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with mean curvature-like operator
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Abstract: In this paper, we study the following nonlinear equation with mean curvature-like operator

W+% It ) —g(q(z.)) = 0.
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By using the theorem of the monotone dynamical system, the existence conditions of traveling wavefro-
nts established.
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1  Introducti face. In the past few decades, mean curvature e-
ntroaduction . . e . .
quations and their modified forms which derived

Mean curvature is an external bending meas- from differential geometry and physics have been
urement standard in differential geometry. It is a paid more and more great attention (see Refs. [ 1-
description of the surface embedded in the sur- 4] and the references therein).
rounding space (such as a two-dimensional sur- In this paper, we consider traveling wavefro-
face embedded in three-dimensional Euclidean nts for the following nonlinear equation with
space) , so it is widely used in the study of sur- mean curvature-like operator:
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dq(x,t)
aq((;,z‘) +% at -
¢ 1+(9q(1,t))2
dt
g(q(x,t)) =0 @D

where g € C'(R,R). Eq. (1) comes from gas dynam-
ics and has been studied during the past thirty years,

For example, combustible gas dynamics- -

. Suppose
a compressible gas flows in a homogeneous isotropic
rigid porous medium. Then the volumetric gas con-
tent @, the velocity © and the density of the gas are

governed by the continuity equation
d .
0 f + v (05) = 0.

Because of the influence of many factors, such as
the molecular and ion effects, instead, one has
the following nonlinear relation:

i ——r—YE

VI+[vP[*
where pand P = p 5 denote the momentum veloci-
ty and pressure respectively, A > 0 is physical
constant. After changing variables and notations,
Eq. (1) is derived.

In 2004, Li'" discussed global existence and
quenching phenomena for a parabolic equation of the
mean curvature type with nonlinear convection term

u, —divic(|vul®)vu} +b(w)

Vu=0,2€Q,t>0,
ulx,0) =uy 2 €Qsulx,t) =0,x€dQ0,t>0,

Yy =1/ /14| ~vu |*. Such prob-

attracted the

where (| Vu
lems also have attention of
Chen"""'*), Recently, more and more authors paid

attention to traveling wavefront™*1%,

However,
to the best of our knowledge, the corresponding
theory for traveling wavefronts of the nonlinear e-
quation with mean curvature-like operator is not
investigated till now. So, in this paper, we aim to
study the existence of traveling wavefronts of the
nonlinear equation with mean curvature-like oper-
ator.

This paper is organized as follows. In Section
2, we state some necessary definitions and lem-
mas. In Section 3, we prove the main results and

we give an example of application in section 4.

2 Preliminaries

In this section, we provide some definitions
and lemmas which will be used in this paper. Let
q(x,t) = u(&) = ulx —ct) withc € R, then Eq.
(1) is transformed into the following form:

u' (&)

— ) —g(u(®) =0
V1 4+ G (8)?

—cu' (&) +(

(2)
Traveling wavefronts: A function u(&) is
called a traveling wave front with waves peed ¢, if
there exist £,,&, with —oco<<g, <<¢, <<+ co,and a
monotonic function «(&) with u € C'(¢,,&,), and
u' (&)
holds and

(a) If u is a monotonic increasing function,

Y € C'(&,,6&,), such that (2)

then u(,) =0,u(&,) = +u' (&) =u' (&) =0;
(b) If u is a monotonic decreasing function,
then u(&,) :%,u(&) =0,u' (&) =u' (&) =0.

Throughout this paper, for y = (u,v) and 2
= (uy,v), wewritey <zifu <u ,v<v ,y <
zify<<zbuty+#z,andy <zify<<zbutu #u .
v F U,

Let ¢, (y) be the flow generated by the fol-
lowing autonomous system:

Vo= f(y) 3)
where f = (f1,f:) € C'(R*,R"),y = (u,v) €
R*. We write ¥y (y) :{90,(_)/) :1=0} for the posi-
tive orbit through the point y, and w(y) = N=o
U=, (y) for the omega limit set of y. Let D be
an open subset of R%.

Definition 2.1 A set M < R’ is said to be
positively invariant, if ¢, (M) <M for allz = 0.

