1,+yn—1,

h - bt,;si =r,j =0,r, 0
’ —a+tbt, ;i =r.j #0,r,
a+bt.;si #r,0,5 =0,1,

Otijst #1rs0,7 # 0,1

In the present paper, by Propositions 2. 4~2. 6,

we obtain the upper and lower bounds for the com-
plexities of class of the type (n,k) (k = 3) Gauss nor-
mal bases, and determine the explicit complexity of
the dual basis for the type (n,k) (k = 1,2) Gauss nor-
mal bases over finite fields, which is an elementary
proof for Theorem 2. 2 given by Wan and Zhou'*’.
In fact we prove the following main results.

Theorem 2.7
ps 3 < k < n and B be the dual basis of the

Let ¢ be a power of the prime

type (n,k) Gauss normal basis N = {q¢ = q¢,***>

a1 ) of Fy over F,. Suppose that the set S, ; (1 <

i,j<k—1,i+j<k—1) defined in Proposition 2.

4 are disjoint to each others. Then the complexity

Cyp for the dual basisB of N is given as follows.
(1) For the case £ = 0(mod2),

Cy = ¢ +u6m +(nf1fu)(.,
2 2
where
ok

c € {?V?il}’(‘m €{k—3,k—2,k—1,k},

c € {k—2,kk+1,k+2}.
Hence

nCk —2) —# < Cy <

7

n(k +2) —5 +?k—k2.

(2) For the case # = 1(mod2),

Co = e +WC’” T
(71*2*(]271)0873))(,
2
where
Co S {15@9ki3}9(‘% S {k_gyk i:l’k}’

2 2

% 53 %
and
Cw €k =4,k =3,k — 2,k £1,k},
C e {k iz;k’k +1}.
Hence
n(tk —2) —k +3k—1<Cy <
n(k+2) —5 —’L;g).

Let B be the dual basis of

the type (n,1) Gauss normal basis N = {a¢ = a»

Corollary 2. 8"

“,a,1) of Fp over F,. Then the complexity for
the dual basis B of N
3n —3,2 | q,
B 3n — 2,otherwise.
Corollary 2.9 Let B be the dual basis of the

type (n,2) Gauss normal basis N = {q¢ = q¢»**>

(/IS

a,1) of Fp over F,. Then the complexity for the
dual basis B of N is equal
. 2n — 1,2 ‘ q-

3n — 2,otherwise.

Cs

3 The proofs of main results

To prove our main results, the following
lemmas are very important.

Lemma 3. 1M% Let ¢ be a power of the
prime p, and let T = (¢,;) be the multiplication
table of the type (n,£) (£ =3) Gauss normal basis
N ={a =a¢s***sa,1} of Fp over F,. Suppose that
S, (1 <i,j<k—1,i+j<k—1) defined in Prop-
osition 2. 3 are disjoint to each others.

(1) For the case £ = 0(mod2).

(i) The first row of the multiplication table
T, has exactly % — 1 entries equal to 2 — &, only
one another entry equal to1 —%, and the other n —

k .
— entries equal to — k.

2
(k —2)°

(i1) There are exactly [ = subsets

S,-m,jm 7 \A,(1 <m <), which means that for
the 7,, -th row, there are just £ — 2 nonzero entries e-
qual to 1, only another nonzero entry equal to 2, and
the remain n — 1 — [ entries are zero.
(ii1) For the ¢ -th row with ¢ # 0,4, .7,/
(k —2)*

= T) , there are exactly £ nonzero terms
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which equals to 1.
(2) For the case # = 1(mod2),
E—1

(1) There are exactly entries ¢,; = 2 and

only one another nonzero entry, equal to 1.

(i1) For the % —th row of T,, there are ex-

actlyk — 1 terms equal to1 — %, and the other n —
k + 1 terms, each of them equal to — k.
(iii) For thei -th row withi =1,+,7n —1 and

(k — 1>2<k -3

C Z\A, (1 <m < 1), which means that

i # %, there are exactly [ =

sets Sim o
for the i, ~th row, there are just only one entry equal
to 2 another £ — 2 nonzero entries equal to 1, and the

remains n — 1 — k entries equal 0.
(iv) For the i -th row with : # 0,%,1', seeea g, (1

k- D*k -3
2

nonzero entries, equal to 1.

