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1 Introduction

Vector equilibrium problem provides a uni-
fied model of several important problems, such as
vector optimization problem, vector variational
inequality, vector completeness problems, Nash
equilibrium problems, etc. Recently, the sensi-

1, especially the upper semiconti-

tivity analysis''?
nuity and the Hélder continuity of the solution
mappings to parametric vector equilibrium prob-
lems and parametric vector variational inequality
have been intensively studied %,

Holder continuity of solutions plays an im-
portant role in theory of stability analysis for vec-
tor equilibrium, but there may be less works in
the literature denoted to this property than to
semicontinuity. The aim of this paper is to estab-
lish sufficient conditions for the Hoélder continuity
of the solutions to the two parametric primal and
dual vector mixed quasi-equilibrium problems.

In this paper, firstly, we generalize results
of Hélder continuity in Ref. [11] to more general
settings and extend upper Hélder continuity™" to
Holder continuity. Secondly, following the dual
rules for an equilibrium problem, we introduce
the corresponding parametric dual vector mixed
quasi-equilibrium (DVMQEP:) (:=1,2), which is
mix Minty-type parametric dual vector quasi-equi-
librium (see Remark 2). We discuss the Holder
continuity of the solutions of (PVMQEP:) (i=1,
2)and (DVMQEP:)(i=1,2) and provide suitable
remarks and examples to illustrate our results on
by one. Finally, we apply (DVMQEP:) (:=1,2)
to deal with mix Minty variational inequality as an

application.

2 Prelimaries

Throughout this paper, unless otherwise
specified, let X,A,M and Y be metric linear
spaces, and let QCY be a closed subset with Q#
. Let K: X XA—>2%0: X XX XM—>2" and ¢:X X
M— 2" be three set-valued mappings with non-

empty values.

For the parametersA € A and px € M, we con-

sider the following two parametric vector mixed
quasi-equilibrium problems of findingz € K(x,})
such that

(PVMQEP D [o(xsysp) +¢(ysp) — ¢la,

DINQ#T. ¥y e K@,
and of findingr € K(x,A), such that
(PVMQEP 2) [@(xsysp) + o(ysp) — ol
W] Q. Yy e K.,
Denote E(}) = {x € X | x € K(x,1)} and

Fla,y.p) = ¢olasy.p) + 9y — ¢lap) s
for each (XA,p) € A X M.

Let S;(A,p) (i = 1,2) be the solution set of
(PVMQEPD (i=1,2), i e.

SiQsp) ={x € EQ) | Flx,y.p) NQ# T,

Vy e Kz, D))
and
S:sp) ={x € EQ) | Flx,y,p) C Q,
Vy e K(x,0)}.

Remark 1 The models (PVMQEP:) (i=1,2)
contain many problems as special cases, for example,
we can replace ) by setting Q = Y\ — intC(intC #
@),0=0\ -0 ULO (=Y\(-CO\UO)H).Q=
C,Q =Y\ — Crespectively, where & # C CY,intC-
stands for the interior of C, and /(C) =C N (—C) In
particular, if C is a closed convex pointed cone in
Y((C)) = {0} in this case) then above cases be-
come the so-called weak and strong vector quasi-equi-
librium problem considered by many authors.

Following the dual rules for an equilibrium
problem proposed by Konnov and Schaiblet'™,
whose schemes is an extension of the classical du-
al theory for variational inequality, we now intro-
duce the corresponding parametric dual vector
mixed quasi-equilibrium to (PVMQEP:) of find-
ingx € K(x,A) such that

(DVMQEP 1) F(y,;[,,u) N—=Q # 4,

Vy € K.,
and of finding x € K(x,A) such that
(DVMQEP 2) F(y,x,p) C— Q.

Yy e K.

Let S¢(A,m),i=1,2 be the solution set of
(DVMQEPD (i=1,2), 1. e.

S{Asp) ={x €EQ | F(ysxsp) N(—Q) #T

VyeK(x,)},
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and

S{QAsp) ={xz € EM) | F(y,x,u) CC—Q)

#J s
VyeK(x,)},

Remark 2 LetT:X X A — L(X,Y) be a vec-
tor-valued mapping and C C Y be a closed cone
with intC# & where L(X,Y) is a set of bounded
linear mapping from X to Y. If o(x,y,p) =
[T(xsp) sy —2]:K(z,0) =KQ),and Q =Y\ —
(C\{0}), letY = R, and C = R. then
(DVMQEP:) (i=1,2) reduce to the mixed Minty
vector variational inequality (MMVVI) involving
parameters: findingz € K(Q) such that ¢(x,p) =
[Ty sx —y1+¢laap) —¢lyap) <0.¥Vy €
K.

