doi: 103969/j. issn. 0490-6756. 2016. 01. 008

一类Q曲线的基本算术性质

任 沅

(首都师范大学数学学院,北京 100037)

要: 本文对任意模 4 余 3 的正整数 D 构造了一类以判别式为 - D 的虚二次域的整数环为 复乘的椭圆曲线,并将考察其基本性质,如有理扭点,自同态环以及模性等.

关键词:椭圆曲线;复乘;Q曲线

中图分类号: O156.2

文献标识码: A

文章编号: 0490-6756(2016)01-0042-05

Some basic arithmetic properties of a class of Q-curves

REN Yuan

(Department of Mathematics, Capital Normal University, Beijing 10037, China)

Abstract: In this paper, we construct elliptic curves with complex multiplications by the integer ring of $K = \mathbf{Q}(\sqrt{-D})$ for any positive integer D congruent to 3 modulo 4 and establish their basic properties. Our results generalize those of Gross.

Key words: Elliptic Curve; Complex multiplication; Q-curve (2000 MSC 14H52)

1 Introduction

In number theory, the arithmetic of elliptic curves over a number field has been an area of great interests. To understand it, much effort have been devoted to the study of the congruent number elliptic curve $E: y^2z = x^3 - xz^2$ (See, for example, Ref. $\lceil 1, 2 \rceil$).

The congruent number elliptic curve is an elliptic curve with CM by the Gauss integer ring Z[i]. In Ref. [3], Gross defined some elliptic curves with complex multiplications by the integer ring of K = $\mathbf{Q}(\sqrt{-p})$ for any prime p congruent to 3 modulo 4 (see also Ref. [4]). In that paper, Gross also established the basic properties of such curves, such as their rational torsion groups, ε -factors, endomorphism rings and modularity.

In this paper, we will generalize Gross' results to the case $K = \mathbf{Q}(\sqrt{-D})$ with D any positive integer congruent to 3 modulo 4, which will be called Gross curves. In the second section, we construct the Gross curves from the point of view of CM theory. Let E be any such curve and F =Q(i(E)), then the main results can be summarized as the following

(1) $E(F)_{\text{tor}} \simeq \mathbf{Z}/2\mathbf{Z} \text{ or } 0$, ac-Theorem 1.1 cording to whether $(\frac{2}{D}) = 1 \text{ or } -1$;

- (2) The ε -factor of L(E,s) equals to $(\frac{2}{D})$;
- (3) There is a nontrivial morphism π : $X_0(D^2) \rightarrow E \text{ over } F$, where $X_0(D^2)$ is the modular curve of level D^2 .

It is hoped that the results here will be useful

for further study of the arithmetic properties of the Gross curves.

2 Construction of the Gross curves

Let D be a square free integer with D>3 and $D\equiv 3\pmod 4$.

Let $K = \mathbf{Q}(\sqrt{-D})$, O the integer ring of K, H = the Hilbert class field of K. For any ideal $a \subseteq O$, let K(a) be the ray class field modulo a.

Consider the continuous homomorphism φ_0 : $K^{\times}(\prod O_v^{\times}) \rightarrow K^{\times}(O_{\infty}^{\times}:=C^{\times})$ satisfying

$$(1) \varphi_0 \mid_{K^{\times}} = \operatorname{id}_{K^{\times}};$$

Here δ maps $x = a + b \frac{1 + \sqrt{-D}}{2} (a, b \in \mathbb{Z})$ to

$$(\frac{x \pmod{\sqrt{-D}}}{D}) = (\frac{a + \frac{b}{2}}{D})$$
, where $(\frac{\bullet}{D})$ is

the Jacobi symbol. Note that $D\equiv 3\pmod 4$ ensures this φ_0 is well defined.