Lemma 3, 201

type (n,1) Gauss normal basis and T = (¢,;) is

). each of these rows has exactly k&

(1) Suppose that N is the

the multiplication table of N. Then
fo, =14 = 0ueean —1

2

and for anyi = 0,++,n — 1 and i # =,

2

(L ¢ =q +1(modn +1),
0,
(2) Suppose that N is the type (n,2) Gauss

t.
i .
otherwise.

normal basis and T = (¢;;) is the multiplication
table of N.
(D If ¢ =+ 2(mod 2n + 1), then

il’
to.j - {72’

j =1,
otherwise.
lLy1.; =
1, j=n—1lo¢g =+ —1)(mod2n + 1),
{O, otherwise.
and for any i = 1,++,n — 2,
ti,;, =
1, j =idorq’ =%+ (¢ —2)(mod2n + 1),
{O, otherwise.
(I If ¢ #=£ 2(mod2n + 1). Set ¢¢ ==+
n(mod2n + 1) thenr # 0.,n — 1,
A {—1, ¢ ==+ 2(mod2n + 1),
0.7 —

— 2, otherwise.

t.,; =
1, j =iorqg’ =+ (n —1)(mod2n + 1),
{O, otherwise,
and for any i = 1,-,n — 1.i # r,
ti,; =
1, j =iorq’ =+ (¢ —2)(mod2n + 1),
{O, otherwise.
(III) The complexity of N
2n—1, q =0(mod2),
3n —2, otherwise.
Proof for Theorem 2. 7

(t;.;) and Hy = (h;;) are the multiplication tables

CN - {

Suppose that T, =

of N and its dual basis B, respectively. If p | £, by

Proposition 2.4 we have B = N and so Cy

1
kn +1
= Cy. Without loose of the generality, we can
assume that ged (p,k) = 1.

(1) For the case £ = 0(mod2). Then p is an
odd prime and so ged (p,2k) = 1. By the formu-

las (2),(3) we have

. —k 1
hoo T 1 inkn +1t0,0,
__k [ P
hoy = kn +1 +/€n + lto" G Lyeessn =1
(5)
and for anyi = 1,-,n — 1,
R 1
hio = 51 TR 1
. —k 1
s L S L
. 1 . .
h,;, = pa— Jr1111'.;'(] # 0,1) (6)

A. We first consider the number ¢, of nonzero ele-

ments in the first row of H;. From (1) of Lemma

3.1, there has exactly % — 1 entries ¢,,; = 2 — k,

only one anothers,; =1 —k, and the othersn *%

entries 7,,; =— k. Therefore from (5), there are
three cases as follows.

L 22
Case 1. If t,.,,, = 2 — k. Then h,., 1

and for any j = 1,+-,n — 1, there are exactly % —

k 2—k 2

“in 1 Em 1 1 Ofor

2 entries h
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k

ged (p,2k) =1 ,only one another h,,; = 1 +
n

e ok
e e 1(;féO) , and the remains n 5 ele
_ K —k
ments hy,; = e B w—— 0. Hence the
number of nonzero elements in the first row of the
matrix Hp
% 1. p k1.
co = . 7
5 otherwise
1 —2k
Case 2. If t,, = 1 — k. Then hy, = 1
and for any j = 1,+-,n —1, there are exactly L
1 entries hy,; = ﬁ # 0 for ged (p,2k) =1,
and the remains n — % elements h,; = 0. Hence

the number of nonzero elements in the first row of

the matrix H,
— (8)

Co_lk
29

otherwise
Case 3.1ft,,, =— k. Then hy, = — 2k # 0
’ ’ kn +1
since ged (p,2k) = 1.And foranyj = 1,+.n —
k . 2
1, there are exactly 5 1 entries h,,; = a1 #
1
0, and only one another h,,;, = m( # 0), the
remains n — % — 1 entries hy,,; = 0. Hence the
number of nonzero elements in the first row of the
matrix Hp
k
W=
Co 2 + (9)

From Lemma 3. 1 and (5),(6), in the same way
we can get the nonzero elements in the i(; % 0) -th
rows of H. The details is left to the appendix.