Especially, when ¢ =0 (DVMQEP) (i=1,2)
simultaneously collapse to the well-known para-
inequality ( MVT).

Whence, we may view parametric dual vector

metric Minty variational

mixed quasi-equilibrium with general settings pro-
posed in this paper as Mix Minty type. To the
best of our knowledge, there was nearly no result
denote to Hoélder continuity of mix Minty-type
parametric dual vector quasi-equilibrium in the lit-
erature.

Throughout this paper, we always assume
that S; (X, ) #F(i=1,2) and for all (Asp) in a
neighborhood of some point (X.x) € A X M.

Now we recall some basic definitions which
are needed in this paper. In the sequel, Bx (0,0)
denotes the closed ball with center § € X and radi-
us 6 >0, By denotes the closed unit ball of X and
d(s, ) denotes the distance in metric spaces.

Definition 2.1 Let X and Y be two topological
spaces, and F: X—>2" be a set-valued mapping.

(1) F is said to be upper semicontinuous atx,
€ X, if for every open set U withF(x,) C U there
is a neighborhood N(x,) of x, in X such that F(x)
CU,VYx € N(xy).

(i) F is said to be lower semicontinuous atx,
€ X, if for every open setU with F(x,) NU # &
there is a neighborhood N(x,) of 2, in X such that
Fx) NU # J.¥x € Nzy)

Lemma 2.2 Let X and Ybe two topological

spaces, and F:X—2" be a set-valued mapping.

(i) Let Fis lower semicontinuous at x, € X,
if and only if for any y, € F(x,) and for any net
{x,} satisfying x, — z,, there exists a net {y,}
such that y, € F(x,) and y, = y,.

(i) LetF be compact-valued on X. Then F is
upper semicontinuous at x, if and only if for any
net {x,} C X with x, > 2, and for every y, €
F(x,), there exist y, € F(x,) and subset {y,} of
{y.} such that y; = yo.

Definition 2.3 A set-valued mapping G:A—
2% is said to be /. o ~Hoélder continuous in M C A,
if Voo € M

G(u) CGQu) +IBx (0sd* (uy ) )
wherel = 0 and a = 0.

Definition 2.4 A set-valued mapping G: X X
A — 2% is said to be (/. a) +/;. a;) - Holder contin-
uous in M C X XA, if ¥V (x1,4),(xs,4,) € M,

G(xi 1) Clx e X | Tz € Glass2:)

d(x,2) < Ld (x1,2,) +1L,d (A ,,) ).
where /, ./, = 0 and a; »a, = 0.

Definition 2.5 Let (X,d) be a metric space
and H be a Hausdorff metric on the collection
CB (X) of all nonempty closed bounded subsets of
X, which is defined as

H(A,B) = max{ sggd(a,B),supd(A,b) I

beE B
VA,B € CB(X),
where d(a,B) = infd (a,b)and d(A,b) = infd(a,

veB a€A
D).

3 Holder continuity of solutions to
(PVMQEP1)

In this section, we discuss the Hélder conti-
nuity of solutions to (PVMQEP1).

Proposition 3. 1
for the problem(PVMQEP1) exist in a neighbor-
hood N(A) X N(u) of the reference point N(A..)
€ A XM Assume further that the following condi-

Assume that the solutions

tions hold:

(a) For eachA € N(A),E(Q) is compact and
K(+,2) is lower semicontinuous in E(}) ;

(b) For each ( (A,z) € NQ) X N(u), and

(e, +,p) is upper semicontinuous with compact
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values in EQ) X K(EQ) ,A)¢(+ ) is upper con-
tinuous with compact values in K(E(Q) ,A).
Then, for any (A,p) € NQ) X N(u)S, (A-p) is a
compact subset in E(Q).

Proof It suffices to show that S;(A,p) is
closed in E()), since E()) is compact. Take any
sequence {x, } ©S; (A, p) with x,—>x,. It follows
from x, € EC(QQ) and the compactness of E(}) that
x, € EQ). Suppose that z, € S;(A,x) Then,
Jy, € K(xy,4) 5 such thatF(zy 30,0 NQ = .
Since K (+,}) is lower semicontinuity at x,, it fol-
lows from (i) of Lemma 2. 2 that, there exist y,
€ K(x,,A) such that y,—~>y,. As z, €S, Asp)s
there exist z, € F(x,5y,sx) N Q. From condition
(b), we have F(+, +,x) is upper semicontinuous
with compact values, there exists 2z, € F(xq.y,»
) such that z,—>z,. Noting the closeness of Q,
we have z, € Q This leads to a contraction. Thus,
xo € S;(A,p) and S; (X, p) is closed set.