From

$$0 \to K^{\times} (\prod_{v} O_{v}^{\times}) \to A_{K^{\times}} \to Cl(K) \to 0$$

we get

$$0 \to \operatorname{Hom}(Cl(K), \ \bar{K}^{\times}) \to \operatorname{Hom}(A_{K^{\times}}, \ \bar{K}^{\times})$$
$$\to \operatorname{Hom}(K^{\times}(\prod_{v} O_{v}^{\times}), \ \bar{K}^{\times}) \to 0$$

because Ext¹(Cl(K), K^{\times}) = 0 as K^{\times} is divisible hence injective. From this, we have

Theorem 2.1 There is a continuous homomorphism $\varphi\colon A_{\kappa}^{\times}\to \bar{K}^{\times}$ such that $\varphi\mid_{K^{\times}(\prod_{v}O_{v}^{\times})}=\varphi_{0}$, in particular this character is of conductor $(\sqrt{-D})$. This character is unique up to a character of Cl(K).

Let $\chi\colon A_H^\times\to K^\times$ be defined as $\chi=\varphi\circ N_K^H$, where N_K^H is the norm map. By the CM theory, there is a unique isogeny class of elliptic curves over H with CM by O and the associated character χ . We will call any elliptic curves in this isogeny class a Gross curve of level D.

From now on, we fix an elliptic curve E in

this isogeny class and let $F = \mathbf{Q}(j(E))$. Then we have $\operatorname{Gal}(H/F) = <\tau> \cong \mathbf{Z}/(2)$ and $\operatorname{Gal}(H/Q) \cong \operatorname{Cl}(K) \rtimes <\tau>$, with τ acts as inverse.

3 Rational torsion points and the ε – factors

Recall that (see Ref. [3], Chapter1) for any nonzero prime \mathfrak{p} of O, the action of G_H on $E[\mathfrak{p}]$ is given by $\rho_{\mathfrak{p}}: G_H \to \operatorname{Aut}(E[\mathfrak{p}])$ which sending $x = (x_v)$ to $\chi(x) \cdot N_{K_{\mathfrak{p}}}^{H_{\mathfrak{p}}}(x)$ for any $x \in A_H^{\times}$. This allows us to determine the H - rational torsion points as following:

Proposition 3.1 Let $d \in \mathbb{Z}$ satisfying (d,D) = 1, $d \equiv 1 \pmod{4}$ and $E^{(d)}$ the quadratic twist of E by d. Then we have

(1) If (2) splits in K , then E (H) $_{\rm tor}=E$ [2] and E (F) $_{\rm tor}\cong {\bf Z}/2{\bf Z}$;

(2) If (2) is inertia in K, then

$$E(H)_{\text{tor}} = E(F)_{\text{tor}} \cong \{1\}$$
.

Proof When D is a prime, this has been proved in Ref. [3], so we may assume D is not a prime. Note that as (-d,D)=1 and $d\equiv 1\pmod 4$, $E^{(D)}$ has good reduction at places of H over (2) and bad reduction at those dividing dD.

Let \mathfrak{p} be a nonzero prime of O. We claim that if $(\mathfrak{p}) \geq 3$, then $E[\mathfrak{p}] \nsubseteq E(H)$ This is because if $(\mathfrak{p},D)=1$, then E has good reduction at the places of H over \mathfrak{p} . Then by the Lubin-Tate theory, we have $\operatorname{Gal}(H(E[\mathfrak{p}])/H) \cong (O/\mathfrak{p})^{\times}$ and so $E[\mathfrak{p}] \nsubseteq E(H)$. If $\mathfrak{p} \mid D$, we choose another prime \mathfrak{q} of O which also divides D and w a place of H over \mathfrak{q} . By the construction of φ , there is some $x_{\mathfrak{q}} \in O_{\mathfrak{q}}^{\times}$ such that $\varphi(x_{\mathfrak{q}}) = -1$; as H over K is unramified everywhere, there is $y_w \in O_{H_w}^{\times}$ with $N_{K_{\mathfrak{q}}^w}^H(y_w) = x_{\mathfrak{q}}$. Then we have $\rho_{\mathfrak{p}}((\dots,y_w,\dots)) = \varphi(x_{\mathfrak{q}}) = -1$, so also $E[\mathfrak{p}] \nsubseteq E(H)$. This proves the claim.

