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Abstract: In this paper, we construct elliptic curves with complex multiplications by the integer ring of

K = Q(+/— D) for any positive integer D congruent to 3 modulo 4 and establish their basic properties.

Our results generalize those of Gross.
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1 Introduction

In number theory, the arithmetic of elliptic
curves over a number field has been an area of
great interests. To understand it, much effort
have been devoted to the study of the congruent
number elliptic curve E;y*2 = 2* — 127 (See, for
example, Ref.[1,2]).

The congruent number elliptic curve is an elliptic
curve with CM by the Gauss integer ring Z[i]. In
Ref. [ 3],

complex multiplications by the integer ring of K =

Gross defined some elliptic curves with

Q(/— p) for any prime p congruent to 3 modulo 4
(see also Ref. [4]). In that paper, Gross also estab-
lished the basic properties of such curves, such as
their rational torsion groups. e -factors, endomor-

phism rings and modularity.

Wi HE: 2014-10-12

In this paper, we will generalize Gross’ re-

sults to the case K = Q(y/— D) with D any posi-
tive integer congruent to 3 modulo 4 , which will
be called Gross curves. In the second section, we
construct the Gross curves from the point of view
of CM theory. Let E be any such curve and F =
Q((E)) , then the main results can be summa-
rized as the following

Theorem 1.1 (1) E(F),, =Z/2Zor0 , ac-

cording to whether (%) =lor—1;

(2) Thee -factor of L(E.s) equals to (%) ;

(3) There is a nontrivial morphism =:
X,(D?) - E over F, where X, (D?) is the modu-
lar curve of level D?.

It is hoped that the results here will be useful
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for further study of the arithmetic properties of

the Gross curves.

2 Construction of the Gross curves

Let D be a square free integer with D > 3 and
D =3 (mod4) .

Let K = Q(v/— D) , Othe integer ring of K ,
H = the Hilbert class field of K. For any ideal a
C O, let K(a) be the ray class field modulo a .

Consider the continuous homomorphism g :
K~ (H()UX )—>K*(OX.:=C") satisfying

(D) ¢ [ =id g s

(2) _
o —— > {1

3
1,50, ——> (ON-D))'

Hered maps x = a + b %(a,b € 7 to

a+[%]

—— 2, where (—) is

D D
the Jacobi symbol. Note that D = 3 (mod4) en-

(I (mod «/*D)) -
5 -

sures this ¢,is well defined.
From
0—> K (ILLO;) > A< > CI(K) =0

we get
0 —> Hom(CI(K)» K*) —> Hom(Ag » K*)
—~ Hom(K" ([[ 0. K*) >0

because Ext ' (CI (K) ,I}X) — 0 as K*is divisible
hence injective. From this, we have

Theorem 2.1 There is a continuous homo-

morphism SD:A;E - KXSuCh that @ |K><(H()>u<) - ®o s

in particular this character is of conductor

(vV/—=D).
acter of CI(K).

Let y:Aj; — K" be defined as y = ¢ - NY,
where NE is the norm map. By the CM theory,

This character is unique up to a char-

there is a unique isogeny class of elliptic curves o-
ver H with CM by O and the associated character y
. We will call any elliptic curves in this isogeny
class a Gross curve of level D .

From now on, we fix an elliptic curve E in

this isogeny class and let F = Q(j(E)) . Then we
have Gal(H/F) =<t >2>=17/(2) and Gal(H/Q)
>~ CI(K) X <t >, with r acts as inverse.

3 Rational torsion points and thee¢ —
factors

Recall that (see Ref. [3], Chapterl) for any
nonzero prime p of O , the action of Gyon E[p] is
given by p,: Gy — Aut(E[p]) which sending x =
() to y(x) - N;Igg (x) for any x € Aj. This al-
lows us to determine the H — rational torsion
points as following:

Letd € Z satisfying (d,D)
=1,d=1 (mod4) and E“ the quadratic twist of
E byd. Then we have

(1) If (2) splitsinK , thenE (H),, = E[ 2]
and E (F),, =7Z/27 ;

(2) I (2) is inertia in K , then

E(H), =EF), ={1}.

Proof When Dis a prime, this has been proved

Proposition 3. 1

in Ref. [3], so we may assume D is not a prime.
Note that as (—d,D) = 1andd =1 (mod4) , E”
has good reduction at places of H over (2) and bad re-
duction at those dividing dD.