Theorem 3.2 Assume that the solutions for
the (PVMQEP1) exist in a neighborhood N(1) x
N(u) of the reference point (A.) € A X M and
the conditions of Proposition 3. 1 are satisfied.
Assume further that the following conditions
hold:

(1) KCey o) is (L. a1 5L5. a») ~Holder continu-
ous inE(NQ)) X N ;

(ii) There are constants ¢ > 0 and § > 0 such
that ¥V (A,p) € NQ) X N,

Yy € E(NQO\S Q.. 3z
) satisfying

€ SQ,

od®(z,y) < inf d(g.,Q) +
g€ F(y.a)
inf d(f.Q);

FEFG .y

i) VAENQ . Yx,y €EEQ),F(x,y, *)is
m. ~Holder continuous at y3

(v) ¥V Qsp) € NQO X N ,Vax € EQ),
F(x, «.u0) is n. & Holder continuous in K(E(NQ)) ,
NQ);

From (3), we get

(V) B = a10sa > 2nl}.
Then for any (/\19/11)7(/\2 ’/12) S N(X) X N(/;)v
H(SI(AI ’/11)951 </129,uz))<
m % 2
(m) dv (uyspe) +

( 2l )ﬁd%zl,m) D

o« — 2nl}
Proof By Proposition 3.1 for each (A,p) €
NQ) X NS, (A,p) is a compact subset. Let
(A1) Qospe) € NQ) X N, we split the
proof into three steps.
Step 1. We prove that
HS A1) s S1 Qs spe)) <

(Cﬁ)“d%(m ) 2)
Obviously, if S; (A1 51) = S1 (A s o) we have that
(2) holds. So we suppose

SiQAsp) # S Qe spe).
There are two cases to be considered.

Case 1. Si(A1sp1) @ SiArspe) sand S (A
p) & S Q). For any 2 sm) € Si(Ays
#19\S1 (A1 5 2) by virtue of the assumption (ii),
there exists x(A; sp2) € S1 (A1 5p2) such that

ad? (x Qs p1) 2 Qa5 pn) ) <

Infeereay iy, d(gs Q) +

Inf e Py vy ey vy dCS 5 D 3
€ KxQispm)sh)sxQrspe) €
K(x Qi) A1) 5 KCeoy o) is (Lo ar 5L ) - Holder
continuous in E(NQ)) X NQ), there exist x; €
K(xQysp) A1) sz € K(x (A5 541 ) such that

d(x Qi) sx) <

Lidy (xQysp) sxQrspz ) s

d(xQysp2) s 22) <

Lid (x5 ) sx Ay s p2)) €]
Because x(A1,1) € St (A1sp1) s 215 p2) € S1(Ar s
p2) s we have

dz € FxQysp)saz ) N Qs
dz € F(aspe) sxispe) N Qs

Since x(A15p1)

ad? (x (X s ) s Ay s pe) ) < infgeFuu,.,ﬂmm,.,12).,u2>d(g921> + inffEF(.r(A].,,42)4,1(/11,#|)¢#Z>d(fvz2) <
H(F(T(/h s ) s X2 Ly 23 ) 9F(T(A] 9/12) 91”(/11 7#2)7/12))“!’
H(F(I(A1 3/12)91’(/1] Ly231 ) a/lz)vF(l’(A] 9;12)911 9/12) ) <
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H(F(I(A1 3/11)91‘2 9/1]),F(1'(A19/1]>,I(A1 a/lz)?lul)>+
H(F(l(/\l 7/11)af(/11 7/12)’#1)7F(1'(/11 ’#1)71'(/\1 ’/lz)a/lz))+
H(F(I(A] s/lz)aI(A] Ly 23 ) a/lz)vF(l’(A] 9/12)91] 9/12) ).
|
From the Hélder continuity of F and (4), we get (7),(8) that (2) also holds.
ad® (x Ay sp1) s x Qo) ) < Step. 2. Now we show that
nds(I(Ale/xl)axl)“‘ H(Sl(/h’/lz)ssl(/\z’,uz))<
md™ (s pe) +nd? (2 Qsp) s 202) < 2nly \F 7
o v (%)%ﬁ(zl,m 9)
2nl3da® (x (X spn ) s x (A s ) )+ a — 2nl}

mdr</ll a;tz) (3)
By assumption (v), we can obtain

d'@(l‘(/h s ) 91'(/11 a/tz))<

m A\ »

Noting the arbitrariness of
S A1 sp NS (A1 sz ) we have

sup inf
2y ) €S, Capap ONS) CApomy > @Ry ) E€S) Cayopay >

I(/‘l] 9/11) S

d(l‘(k] [y ) ’

_m

a — 2nl}

By the definition of the distance d(+, ), we have
sup d(x(/h,,ul),sl(}{l,/zz)):