Thus we complete the proof of (2).

Proof for Corollary 2. 8.

(1) For the type (n,1) Gauss normal basis N
of F over F,. Note that for anyi =0,++,n —1,¢
# ¢ +1(modn +1) and ¢° # ¢ + 1(modn + 1).
Hence by (1) of Lemma 3.2 we havet;;, = t,., =

0. Thus from (11), we can get ho,, =

foranyj = 1,,n—1,
ho,; =

L0, ¢ =¢ 1 = 2(modn £ 1),
n+1

10, otherwise.
Therefore the number of nonzero elements in the
first row of H, is 1 or 2 depending on p is even or
odd, respectively. Now from (1) of Lemma 3. 2
and (12), we have

—1
heo =hss = P

#0shy; =00 #0,5)

which means that the number of nonzero elements

in the % -th row of H; is equal 2. Finally, from
Liy =t =000 <i<n—1), (1) of Lemma 3. 2
and (13), we have

hio = hiy = —= #0,

' n+1
and for anyj = 0,+,n — 1,5 # 0,14,

L 1, ¢ =q¢ +1 =2(modn +1),

v 0, otherwise.

This means that the number of nonzero elements
in the 1(# O,%) -th row of H is equal 3.

From the above, the complexity of the dual
basis of the type (n,1) is equal to

Cp =3n—2) +2+
B 3n—3,p =2,

3n — 2,otherwise.

l,p =2,
2 ,otherwise.
Thus we complete the proof of Corollary
2. 8.
Proof for Corollary 2. 9. By (2) of Lemma
3.2 and (1)-(2), in the same proof for Corollary

2.9, the result is immediate.

4 Conclusions and remarks

It is well known that normal bases, especial-
ly optimal normal bases, are widely used in appli-
cations of finite fields in areas such as coding the-
ory. cryptography, signal processing., and so on
(see [ 9] for instance). However, for many finite
fields, there exist no optimal normal bases. For

these finite fields, it is desirable to have normal
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bases of low complexity. The well—known Gauss
normal basis is just with lower complexity.
Therefore to determine the multiplication table
and complexity for Gauss normal bases and their
dual bases is interesting in recent years.

Based on the closed relationship between the
cyclotomic numbers and Gauss normal bases over
finite fields, to determine the complexity of Gauss
normal bases, it is sufficient to compute the cor-
responding cyclotomic numbers. With regret, un-
till now people can only determine some special
cycloyomic numbers. Therefore to determine the
explicit complexity for Gauss normal bases and
their dual bases remains open.

In [13] and the present paper, when the sets

; defined in Proposition 2. 4 are disjoint each
others, we give the explicit formula for the com-
plexity of Gauss normal bases and their dual bases
over finite fields. Thus we solve the open prob-
lem partially. Although we cannot find some suf-
ficient conditions for that our disjointness require-
ment is satisfied even if n is a prime, we show
that Guass normal bases satisfying the require-
ment exists. For example, for the type (n,k) (1
< k < 6) Gauss normal bases and for n # 4 the
type (n,7) Gauss normal basis, the sets S;; are
disjoint to each others [13].

Appendix Now we consider the nonzero ele-

ments in the i;,+,7,([ = (13%2)2) -th rows of
Hg. From (1) of Lemma 3.1, for eachm =1,---,
L, there are exactly £ — 2 nonzero entries ti ;=1
only another nonzerot; .; = 2, and the remainn —
k +1entriest; ; =0. Hence by (4) there are 8 ca-
ses as follows.