If (2) is inertia in K , then $\# k(\mathfrak{p}) \geq 3$ for any \mathfrak{p} , so proves the second assertion.

If (2) splits in K, say (2) = $\mathfrak{p} \cdot \bar{\mathfrak{p}}$. Then as $E[2] = E[\mathfrak{p}] \oplus E[\bar{\mathfrak{p}}]$, it is easy to see from the above argument that $E[2] \subseteq E(H)$. Because $\mathfrak{p}^r = \bar{\mathfrak{p}}$, we have $E(F) = E(H)^r \cong \mathbf{Z}/(2)$.

Let φ be the character as in Prop 3.1, which

is determined up to Cl(k).

Let ψ be the unitarization of the associated Hecke character of φ . So we have

$$\psi(x) = \left(\frac{x_{\infty}}{\mid x_{\infty}\mid_{C}}\right)^{-1} \cdot \prod_{v\mid D} \left(\frac{x_{v} \left(\operatorname{mod}\sqrt{-D}\right)}{p_{v}}\right)$$

for any $x=(x_v)\in C^{\times}$ · $\prod O_v^{\times}$, where p_v means the prime below v. Now we want to determine the ε -factor of $L(s,\phi)$.

Fix an additive character a_v for any any place v of K as in Ref. [5]. Then for any unitary Hecke character ψ , define (Ref. [6])

(1) *L*- factor:

If $v<\infty$ and $\pmb{\psi}_v$ is unramified, let $L_v(s,\pmb{\psi}_v)$ $=[1-\pmb{\psi}_v(\pmb{\mathfrak{p}}_v)N(\pmb{\mathfrak{p}}_v)]^{-1}$;

If $v<\infty$ and ϕ_v is ramified, let $L_v(s,\phi_v)=1$; If $v=\mathbb{R}$ and $\phi_v=(\operatorname{sgn})^\delta$ ($\delta=0,1$), Let $L_v(s,\phi_v)=\pi^{-\frac{s+\delta}{2}}\Gamma(\frac{s+\delta}{2})$;

If
$$v=\mathbf{C}$$
 and $\psi_v(x_v)=\mid x_v\mid_v^{\mathbf{v}}\boldsymbol{\cdot} (\frac{x_v}{\mid x_v\mid_v^{\frac{1}{2}}})^k$ for

some $\nu \in i \mathbb{R}$ and $k \in \mathbb{Z}$, let

$$L_v(s, \phi_v) = 2 (2\pi)^{s+\nu+\frac{|k|}{2}} \cdot \Gamma(s+\nu+\frac{|k|}{2}).$$

(2) γ -factor:

$$\gamma_v(s,\phi_v,a_v)=\zeta_v(1-s,\phi_v^{-1},\hat{\Phi}_v)\zeta_v(s,\phi_v,\Phi_v),$$
 for any $\varphi_v\in S(K_v)$.

(3) ε -factor:

$$\epsilon_v(s, \psi_v) = \frac{\gamma_v(s, \psi_v, a_v) \cdot L_v(s, \psi_v)}{L_v(1 - s, \psi_v^{-1})}$$
, which is

independent from the choice of a_v . Moreover, we know that $\varepsilon_v=1$ for any finite place v such that both ψ_v and a_v are unramified. Let $\varepsilon(s,\psi)=\prod \varepsilon_v(s,\psi_v)$.

Our aim is to calculate $\varepsilon_{\scriptscriptstyle v}(\frac{1}{2}\,,\!\psi_{\scriptscriptstyle v})$ (for any v)

and $\varepsilon(\frac{1}{2},\psi)$ for the unitary Hecke character ψ corresponding to E .