2oy )E€S) CAp oy D

sup d(l‘(l] 9/11>sS](/11 ’/Jz))<

Q) ES) Chyopg D\S] CApopry D

Q) <( )"%d%(m,m).

m \7 2
(m) d? (/,(1,/12) (6)

Similarly, we can deduce
sup d(xQsp) s S1 QA1) <

Q) €S) CAp oy D

1
(a_’”Tl?)”d%(#l o) 7
From (6) and (7), we know (2) holds.
Case 2. Si(A1sp1) T Si Ay sp) or Si Ay s p2)
C Si A1 ). Without loss of generality, we can
assume that S; (A ,1) S (A1 s ) From the defi-

nition of the distanced (+, *) we have

sup d(I(/h’;A)ySl(/\ly,uz)):O (8)

Qo) €S CAp oy D
By using the same argument as in Case 1, we also

have that (7) holds in Case 2. It follows from

From (10), we get

Obviously, if S; (A1) = Si(A542)s we have
that (9) holds. Similar to Step 1, we suppose
Si A spz) #S1 Az ). There are two cases to be
considered.

Case 1. SiQisp) & SiQyspe) and Sy Az 5 )
&S (A1 sp2). For anyx Qs 50 € Sy (A1 5p2)\S1 (A 5
p2) by virtue of the assumption (ii), there exists
2 sp2) € S; 4y sp) s such that

ad’ (x5 ps) sx s s py) ) <

Inf e iy, Gy ey d (g Q)+
L fe FGa, vy ey i ey dCS s QD 10)
Since x(Assps) € K(xAosps) sds) sx (A sprz) €
K (2 (A1 sps)s2:) - K(ey ¢) is Hoélder continuous,
€ K@Qusp)sd)sx, €
K (x (A1 sp2) »22) such that
d(x Qs sps) 1) < Lrd (X520
d(x QA s pre) s ) < Lod™ (X1 545) an
By the Holder continuity of K(+, +) again, there

there exist

exist 7 € K@ Qi) A )axs (A ap) €
K(-T(/\ze/xz)a/\z)
such that

d(xx) < Ld (xQyspe) sx (Ao spz)) s
d (s xy) < Lid (xQyapn) s (Ao sprn )
(12)
Because x (s sps) € Sy Qo sps) sx Ay sps) € S (A4 s
#2) we have
2l €F(xysps) sxh ) NQ,
2, € F(x Ay spa) st sps) NQ.

ad? (x(Q, v/lz) s (X ’/12))< infgeF(‘mZ.,42>,f<a,.,12).,u2>d(g92/1> + inff’EF(J(A].,;42).,1(/12,#Z),#Z>d(f’zé) <
HF@Qaps) s Qo aprn) spn) s F Ay spn) sy s pps) )+
H(FCQoaps) s s pn) spzn) s FrQapr) 52 s 1) ) <
HFQspe) sx Qo spz) spz) s F(x Qg s pz) sy spe) )+
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H(F(g(k1 3/12)9;1 9/42),F(;(A1 9#2),51 9/12))+
H(F(l(/\z ’/lz)a;(/h 7/12)’#2)7F(1'(A2 ’/12)7;2 ’,Uz))+
H(F(I(Az 3/12)9.;2 9/12),F(1‘(A2 9#2),52 9/12)).

From (11), (12) and the Hélder continuity of F,
we have
ad® (x Qs sp2) sx (g s p2)) <
nd® (x Qs spo) sy) +nd’ ()5 2h) +
nd’ (2 Qs prz) sxs) +nd® (2 25) <
2nld P (x Qs pr) s Ay spn)) +
2nl5d 2P (A1 542).
The condition (v) yields that
d(xQy s p2) ,x (A, s ) ) <
( 2nl3 i
a — 2nlf
By the arbitrariness of 2z sp) € Sy (A2 5)\S1 (A1 5p22)
and the definition of d(+, «), we have
sup d(Si QA sp)sxQy ) <

Ty o py) €S Chy oy D

) d7 20D,

2nld \F
((%M) d® (A1 542) (13)

Similarly, we get

sup d(;(/\lyﬂz)vsl(kzv#z))g

TGy ) €] Ay sy >
( 2nl3 i
a — 2nl}

From (13) and (14), we have that (9) holds.
Case 2. Si(A1sp2) C S1(Azsp2) orSi Az s p2)

)ﬁd%"(z] ) (14

C Si (A1 spu2). Without loss of generality, we as-
sume that S; (A1 su2) C S; (A2 su2). From the defi-
nition of the distance d (¢, «) we have

sup d("[(/‘h 9/12)»81(%29/12)):0.