Definition 2.2 A set Q = R’ is said to be p-
convex, if for any y,z € Q satisfying y <z and the
segment joining them also belongs to Q.

Definition 2.3 System (3) is said to be co-
operative on D, if D is p-convex and the following

conditions hold:

df1(uyv) =0, dfy(usv) ~0.(u.0) € D.
dou dJu
Remark 1  According to Remark 1. 4 in Ref.
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[9], D can be a closed set if it satisfies the two
conditions as following:

(1) D is the closure of an open set Q on
which the system (3) is cooperative;

(i) For all x,y € D, satisfying x < y, there
are two sequences x,,y, € Q such that

Xy >Xsy,~—>y asn —>+ ©, x, <y,.

Lemma 2.4 U7 If System (3) is cooperative
on D and <, stands for one of the relations <,
<, <, then P. ={y€D.0<.f(y)} and P_ ={y
€D; f(y) <0} are positively invariant. If y € P,
(P_), then ¢, (y) is nondecreasing (nonincreas-
ing) for r+ = 0. In addition, if ¥~ (y) has compact
closure in D, then w(y) is an equilibrium.

Remark 2 Suppose that all the conditions in
Lemma 2. 4 hold, let y be a point on the unstable
manifold of a saddle, then ¢,(y) is a heteroclinic
orbit connecting the saddle and another equilibri-
um. If, in addition,¢,(y) is increasing forz < 0,

then ¢,(y) is increasing for s € R.

3 Main results

Let v(&) = u(&) +¢. Then we
V1 + G (@)
can get from (2) that
v(&) —u(é)

u' (&) = f1(u(8) ,v(&) =

V1= (o(& —u(@)?
V,(S) = f. (u(® v(®) =

(c+Dfi (w8 ,v(&) +gluld) €D

Throughout this paper, we assume that there
exist g € C'(R,RY),R" = (0, + <) and a given
constant 0 << § << 1 such that g(u) = (Su —u*) g1 (w).
Obviously, system (4) has only two equilibria; (0,0)
and (8,8). If the system (4) admits an increasing
heteroclinic orbit connecting the two equilibria, then
Eq. (1) correspondingly admits an increasing trave-
ling wavefront satisfying

.l,inflwu(f) =0, Eljrr} u(g&) = 0.

Theorem 3.1 Suppose that

¢ <—1— max | dgu) |
e Ju

and

2 /3
g1(0)5+L +c et +4g, (0 ~ 0.

2

Then Eq. (1) admits an increasing traveling wave-
front q(x,t) = u(€) satisfying

limu(& =0, limu(é&) =46.

£—>—oco §>+oo

Proof LetD = {(u,v) € R*:0 <u.,v <§}.
Obviously, D is p-convex. Since
S1u(®,0(e) 1 -0,
9 [1-(o(® —u(e)? ]
(u,v) €D
and
dfs (u(8).v(&) —c—1
Iu [1— (& —u(®)?]7
D) oy 2
max | S0 S = 0.

by Definition 2. 3, we know that the system (4)
is cooperative on D. Next, we will show that D is
positively invariant. Defined four segments con-
stituting the boundary of D except two equilibria
by D,,D,,D;,D,,

D, = {(u,v) € D,0 <u <68,v =0},
D, = {(u,v) € D,u =0,0 <v<5§},
D, = {(u,v) € Dyu =6,0 <<v <68},
D, = {(u,v) € D,0 <u <¢8,v = 9.

For the points of D, , we have
W& = f1(u(8,0) =
—u(®
V1= (—u®)”
0 (&) = f,(u(8),0) =
(c +1D)fi(u(8,0) +glul®) >
f,(0,0) =0

For the points of D,, we have

<0,

v(&)
1 — (v(&)?