•
$$v = \infty$$
:

We have
$$K_v = C$$
 and $\nu = 0$, $k = -1$, so

$$L_v(s, \psi_v) = 2 (2 \pi)^{s + \frac{1}{2}} \cdot \Gamma(s + \frac{1}{2})$$

and then

$$L_v(1-s,\phi_v^{-1}) = 2\;(2\,\pi)^{1-s+\frac{1}{2}} \cdot \Gamma(1-s+\frac{1}{2})\;.$$

Then by the calculation in Ref. [5], we get

$$\varepsilon_v(\frac{1}{2},\phi_v) = \gamma_v(\frac{1}{2},\phi_v,a_v) = i.$$

•
$$v \times \infty$$
 • D :

In this case, both a_v and ψ_v are unramified,

so
$$\varepsilon_v(\frac{1}{2},\phi_v)=1$$
.

•
$$v \mid D$$
:

Notations as in Ref. [5], we have the conductor f_v of ψ_v is $(\sqrt{-D})$ and $\delta_v = (\sqrt{-D})$. Moreover, $\sqrt{-D}$ is a uniformizer at v.

Let $p_v^{-t_v}=\phi_v(\sqrt{-D})$ and $\phi_v^{'}=\phi_v\bullet\|_{v^{-t_v}}^{-t_v}$ so that $\phi_v^{'}(\sqrt{-D})=1$ and $\varepsilon_v(s,\phi_v)=\varepsilon_v(s+t_v,\phi_v^{'})$.

By Ref. [5], we have

$$\varepsilon_v (s, \psi_v)^{-1} = N (\delta_v f_v)^{s+t_v - \frac{1}{2}} \cdot N (f_v)^{-\frac{1}{2}} \cdot \sum_{a \in (O_v^{\times}/1 + \mathfrak{p})} \psi'(a) e^{2\pi i (-\frac{tra}{D})} =$$

$$p_v^{2s+2t_v-\frac{3}{2}} \cdot \sum_{a \in (\mathbf{Z}/p_v)^{\times}} (\frac{a}{p_v}) e^{2\pi \mathbf{i}(-\frac{2a}{D})}.$$

So that we get

$$\boldsymbol{\varepsilon}_{v} \left(\frac{1}{2}, \boldsymbol{\psi}_{v}\right)^{-1} =$$

$$\boldsymbol{p}_{v}^{2t_{v}} \cdot \frac{1}{\sqrt{p_{v}}} \cdot \left(\frac{(-2D/p_{v})}{p_{v}}\right) \cdot \sum_{\boldsymbol{a} \in (\mathbf{Z}/p_{v})^{\times}} \frac{\boldsymbol{a}}{p_{v}} e^{2\pi i \frac{\boldsymbol{a}}{p_{v}}}.$$

By the well known result about the signature of Gauss sum (Ref. [7]), we find that:

$$\varepsilon_{v}(\frac{1}{2}, \psi_{v}) = \psi_{v}(-D) \cdot (\frac{-2D/p_{v}}{p_{v}}), \text{ if } p_{v}$$

$$\equiv 1 \pmod{4};$$

$$\varepsilon_{v}(\frac{1}{2}, \psi_{v}) = -i \cdot \psi_{v}(-D) \cdot (\frac{-2D/p_{v}}{p_{v}}), \text{ if } p_{v}$$

$$\equiv 3 \pmod{4}.$$

$$\varepsilon(\frac{1}{2}, \psi) = (\frac{2}{D}).$$

Because
$$1=\psi(-D)=\psi_\infty(-D)$$
 • $\prod_{v\mid D}\psi_v(-D)$ and $\psi_\infty(-D)=-1$, we have $\prod_{v\mid D}\psi_v(-D)=-1$.

Then the result is easily verified.

4 Endomorphism rings and the modularity

In this section, we will determine the endomorphism rings of $A^{(d)} = Res_{F/Q}(E^{(d)})$ for any d

 $\in \mathbf{Q}^{\times}$.