Q) ES) Chypagsy D
By use the same argument as in Case 1, we also
have that (9) holds.

Step 3. Since

H(S Ay ) sS1 Qg o)) <

H(S Ay sp1)sS1 (A s )+
H(S Ay sp2) .51 Qs s p2)).
It follows from (2) and (9) that (1) holds.

Now we give an example to show that Theo-
rem 3. 2 is applicable when the solution mapping
is set-valued.

Example 3. 3 Let X =Y = R.A = M =
[0,1].0 =R,

K(x.)) = [m’z}

16
P(x,A)=[ +1x,2],
e(z.y. ) =LA +Dx =20 +Dy +
xy +2,(1 +X)x +6]
then

15
Consider thatA = 0.5 and N(1) = A. Direct com-

EQ) = [MZ}

putation show that
EQ) - ENGH = [15-2],

Si)=1[1+2x,2]

and

ECADO\S, (1) = [11—51 +A}\m € A

Obviously, for allA € A,E(A) is compact. K(+,1)
is continuous and F(+, «,1) is continuous with com-
1,1
16" 4
uous; Forallx,y € E(A),F(x,y, ) is 4. 1-Holder
continuous, For all x € E(A).,A € A, F(x, «,A) is

4. 1-Hélder continuous. Here /, = 1—16 NS %

n=404 =a =0 =y =1. Taking § = 1,a = 1.

pact value; K (e, ¢) is ( 1,—. 1>*H<')'lder contin-

M :45

For anyA € Aand y € [%5,1 +/l> , takingx =1 +2
€ S, (1), we have

inngF(y.l‘.)\)d(g7R+) =+ inf,/‘eFu.y.md(vaJr) =

A+ ly—AQ+0=]y-A+0]=

ad’?(;,y).
It holds that g = a1d = 1,a > 2nl} = % Hence,

all assumptions of Theorem 3. 2 hold and thus it

is valid.

4 Holder continuity of solutions to
(PVMQEP2)

In this section, we discuss the Holder conti-
nuity of solutions to (PVMQEP2).
Proposition 4, 1  Assume that the solutions

for the problem(PVMQEP2) exist in a neighbor-
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hood N(1) X N(z) of the reference point (A,x) € 2nld T we
. . . (%)?dﬂal,m (15)
A X M, the condition (a) in Proposition 3. 1 a — 2nlj

holds. and condition (b) in Proposition 3.1 is re-

placed by
(b") For each (A.z2) € N(QQ) X N(p) and (-,
+sp) is lower semicontinuous in E(Q) X

K(EQ),2)s¢Ceyp) is lower semicontinuous in
K(EQ) A,

Then for any (A.p) € NQ) X N(u)S; (A.p) is a
compact subset in E(}).

Proof It suffices to show that S,(A,p) is
closed in E(A) since E()) is compact. Take any
sequence {x, } S, (A, ) with x,—>x, It follows
from z, € E()) and the compactness of E ()) that
zy € E(). Suppose thatz, ¢ S,(A,p). Then,
Jy, € K(xo54), such that F(xe,yo.p) & Q.
€ F(xosyospw) N (YAQ).

K (+,1), is lower semicontinuous at x, » for y, and

Taking =z, Since
{z, )} sthere exist y, € K (x,,A) ssuch that y,—y,.
Aszy, € F(xysyosp) from condition (b"), there
exists z, € F(x, , v, s, ) such that z,—>z2,. Because
zo € Y\Q, when #n is large enough,z, € Y\Q. It
follows from x, € S, (A, ) that

z, EF(x, sy, sp) Q.

This leads to a contraction. Thus x, € S,(A,p)
and S, (X, is closed.

Theorem 4,2 Assume that the solutions for
the (PVMQEP2) exist in a neighborhood N (1) x
N(u) of the reference point (A,p) € A X M and
the conditions of Proposition 3. 1 are satisfied.
Assume further that the conditions (i), (iii) , (iv)
and (v) in Theorem 3. 2 hold and (ii) in Theorem
3.2 is replaced by the following condition:

(ii") There are constants ¢ > 0.8 > 0 such
that Y (A,x) € NQ X N@,Vy €
E(NQOO\S, Qs » Fx € S, (A.p) satislying

ad®(x.y) < sup d(g.Q) +

g€ F(yizow

sup d(f,Q).