Case 1. 1z, =¢ . = 1. Thenh, , =
hi . = % and there are exactly £ —4 entries
hi ., = #( # 0), only one another h;, ;, =

v k11

o Jrl(750) for ged (p,2k) =1, the remains n —

k + 1 entries h; ; = 0. Hence the number of non-

i d

zero elements in the 7,, -th row of H,

/3 - 3 . p ‘ k - 1 ’
¢ = ) (10)
k —1, otherwise
Case2. 1Ifs,, = landy; , = 2. Thenh,; ,
—k + 1 —k+2
= 1 e T 1 and there are exactly
k — 3 entries hi . = n 1+ 1 (#0), the remains n —

k + 1 entries h; . = 0. Hence the number of non-

1.]

zero elements in the 7, -th row of H,

E—=2, p|l—1Dk—-2),
c; = ) 1D
k —1, otherwise
Case 3. Ifs,, =land¢; ;= 0. Thenh;
—k + 1 —k
T 1 e S | # 0 for ged (p,2k) =
1, and there are exactly £ — 3 entries h; ; =
1 2
Ty 1(75 0). only one another #; ; = o 0

for ged (p,2k) = 1, and the remains n — k entries
h;

. ; = 0. Hence the number of nonzero elements

in the 7,, -th row of H,

k - 1, p ‘ k - 1 s
¢ = ) (12)
k., otherwise
Case4. Ifz,, = 2and too = L Then hi o
—k+2 —k+1
iy T R and there are exactly
. 1 .
k —3entriesh; ; = 1 (#0), and the remains
n —k + 1 entries hi . = 0. Hence the number of

nonzero elements in the 7, -th row of H,

k=2, p|G—1DG&—2),
¢ = , (13)
k—1, otherwise
Case5. Ifz., = 2and t . = 0. Then hi o
—k+2 —k
~ 1 s hy ] # 0 for ged (p,2k) =
1, and there are exactly & — 2 entries h; ; =

1 —
[ 1( #0) . and the remains n —k entries h; ; =

0. Note that ged (p,2%k) =1, hence the number of

nonzero elements in the 7, -th row of H,

E—1, plk—2,
(= . (1)
k, otherwise

Case 6. 1z, = 0and L o = 1. Then lli,,1'<)
Y , _ _
=01 7 0 for ged (p,2k) Lo hi
k1 ~ —
T 1 and there are exactly £ —3 entries h; ; =
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1
kn +1

_ 2
kn 4+ 1

(#0), only one another i; ; 0

for ged (p,2k) = 1, and the remains n — k entries
h

in the i, -th row of H,

= 0. Hence the number of nonzero elements

i
mJ

k— 13 P | k — 1’
o . (15)
k., otherwise
Case 7. 1f Loy = 0 and t”,,,"‘m = 2. Then him,o
_ k. = o
kn +1 # 0 for ged (p,2k) 1, h,m.lw
—k+2

1 and there are exactly k —2 entriesh; ; =
"

1 . .
[ 1( #0), and the remains n —k entries h; ; =

0. Note that ged (p,2k) =1, hence the number of

nonzero elements in the i, -th row of H,

k - 1, p | /{’ - 2 s
c; = ) (16)
k, otherwise
Case 8. Ift, = t, . = 0. Then hi o =
__—k _ e
hi o = 1 and there are exactly £ — 2 entries
_ 1 _
hi . = o +1( # 0), only one another hi
_z # 0 for ged (p,2k) =1, and the remains n
kn +1

— k — 1 entries h; = 0. Hence the number of

md
nonzero elements in the 7, -th row of H,
¢ =k+1 17n
C. Now we consider the nonzero elements in

(b —2)°

the i( 5 0,4, ,++ 2

) -th rows of H,.

7i[sl ==

From (1) of Lemma 3. 1, there are exactly £ non-
zero t;,; = 1, and the remainn — k entries 7,,; = 0.

Hence by (2. 2) there are 4 cases as follows.

Casel. Ift,, =t,;, = 1. Thenh,, = h;; =
k41 . B
e and there are exactly & — 2 entries h,; =

1 . . _
m( # 0), and the remains n — & entries h,,; =
0. Hence the number of nonzero elements in the 7
-th row of H;

k—2, kR—1,
¢ = ? ‘ (18
k, otherwise

Case2. Ifz, =1andt¢.; = 0 Then h;,, =
—k+1 . —k ) _
y—] s hi —— # 0 for ged (p,2k) 1,

1

"l

and there are exactly £ —1 entries i,

0), and the remains n — & — 1 entries h;; = 0.