Firstly, one observes that

$$\operatorname{End}\left(A^{\scriptscriptstyle (d)}\right. = \prod_{\sigma,\sigma^{\prime}\in\operatorname{Gal}(H/K)}\operatorname{Hom}((E^{\scriptscriptstyle (d)})^{\sigma},(E^{\scriptscriptstyle (d)})^{\sigma^{\prime}})\,,$$

as

 $A^{\scriptscriptstyle (d)} = \prod_{\scriptscriptstyle \sigma \in \operatorname{Gal}(H/K)} (E^{\scriptscriptstyle (d)})^{\scriptscriptstyle \sigma} \operatorname{over} H$. In particular, an element of End ($A^{(d)}$ can be represented by a matrix $\alpha = (\varphi_{\sigma,\sigma'})$. For any $\rho \in \operatorname{Gal}(H/K)$, we have $\rho(\alpha) = (\rho(\varphi_{\sigma,\sigma'})) = (\varphi_{\wp,\wp'})$.

Let $R_K = \sum_{\sigma \in \operatorname{Gal}(H/K)} \operatorname{Hom}((E^{(d)})^{\sigma}, E^{(d)}) ullet \sigma$, be the ring such that $(\varphi \cdot \sigma) \cdot (\varphi' \cdot \sigma') = (\varphi \circ (\varphi')^{\sigma}) \sigma \sigma'.$

Lemma 4.1 $R_K \otimes \mathbf{Q} = \operatorname{End}_K(A^{(d)}) \otimes \mathbf{Q}.$ Immediate from the above arguments.

Lemma 4.2 $R_K \otimes \mathbf{Q}$ is commutative.

Choose a set of ideals $\{a\}$ in O relatively prime to D, such that $\{\sigma_a\} = \operatorname{Gal}(H/K)$. By Ref. [8], page 42, Proposition 1.5, there is a φ_a $\in \operatorname{Hom}((E^{(d)})^{\sigma_a}, E^{(d)})$ for each a satisfying $\varphi_a \circ$ $(\varphi_b)^{\sigma_a} = \varphi_b \circ (\varphi_a)^{\sigma_b}$. This is what we want for R_K \otimes **Q** to be commutative.

Proposition 4.3 End $_{\mathbf{Q}}(A^{(d)}) \otimes \mathbf{Q}$ is a totally real field.

Proof As $A^{\scriptscriptstyle (d)} = \prod_{\sigma \in \operatorname{Gal}(H/K)} (E^{\scriptscriptstyle (d)})^\sigma$ over H , so $A^{(d)}$ is a simple abelian variety over K. Hence the center of End_K $(A^{(d)})_{\mathbf{Q}}$ is a CM field (note as $K \subseteq$ $\operatorname{End}_K (A^{(d)})_{\mathbf{Q}}$, it can not be totally real). By Lemma 4.2, End $_K(A^{(d)})_{\mathbf{Q}}$ is commutative, so it is a CM field itself. Then

 $\operatorname{End}_{\mathbf{Q}}(A^{\scriptscriptstyle (d)}) \otimes Q = (\operatorname{End}_{K}(A^{\scriptscriptstyle (d)})_{\mathbf{Q}})^{\scriptscriptstyle Gal(K/\mathbf{Q})}$ is totally real.

Now we come back to the elliptic curve E over Fand the original character φ . Recall that E is just an arbitrarily fixed elliptic curve in isogeny class as in Prop 3. 1 and $F = \mathbf{Q}(j(E))$. In the following, we always let $A = Res_{F/0}E$ be the corresponding abelian variety defined over **Q**. It is well known that $L(s, A/\mathbf{Q})$

$$=L(s,E/F)=\prod_{\sigma\in\operatorname{Gal}(H/K)}L(s,\varphi^{\sigma}).$$

 $e^{2\pi i \cdot N_{K/Q}(a) \cdot z}$ ($z \in \mathbb{C}$ with $\mathbf{I_m}(z) > 0$), then $f_{\varphi}(z)$ is an eigenform in $S_2(\Gamma_0(D^2))$.

Proof This is just Lemma 3 of Ref. [9]. Note that $f_{\varphi}(z)$ is an eigenform because $L(s, f_{\varphi})$ $= L(s,\varphi)$ has Eulerian product.