FEFGayad
Then S,(+, «) satisfies the Holder continuous

condition that for any (A; 51 and (A, , ) in NQO
X N s
H(SQ(A] 5/1])752(/\2 9/12))<

(zzn;nl‘?);d; Cu1sp2) +

Proof The proof is similar as the Theorem
3. 2 with suitable modifications. For Case 1 of
Step 1 in the proof of Theorem 3. 2, we consider
that S; (A1) & S;QAyspe) and S; (A 5pe) &
S; Ay sp). Forany x4 sp1) € S; Qs p)\S: (A4 5
/20 s by virtue of the assumption(ii/) , there exists
2y sp2) € S; (A1 yp2) 5 such that
ad? (x Qs p1) 52 Qs p2) ) <
SUD g€ F(ray ) vy o) opiy) A (€2 Q)
SUP € FCrta, vy exay gy 4 (L 5 Q) (16)
Since 2(A1.p1) € K(x A1) A1) sx2Qyspm) €
K(x 1 >p2)54:) K (e, +) is Holder continuous,
€ KxQism)d).a, €
K (x (A1 sp1)541) such that (4) holds. Because
€ S;Qusp)sxQispe) € So Ay sp)

there exist x

(A s p1)
we have

FQaxQusp)sxosp) Qs

FQQusp)saisp) C Q.

From (16), we have

ad® (x5 p1) sx Ay s p2)) <

SUPLE FGay vy exay iy iy A F Qs prn ) s 09 sy ) +
SUP € @ty ey oGy ey A s F Qs pan ) 0201 spr0) <
H(F@Qy sp1) s spen) s FQyspe) sxQuspe ) spz)) +
HF@Qy spen) sx Qg spn ) spe ) s F Qg s ) sy spe )
Then the proof follows by similar argument in
Theorem 3. 2.

Now we give an example to show that Theo-
rem 4. 2 is applicable when the solution mapping
is set-valued.

Example 4.3 LetX =Y =R,A=M=[0,1],
Q =R,

16

Y(xs )= +ax,2],

e(xsysd) = lzy —2(1 +)y +2, + =)
(1+A)2’2}'

2
K(lak): [M’z}’

15
Consider thatA = 0.5 and N(1) = A, Direct com-

then E()) = [

putation show that

EQ) = E(NG)) = [%Z]

S, () =1[1+2x,2]

and
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ECAONS, (1) = [L 1 +/1] VieA contraction. Thus, z, € S‘f(/\,lu) and S?(/\,,u) is
2 15’ ) .

Obviously, for all A € A,E(A) is compact set.
K (+,1) is continuous and F (s, +,)1) is continuous

. . 1 1
with compact value; K (e, ) is <T6 I’Z' 1)-
Holder continuous. For all x,y € E(A),F(x,y, *)
is 2. 1-Holder continuous, For all F(x, *,A) is 4. 1-

Holder. Continuous Herel, = % o0, = % m=2,n=

4yay =ay =8 =7y =1, Taking B = 1,2 = 1. For any

A€ Aand y € [%,1 +A>, takingxr =1 + 1 €

S, (1), we have
SUPgeryr0d(gs Ry ) Tsupreri, o d(fsRe) =
A+0 |y—A+0 | =]y—A+1) | =
ad? (x ).

It holds that g =a,0 = 1,a >2nl] = L . Hence all

4
assumptions of Theorem 3. 2 hold and thus it is
valid.

5 Holder continuity of solutions to
(DVMQEP1)

In this section, we discuss the Hélder conti-
nuity of solutions to (DVMQEP1).

Proposition 5. 1
for the problem(DVMQEP1) exist in a neighbor-
hood N(2) X N(z) of the reference point (A,x) €
A X M. Assume further that the conditions in
Proposition 3. 1 hold. Then for any (X,x) € NQQ)
X N () s S{(Asp) is a compact subset in E(1).

Proof
closed in E(1), since E()) is compact. Take any

Assume that the solutions

It suffices to show that S¢ (Asp) s

sequence {x,} €S{(A,p) with x,—>x,. It {ollows
from x, € E (1) and the compactness of E (1),
suppose that x, € S{ (A, x). Then, Jy, €
K (x,A) 5 such that F(a,y0,p) N (—Q) = .
Since K (+,)) is lower semicontinuous at x,, for
yo and {x,}, there exist y, such that y,—>y,. As
z, € ST (s p) s there exist 2, € F(y,, 2,5 p) N
(—Q). From condition (b), we have F(«, «,u) is
upper semicontinuity with compact values, there
exists 2y € F(y,. 205 p) 2, —>2,. Noting the close-

ness of Q, we have 2z, € (— Q). This leads to a

closed.