Hence the number of nonzero elements in the: -th

row of H,
ks k—1,
¢ = 2 . (19
k +1, otherwise
Case3. Ifs, =0ands, =1 Thenh,, =
— b _  —k+1
kn+17é0for ged (p,2k) = 1, hy; e
. o
and there are exactly £ —1 entries h,,; = o 1( #=
0), and the remains n — & — 1 entries h;; = O.

Hence the number of nonzero elements in thei -th
row of H,
(ke plRE—1,
e+,
Case 4. 1Ift,
—k
kn +1

20

C;

otherwise

=1, = O_ Then h,‘,() - hi.i =

# 0 since ged (p,k) =1, and there are ex-

1

actly k& entries h;;, = m( # 0), and the re-
n

mains n —k — 2 entries h;; = 0. Hence the number
of nonzero elements in the i -th row of H,
¢, =k +2 @D
Now from the definition of the complexity,
(7)~(9) and (10)~(21), we have

. 2 _ 2
C, :CO+MQ I RV S Dt
7 2
and so
2 _
n(k —2) —# —C, =
n(k +2) —5 +%k—k2 (22)

Thus we complete the proof of (1).
(2) For the case £ = 1(mod2). From (2) and
(4) we have

ho.o = k;ikl Jrﬁto'o’ (23)
ho,, = ﬁtmg N
hy :/enkﬂ +ﬁ%"“ # 0,5

and for any i = 1,++,n — 1,7 ;é%,
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o 1
hio =1 T 1
k1 (25)
hii =1 T 1l
o . .
h:._, - bn +1Z1._,(] # 0,1)

A. We first consider the number ¢, of nonzero
elements in the first row of H,.
From (2) of Lemma 3. 1, there are exactly
kE—1
2

entries ,,; = 2, only one another ¢,,; = 1,

ki

and the others n — 1 — entries #,,;, = O.

Therefore from (23), there are three cases as fol-

lows.

— 2k +2

1. —ckTe
Case b+ 1

If t,,, = 2, then hy,, =

And for any j = 1,**,n — 1, there are exactly

k—3 . - 2
5 entries h,,; = 1 only one another hy
B 1 . k=1
Il — le(7é0), and the remainn — 1 5 en
tries hy,; = 0. Therefore the number of nonzero
elements in the first row of H,
Jl, p =2,
E—1
o =1 g PTELIEL (26)
ﬂ, otherwise
2
B =2k +1
Case 2. Ift,, = 1, then hy, on 1

Hence there are exactly entries hy,;

ﬁ, and the remainn —1 — ; 1 entries hy,; =
0. Therefore the number of nonzero elements in

the first row of Hy

1, p=2,
J“, p#2.p | 2k —1,

co = 2 27
@7 otherwise
2
— 2k
Case 3. If to,, = 0, then hy,, = 1
Hence for any j = 1,++,n — 1, there are exactly

ki

1 .
entries hy, , only one another A, ;

-2
kn +1

1 . ., k1
—kn+1(7ﬁ0),andtheremamn 2 5

en-

tries hy,; = 0. Note that ged (p,£&) =1, therefore
the number of nonzero elements in the first row of
1, p =2,
H, Co ={/€ 13 ) (28)
~——=, otherwise
B. Now we consider the nonzero elements in

the % -th rows of H;. From (2) of Lemma 3.1,

there are exactly just & — 1 nonzero tz; =1 — k,
=—k. Hence
by (A.15) there are 4 cases as follows.

and the remain n —k + 1 entries 1z ;