Let T be the field generated by the image of φ . Then T is a CM field with $T^+ = \mathbf{Q}(\{a_n\})$.

By Theorem 7.14 and Theorem 7.15 of Ref. [10], there is a sub-abelian variety $i: A \rightarrow J_0(D^2)$ over **Q** and an embedding $\theta: T^+ \to \operatorname{End}_{\mathbf{Q}}(A)$, such that $T_n \mid_A = \theta(a_n)$ for any n, where T_n is the Hecke operator.

Proposition 4. 5 There is a **Q**-curve E/Fwith character χ such that $Res_{F/\mathbf{Q}}E\cong A$, where F $= \mathbf{Q}(j(E))$.

Proof By Theorem 1 of Ref. [9], A is isogenous to $E^{\oplus h}$ for some elliptic curve with CM by O. Then we have also A isogenous to $(E^{\sigma})^{\oplus h}$ for any σ $\in \operatorname{Gal}(H/\mathbb{Q})$. So E' is isogenous to E'^{σ} for any $\sigma \in$ $\operatorname{Gal}(H/\mathbf{Q})$, i. e. E' is a \mathbf{Q} -curve (note that $\bar{\mathbf{Q}}$ -isogeny is automatically H-isogeny).

It is clear that there is a Q-morphism between $\prod (E^{'})^{\sigma}$ and A . Because $\prod (E^{'})^{\sigma}$ is simple over \mathbf{Q}_{\bullet} this morphism must be an isogeny. Then, modulo the kernel, we find an E such that $Res_{F/\mathbf{Q}}E = \prod (E)^{\sigma} \cong A$.

As $L(E/F,s) = L(s,\gamma) = L(s,A/Q) =$ $\prod \tau L(s, f^{\tau}) = L(s, \gamma)$ (up to finite Euler factors), we have $\chi_E = \chi$.

Consider the dual $\pi: J_0 (D^2)^{\vee} \to A$ of i, composed with the canonical $X_0(D^2) \rightarrow J_0(D^2)^{\vee}$ and an isomorphism $A^{\vee} \cong A$ (as A is a product of elliptic curves), we get a Q-morphism (also denoted by π) $\pi: X_0(p^2) \to A$. Thus we get the following corollary:

Corollary 4.6 There is a non-trivial F-morphism $\pi: X_0(D^2) \to E$.

References:

- [1] Han D C. On the BSD conjecture of elliptic curves $E_D^2: y^2 - x^3 - d_2x$ [J]. J Sichuan Univ: Nat Sci Ed, 2013, 50(3): 470.
- $\lceil 2 \rceil$ She D M. On the computing of the Artin root number of the elliptic curve E_{d^2} : $y^2 = x^3 - d^2x$ over the Gaussian integers[J]. J Sichuan Univ: Nat Sci Ed, 2013, 50(4): 668.
- [3] Gross B, Atithmetic of elliptic curves with complex

- multiplication [M]. Lecture Notes in Mathematics 776. Berlin: Springer Verlag, 1980.
- [4] Ren Y, On the construction of a class of Q-curve [J]. J Sichuan Univ: Nat Sci Ed, 2013, 50 (3): 455.
- [5] Tate J, Fourier analysis in number fields and Hecke 's Zeta-functions [J]. Algebraic Number Theory, 1967: 305.
- [6] Bump D, Automorphic forms and automorphic representations[M]. Cambridge: Cambridge University Press, 1998

- [7] Lang S, Cyclotomic field[M]. Berlin/New York: Springer-Verlag, 1978.
- [8] de Shalit E, The Iwasawa theory of elliptic curves with complex multiplication: P-adic L-functions [M]. Salt Lake City: Acadmic Press, 1987.
- [9] Shimura G, Elliptic curves with CM as factors of Jacobians of modular fuctions [J]. Nagoya Math J, 1971, 43, 199.
- [10] Shimura G, Introduction to the artithmetic theory of automorphic functions[M]. Princeton: Princeton University Press, 1971.