Theorem 5.2 Assume that the solutions for
the (DVMQEP1) exist in a neighborhood N(2) x
N () of the reference point (A.) € A X M and
the conditions of Proposition 5. 1 are satisfied.
Assume further that the conditions (i), (iii), (iv)
in Theorem 3. 2 hold and (ii), (iv) in Theorem
3. 2 replaced by :

(iD¢ There are constants @ > 0 and g8 > 0,
such that ¥ (A,x) € NQ) X N(u) Vy € E
(NOQOO\S{(Asp)» J2 €S{(Xup) satisfying

ad®(zsy) < inf d(g. — Q) +

g€ F(y.xv0

inf d(f, — Q.

fEF( y

(v) “V Qsp) ENQ) XN@) . Y2 €EQ)LFC+
zyon. & Holder continuous in K(E(NQ) ., NQ)) ,
Then S{(e«, «) satisfies the Holder continuous
condition that for any

Qispn) sQospe) € N X N s

H (ST 1) s ST Qs ) <

1
m By

( 2nl}
a—2nls

Proof By Proposition 5.1 for each (A,p) €
N@Q) X N(u)+S1(A.p) is compact subset. Let
Q1 sp) s Ao sps) € NQ) X N(p). We prove The-
orem 5. 2 by the following three steps.

1 N
)”d?(xl,m an

Stepl. We prove that
H(STQuap) s ST s p2)) <

(j)ﬁd%@,w (18)
Obviously, if S{ (A, sp1) = S¢ (2 sp2) s we have
that (18) holds. So we suppose

ST s ) ST Qs ).

There are two cases to be considered.

Casel. S{ (A1 »1) ST QA 5 p2) and S{ (A 5 p0)
ST s ). For any x (A5 1) € ST (A spi )\ ST
(A1 sp22) s by virtue of the assumption (i), there
exists (X1 »p2) €S{ (A1 512, such that

ad? (x Qs p1) 2 Qs pn)) <

Infye raay Gy gy d(gs — Q)
inf e ey oety o dCf s — Q) (19)
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Since xA5p1) € K@) sA)sx Ay sp2) €
K (x (A1 sp2)541),K (e, ) is Holder continuous,
€ K@xQiyw)idi)sx, €
K (2 (A1 sp1)5A1) such that
d(x Qi) sx) <

Lid (xQQrspn ) s Qrape) )d (2 Ay spz ) 522 ) <

there exists a

Lidy (x Qs ) s (A spz ) (20)
Because (X s1) € ST (A1 sp1) s (A5 pz) €ST (A s
#2) s we have

dz € FlaysaQyspm) ) N (— Q)
dz, € Flay,aQsp) ) N (— Q).

From (19), we have

ad? (x Qs pn) s 2y p2)) << inf e v ey gy A8 21D 0 e iy ay iy A 522) <
HFQusp) saQusp) spe) s FC Qs pz) sz 5p0) ) +
HFQspe) sx Qg s ) spz) s FQ Qs pn) sy s p2) ) <
HFxQysp) sz sp) s FGeQu s pn) s Qs pz) s ) ) +
HFxQspm ) sx Qg spz) spn ) s FCe Qs pn ) sy s p2) s ) ) +
HFxQusp) sxQyspn) spn) s FQx Qs pe) s 5 p2) ).

From the Hélder continuity of F and (20), we get
ad® (x5 p1) sx Ay sp2) ) <
nd® (x Qs ) s ) T md" (s per ) +
nd® (x Ay sprz ) sx2 ) <
2nl9d® (x Ay s ) sx Ay s p2) )+
md" (py s pz ) Q2D
By assumption (v) we can obtain
d(xQysp) sxQyspz) ) <
(afﬁ)ﬂd%(m ).
Noting the arbitrariness of x (A1s p1 ) €
ST A1 spi )\NST (A1 522 ) we have
sup inf d
2y o) EST QA ONS] Cpeny > 2y ey €S Cay gy >
_om
a —2nl}
By the definition of the distance d(+, +), we have
sup d(x Q) s ST ) =

2o DES] CApopy >

sup d(I(/\l 9/11)98611(/11 9/12))<

- 4
Ty o) ES] CAq ey DNS] CApopry D

(I(/\] 9/11)v1“()(1 a,uz>)<< )ﬁd%(,uw/lz).

m \F oz
(m) dﬁ(/xlaflz) (22)

Similarity, we can deduce
sup d(l(k] aﬂz)asﬁ[(/hvlux))g

2y opiy) €T QA apey D

m Lﬂ Z
(m) di (/11 a;tz) (23)
From (22) and (23), we know (18) holds.
CaseZ. S?(/\] s ) CS%[ (A] 9/12) or Sij (/1] 9/12)

CS4 > 1) . Without loss of generality, we can
assume that S{ (X;s ) ©S{ (A1 s pu2). From the
definition of the distance d (+, +) we have

sup d(xQysp1) STy s ps)) =0

2@y VES] Cayapy >
Q@D
By use the same argument as in Case 1, we also
have that (23) holds in Case 2. It follows from
(23),(24) that (18) also holds.
Step2. Now we show that
H (ST s p2) s ST g s pe)) <