Casel. If tro, =tz = 1 — %, then }l'?’.o =
11—k . n
he s = b 1 Hence for any j # 1, 5 there are
. 1
exactly £ — 3 entries hz; = m( +#0), and the re-

mains n — k + 1 entries hz ; = 0. Therefore the num-

ber of nonzero elements in the % -th row of H,

k - 3 ) p ‘ k - 1’
cr = ) 29

: k —1, otherwise
Case 2. If t%_() =1 —Fkand Z%_% =—k, then

11—k =k .

hz . P and bz » S (#£0) since ged (p,
k) = 1. Hence for anyj # 1 ,% , there are exactly £ —
2 entries hz,; = ﬁ( # 0), and the remains n — k
entrieshz ; = 0. Therefore the number of nonzero el-

ements in the % -th row of H,

E—1, plk—1,
cz = ) (30)
: k, otherwise
Case3. Iftz,, =—kandtz2 =1 —k, then
__—k _ _
ho, = — # 0 for ged (p,k) 1, hon
s . Hence for any j # 1.2, there are exactly
kn +1 2
A o .
k —2 entries hz ; = [ 1(7i 0), and the remains

n — k entries hz ; = 0. Therefore the number of

nonzero elements in the % -th row of H,

/3 - 1 ] p ‘ k - 19
cn = ) 31
: k, otherwise
Case 4. If [y = t22 =— k, then /1!7\,0 =
—k

hoa =
P kn o+ 1

# 0 since ged (p,k) = 1. Hence
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for any j # 1, % 2 , there are exactly £ — 1 entries

ho = 1
z kn+1

1 entries hx

(# 0), and the remains n — £ —

= 0. Therefore the number of non-

. n
zero elements in the 5 -th row of H,

g =k+1 (32)
C. Now we consider the nonzero elements in
thel(lioa%al:ll "'9119[ W

th rows of H,.

From (2) of Lemma 3.1, for anym = 1,---,
L, in the i,, -th row there are exactly £ — 2 nonzero
t; ., = 1, only one another entries ; ; = 2, and
the remain n — £ + 1 entries t, ., = 0. Hence by
(A.16) there are 8 cases as follows.

Case 1. 1Ifs , =2andt;, ; =1, thenh;

_ —k+2 _—k+1
T e

# 0,1,, there are exactly & — 3 entries hi . =
1
kn +1
h.

i
m*)

Hence for any j

(# 0), and the remains n — k& + 1 entries

= 0. Therefore the number of nonzero ele-

ments in the 7, -th row of H,

E—2, plk—1Dk-2),
c; = ) (33)
k —1, otherwise

Case2. 1Ifs , = 2andy;, ;= 0, thenh;
—h 2 .y
= 11 andh; ; = T 1 #0 for ged (p,k) =
1. Hence for any j # 0,4, , there are exactly & — 2
entries h; ,; = ﬁ( #0), and the remains n — &
entries h = 0. Therefore the number of nonzero

i
m]

elements in the 7, -th row of H,

k — 19 y/ | k— 2,
G, = . (34)
k, otherwise

Case3. Ifs, , =1lands, . =2, thenh, ,
—k+1 —k+2 )

B o = 57—+ H for ¢
b+ 1 and h,m.lm 1 ence Ior any j
# 0,1, , there are exactly & — 3 entriesh; ; =
ﬁ( # 0), and the remains n — k£ + 1 entries
h; .; = 0. Therefore the number of nonzero ele-

ments in the 7, -th row of H,

E—2, plGk—2)(—1,
¢ = (35)

k —1, otherwise

Case 4. If tim'o - t’m’im - 1’ then him'o -
_ k1 - :
hi o = . Hence for any j # 0.4, , there
. 1
a tly k —4 entriesh;, , = ——— 0), onl
are exactly entries h; ; = o ——(#0), only

o o
w1 and the remainsn — &

+ 1 entries h;

one another h;

= 0. Therefore the number of

nonzero elements in the 7, -th row of H,

k—4, p =2,
k—3,
C; = (36)
r—1,
otherwise
Case 5. If t”,,n” =1.t ., =0, then hi o =
—k+1
1 hi o = - +1 # 0 since ged (p,k) = 1.
Hence for anyj # 0,4, , there are exactly £ — 3 en-
. 1
tries h; ; = o 1( # 0), only one another %; ;
= L, and the remains n — % entries hz ;, = 0,
kn +1 2