Let p be a nonzero prime of O. We claim that
if (p) >3, then E[p] & E(H) This is because if
(p,D) = 1, then E has good reduction at the
places of H over p. Then by the Lubin-Tate theo-
ry, we have Gal(H(E[p])/H) =~ (O/p)”* and so
Elv] £ ECH) . If p | D, we choose another
prime q of O which also divides D and w a place of
H overq. By the construction of ¢ , there is some
z, € O such that () =—1; as H over K is un-
ramified everywhere, there is y, € ()XHW with
N?;v (y.) =x,. Then we have p,((.. ,ys...)) =
o(xy) =— 1, soalso E[p] & EC(H) . This proves
the claim.

If (2) is inertia in K , then # £(p) = 3 for any
P , so proves the second assertion.

If (2) splits in K , say (2) = p e+ p. Then as
E[2] =E[p]@®E[v], it is easy to see from the a-
bove argument that E[2] < E(H) . Because p° =
p, we have E(F) = E (H)" = Z/(2) .

Let ¢ be the character as in Prop 3.1, which
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is determined up to CI (k).
Let ¢ be the unitarization of the associated

Hecke character of ¢. So we have

dv—D )
(0 = (= = (mo
for anyx = (x,) € C*» HOI , where p,means

the prime below v. Now we want to determine the
e -factor of L(s,¢) .

Fix an additive character a,for any any place
v of K as in Ref, [5]. Then for any unitary Hecke
character ¢y , define (Ref.[6])

(1) L~ factor:

If v < oo and ¢,is unramified, let L,(s,¢,)
=[1 =g MONGI] "

Ifv<<co and¢,is ramified, let L, (s,¢,) =1
Ifv=Rand ¢ = (sgn)®( 5 =0,1), Let
L.Gag) = x ¥ 1C10
x k
va=Candg[)y(xv)=|Il,\;-(‘ ) for
Iy | &
somey € iRandk € Z ., let
Lo(ssg) = 2 2y o PG5+ +%) .

(2) y-factor:

Vo (sodura) = £ (1 — s5.¢. s DIE (5o
®,), for any ¢, € S(K,) .

(3) e -factor:

Yo (‘7$[)J9a ) . 14 (57(/1)
L‘(lfs,gl; )

independent from the choice of a,.

, which is

e.(ss¢p) =

Moreover, we
know thate, = 1 for any finite place v such that

both ¢, and a, are unramified. Let e(s,¢) =
Te.Csag.

Our aim is to calculate sq,(%ngw) (for any v )

and s(% »¢) for the unitary Hecke character ¢ cor-

responding to E .
ey = oo,
We have K, = Candy =0,k =— 1, so
LGep) =22t e TG+ )

and then

L.l =5, =2@0) 7«0 —s+%) .

Then by the calculation in Ref. [5], we get

1 - 1 _ .
Ev(?9¢}v) = '}/»U( 2 ag[)zna»u) 1.
ey X 0O e D:

In this case, both a, and ¢, are unramified,

SOEU(%MZJU) =1

ev | D:
Notations as in Ref. [5], we have the con-
is (vV/=D)and§, = (V=D) .
Moreover, /— D is a uniformizer at v .
= ¢,(/=D)and ¢, = ¢, + 3% so
that ¢;( vV—D) =1 ande,(s,¢,)
By Ref. [5], we have
e (5egp) " = N (Guf )™ 7 « N(f) 7«

E np' (@)e? D) =

a€ (O /14p)

PR 3 o5 ¢ 2a
prnt e 3 (e,

acz/p)” T

ductor f, of ¢,

Let p, '
—e,(s+1,.¢,) .

So that we get

€y 9¢ ) =
) 1 (—2D/p,) a ,ua
P e . ( Yoo > Lt
V Po Po a€(z/p)”"

By the well known result about the signature of
Gauss sum (Ref. [7]), we find that:
—2D/p,
e/ Py i
b b

v

e(5ep) = g (= D) - (

=1 (mod4) ;

1

Loy = ieu (D). (—2D/p
el,(z,gbv) ie ¢, (—D) -« ( 5 ) s if

=3 (mod4) .
L2
5(?9g[}) —(D)

Because 1 = ¢(—D) = ¢ (—=D) » [[$.(—D) and

vl| D

1, we have Hgby(*D) =—1.

v| D

¢ (—D) =—

Then the result is easily verified.