W (&) = f1(0,v(8) = >0,

11/(5) = £,(0,0(8) =
(c+ 1 f10,0(8)) <0 (6)
For the points of D;, we have
(&) —¢ <0.
V1= (0(® =7 )
(&) = £, (8,0(8) =(c+1)f(8,0(8)) >0

For the points of D, , since

W' (&) =f1(8.v(8) =

2 fs (ud) _ -1 2g(u(®)
Ju [1-G—u®)?]t u@ ~
L @)

dJu(é)
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W (© = f1(u(8),8) — fIBI T — A~ am

8 — u(d) _ /1 —(%w
1= —u@)
, ‘ () and
I = £, (u(8).8) — - o
2 W
e+ 1L, + g(u() < g1 (0§ + V¢ £10009

(5,8 =0

By (5~8), we see that the direction of the vector
field (f,,f,) along the boundary of D except the
two equilibria always point to the interior of D.

The linearization system of (4) at (0,0) is
u' (&) B
(v/(é))i
—1 1 u(é)
(7(‘71 +g:1(0)6 c-l—l)('y(f)).

Calculate the eigenvalues of the linearization of

the system (4) at (0,0), we obtain

_ «/C2 +4g1(0)8
A = 2 )

¢+ ('2 +4g1(0>8

2
We can see that (0,0) is a saddle. Calculate the

Ay =

eigenvector of A,, i,e. , a solution of

()tz +1 —1 )(u(é))_ (O)
ct+1—g (08 Ay —c—1/\0v(& 0

€D
it easy to see that
1
(/\z +1 —1 ) 4 B
c+1—g, (08 Ay —c—1 iJrA—?
4 4
O‘ 0
Ak, — g (08 ]~ ( )
0
4
P T N PR .
Sol = (T’T +T) is a solution of Eq. (9). Ap-

plying Theorem 6. 1 of Ref. [18], there is a one-
dimensional unstable manifold tangent to 1 at (0,
0). Points on this unstable manifold are paramet-
rically represented in a small neighborhood of (0,
0) by a function p:R—>R*, where p(m) = (0,0) +
ml +o(| m ).

Now we show that, for sufficiently small m
>0,0(m) € P+{(u,v), f1(usv) =0, [r(us0) =
0}. Since

2

for sufficiently small m > 0, we have

mct ek +4g,(0)8

n 2 -
as¢ <— 1 — max | dglw) |. We can assert that
W€ (0,8 du
et DA > ,. Then we have
m. .,
1 (I/\g)
m m | m _mp_ (c+ D
T
m m omy
g(z) >C/\21+g(4)
m t H e et +4g,(0)8 4
4 2
(8*%)5{(%)] >0 (1D

Furthermore, since D is positively invariant,
7" (p(m)) has compact closure in D. By Lemma
2.4, ¢,(p(m)) is increasing for = 0 at << 0 and
w(p(m)) is an equilibrium. Obviously, ¢, (p(m))
is also increasing for and w(p(m)) = (5,8). By
Remark 2, System (4) admits an increasing het-
eroclinic orbit connecting the two equilibria,
which implies that Eq. (1) correspondingly admits
traveling wavefront

an increasing satisfying

limu(é) = 0 and limu(&) = §. Hence Theorem

f>—co E>too

3.1 holds.

4 Example

Consider the following nonlinear equation
with mean curvature-like operator
dq(x,t)
dq(x,1) +i( Jt

dt dx )~

14 (aq(I,t))z
dt

(%q(x,t) )+ g () =0

12
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Eq. (12) can be regarded as a equation of the

form (1), where

g(q(aat)) = (%q(«r,t) e et

¢ (x,1)),
g (aleD) = 14+ 0 =
Choosing ¢ =— %, it is not difficult to see that
—1— max | dglu) | =
€ (0,4 Ju
1 s Su 37
—1— max | = 44 — = | >— =¢
ME(()-,%) 3 3 27
and
2 . «/ﬁ
g‘1(0)3+c + ¢ /e 2+4;,1(O)6 _
37 37 [37 4
%+27“ 27227“ 3 ~0.04 0.

Therefore the conditions of Theorem 3.1 are sat-
isfied. It follows that Eq. (12) has an increasing
traveling wavefront ¢(x,t) = u(€) satisfying

1
f>—oco +oo 3 '

Remark 3 One can easily see that all the re-
sults in Refs. [1~19] and the references therein
can not be applicable to Eq. (12) to obtain the re-
sult of existence of traveling wavefronts, Which
implies that the results in our paper are essential-

ly new.
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