Therefore the number of nonzero elements in the

i, ~th row of H,

E—2, p=2,
[
= (37)

¢ =
1 k,
otherwise

Case 6. 1Ifz, o =Oands, , =2, thenh, ,

—k _

= # 0 since ged (p.k) = 1, and h; , =
—k+2

————. Hence for any j # 0,4, , there are exact-
kn +1

(# 0), and the re-

ly £ — 2 entries hi ;= o + 1

mains n — k entries h; .; = 0. Therefore the num-

i
m )

ber of nonzero elements in the i, -th row of H,

k — 1, p ‘ k — 29
¢ = ) (38)
" k, otherwise
Case7. If ti o =0 and tioo= 1, then hi .o
—k _
/z pa—] # 0 since ged (p.k) = 1, and hi o =
—k+1 ) .
P Hence for any j # 0,i,,, there are exact
1
lyk — 3 entries h; ; m( # 0), only one an

other h; , and the remains n — £ entries

__2
A N
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h;

ments in the 7, -th row of H,

k—2, p=2,
J k—1,
= (39)

¢
m 1 k’

otherwise

Case 8. Ift, , =1t

m’'m

. ., = 0. Therefore the number of nonzero ele-

= O, then h, L +0 = h .0

= +1(¢ 0) since ged (p,k) = 1. Hence for

anyj # 0.4, » there are exactly £ —2 entries h; ,; =

! _2
n _’_1(75 0), only one another h; g

= 0. There-

fore the number of nonzero elements in the ¢, -th

and the remains n —k — 1 entries /;
"

row of H,
k, =2,
¢ = p . (40)
k +1, otherwise
D. Now we consider the nonzero elements in the
Z(l i Ov%ai - il . "si/al = W) 7th

rows of Hy. From (2) of Lemma 3. 1, there are
exactly £ nonzero;; = 1, and the remainn —k en-
tries 7;,; = 0. Hence by (A. 16) there are 4 cases
as follows.

Case 1. 1Ifs, = 1t;;

—k+1
kn +1

=1, thenh;,, = h;; =
. Hence for any j # 0,7, there are exactly

1
kn +1

= 0. Therefore the number of non-

k — 2 entries h; (#0), and the remain n

— k entries h;

zero elements in the 7 -th row of H,

E—2, plk—1,
¢, = ) 41)
k, otherwise
Case2. Ift, = 1andt¢, = 0, then h,, =
—k+1 o k _
mal’ldhi, in +1¢O smce ng([),k) 1

Hence for anyj # 0,1, there are exactly # — 1 en-

(#0), and the remainn — k& —1

tries h;
I +1
entries h;; = 0. Therefore the number of nonzero

elements in the i -th row of H,

k ’ P ‘ k—1 ’
¢ . (42)
bk +1, otherwise
Case3. Ifr,, =0and¢#,;, =1, thenh,, =
b1 7 0 since ged (pok) = 1. and hi

—k+1

. Hence for anyj # 0,7, there are exactly
kn +1

————(+#0), and the remain n

k — 1 entriesh; k +1

—k — 1 entries h,;,; = 0. Therefore the number of

nonzero elements in the i -th row of Hy

ke plk—1,
c; = . 43)
k+1, otherwise
Cased., 1Ifz, =1t,, =0, thenh,, = h,;, =
—k . B .
— # 0 since ged (p,k) = 1. Hence for any j
, A o
# 0,7, there are exactly & entries h;; = y— 1(75
0), and the remain n — k — 2 entries h;; = O.

Therefore the number of nonzero elements in the :
-th row of H,
¢ =k +2 (44)
Now by (26~44) and

Cy = ¢ _|_C% _Q_qu +

=Dk —3)

(n—2— 5

)¢,

we can get
n(k —2) —k +3k —1<Cpy <

Ck(E—3)
2

Thus we complete the proof for Theorem 2. 7.

n(k+2)—5
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