4 Endomorphism rings and the mod-
ularity

In this section, we will determine the endo-

of A = Respo(E“”) for any d

morphism rings
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€ Q.
Firstly, one observes that
End (Aul) _ Hom((E(d))a’(E(d))g/)’
6+0' € Gal(H/K)
as

A@ — H

o€ Gal(H/K)

(E“)°over H. In particular,

an element of End (A’ can be represented by a
For any p € Gal(H/K) , we
have p(a) = (p(g,./)) = (@) .

Let R = > Hom((E“)",E“)«5, be the

o€ Gal(H/K)

matrixe = (¢,./) .

ring such that (¢« ¢) (90/ .5 = (o (go/)")aa/.
Ri ® Q = Endx (A) ® Q.

Immediate from the above arguments.

Lemma 4. 1
Lemma 4.2 Ry & Qis commutative,.

Choose a set of ideals {a} in O relatively
prime to D , such that {s,} = Gal(H/K) . By
Ref. [8], page 42, Proposition 1.5, there is a ¢,
€ Hom((E“)% ,E“”) for each a satisfying ¢, °
(@)% =@, o (o). This is what we want for Ry
® Q to be commutative.

Proposition 4.3 End ((A“”) ® Qs a totally
real field.

Proof AsA“ = H

o€ Gal(H/K)

(E‘“)?over H , so

A“is a simple abelian variety over K. Hence the
center of End x (A ), is a CM field (note as K &
Endx (A“)g
Lemma 4. 2, End x (A“’)4 is commutative, so it
is a CM field itself. Then

Ende(A“) ® Q = (Endg (A“)g)®

is totally real.

it can not be totally real). By

Now we come back to the elliptic curve E over I
and the original character ¢ . Recall that E is just an
arbitrarily fixed elliptic curve in isogeny class as in
Prop 3.1 and F = Q((E)) . In the following, we al-
ways let A = Resy/oE be the corresponding abelian va-
riety defined over Q. It is well known that L(s,A/Q)

= L(G.E/F) = || LG.¢).

o€ Gal(H/K)

Let f,(2) =

> ela)

(a,D)=1

"Nk (€ C withI,(2) >0), then f,(2) is
an eigenform in S, (T, (D?*)) .
Proof This is just Lemma 3 of Ref. [9].

Note that f,(2) is an eigenform because L(s, f,)

Lemma 4. 4

= L(s,¢) has Eulerian product.

Let T be the field generated by the image of
¢ . Then T is a CM field with T =Qla,}) .

By Theorem 7. 14 and Theorem 7. 15 of Ref.
[10], there is a sub-abelian variety :: A — J,(D%)
over Q and an embedding §: T"— Endq(A) , such
that T, |, = 0Ca,) for any n , where T,is the
Hecke operator.

There is a Q-curve E/F
with character y such that RespoFE = A, where F
=QUGE)).

Proof By Theorem 1 of Ref. [9], A is isoge-

Proposition 4. 5

Dh

nous to E¥"for some elliptic curve with CM by O.

YP for any ¢

Then we have also A isogenous to (E*
€ Gal(H/Q) . SoE’ is isogenous to E°for any s €
Gal(H/Q) . i.e. E' is a Q-curve (note that Q-i-
sogeny is automatically H -isogeny).

It is clear that there is a Q-morphism be-
tween H (E')* and A . Because ]_[ (E)° s

simple over Q, this morphism must be an isoge-
ny. Then, modulo the kernel, we {ind an E such
that RespoE = || (E)” = A.

As L(E/F,s) = L(s,y) = L(s,A/Q) =
HrL(s,f’) = L(s,y) Cup to finite Euler fac-
tors), we have yp = y.

Consider the dual =:J, (D*)Y—> A of i, com-
posed with the canonical X,(D*) — J, (D*)" and
an isomorphism AV = A (as A is a product of ellip-
tic curves), we get a Q-morphism (also denoted
by ©) w:X,(p?) > A . Thus we get the following
corollary:

Corollary 4.6 There is a non-trivial F -mor-
phism =:X,(D*) - E.
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