( 2nl3
a—2nl3

Obviously, if S{ (A1spx2) =S{ (X2 u2) s we have

I
) d7 (A sA0) (25)

that (25) holds. Similar to Step 1, we suppose SY
(A1 sp2) # ST (A2 s p2) s there are two cases to be
considered.
Case 1. ST (15 o) ST (A5 o) and S{ Ay
) ST s pa).
for any x(Xs s pu2) € ST (s 52 )\ST (A1 s 1) s by vir-
tue of the assumption (ii). there exists x (A, p5)
€S (A sp2) such that
ad® (A1 sps) s Qy s pr2) ) <
Inf4e Faay vy oy gy d (g — Q) +
Inf e P, vy oray gy oy dCS s =) (26)
Since 2z ) € K(xQsprz) 5A2) s Ay sp2) €
K (2 (A1 sp2)52:) »K (s, «) is Hélder continuous,
there exist x, € K(x (A, spe ) A1) ,x, € Kz, »
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/20512 such that
d(x Ay sp2) 1) < Ld” (A s22) s

d(;(/\n,uz)s;z)<lzdm2 (A1542) 27
By the Holder continuity of K(s, «) again, there ex-
ISt;i 6 K(}(/‘h s L2 ) v/h ) ’.;é 6

K (x (2,52 542 ) such that
d(x,x) < Lid (x (& spz ) s X Az apz ) ) s

d(x, xh) < Lid (2 apn) sx o apn )
(28)
Becausexr(As s pz2) € Si(Assps) s QA5 pz) € S (A s
p2) we have
2l € FhoaxQoap) ) N (— Q)
2, € F(xlox Qo) o) N (— Q).
From (26), we get

ad? (x Qs 5 p12) (A, s ) ) < infgeF(f(/\Z.#z),I(/\l.,12),,u2)d(g72/1) + inffEF(}(ll-,;42)4,,1‘(A2-,,u2)4,/42>d(f’Z;) <
H(F@ Qo) sax Qo) o) s Fr Qs p) sy ) ) +
H(Fx Qs p) 2 Q) o) s FC Q) s o)) <
H(FG QG aps) s x Qo sprn) s o) s FX QA s ) 501 s p12) ) +
H(F (s sy o) s FGrQ ap) st apn) )+
H(F(xQ ) s x QA1 s prn) s pro) s F Qs s prn) 505 0 p12) ) +

H(F@ Qs 20 s p12) s F Qs pr) 52l sppn)).

From (24),(28) and the Holder continuity of F,
we have
adP (2 Q) s aps)) <
nd’ (xQy s puz) sy +nd? (2 a) +
nd’ (x (s s pry) sxy) tad’ (2,25 <
2nl3d (s prn) s Ay sps)) +
2nl5d*2Pd (A, 4 2s)
The condition (v) yields that
d(xQuaps) sx Qg apn) ) <
( 2nl?
a — 2nl?

By the arbitrariness of x (2, s2) € S{ (A2 52 )\ S{

1
3 ay 0
)“d%ul o).

(A1 sp2) and the definition of d(+, «), we have
sup d(sil(/h 9/12)3.2”(/12 ’/1_7))<

wypg) €L Cagopey >

( 2nl3
a—2nl8

)ﬂd%”(xl,xz) (29)

Similarly, we get

sup d(‘;(x19/lz)ysi](/127/lz>)<

T o) €T Capagey >

( 2nl3

a—2nls

From (29) and (30), we have that (25) holds.
Case 2. Sf(k] 9/12) CS({(/\Z 9/12) or S({(/‘lz y/jz)

)'@d“%(xl,xz) (30)

CS{ (A1 s p2). Without loss of generality, we as-
From the defi-

nition of the distance d («, «), we have

sume that S{(A; 52) CST Qs s p2).

sup d(;(klspz)’si{(/‘\za#z)):O-

vy sy €ST Capopy >
By use the same argument as in Case 1, we also
have that (25) holds.
Step 3. Finally, since
H (ST s p) s STQuape)) <
H (S{(a, spn) » ST spe) ) T
H (ST s pn2) s ST Qg s p2)).
It follows from (18) and (25) that (17) holds.
Example 5.3 Let X =Y =R, A = M =
[0,1].0 =R,

2
K(x:2) = [A ““,1],

2
(p(lak): [%72:|9
e(x,y,A) =
_AY _ Ax AT
[ Sz a-ow(y ) +6}.
Then
(1)’
EQ) = [715 ,2}.

Consider that A = 0.5 and N(1) = A. Then
F(x,y,A) # F(y,x,X). Direct computation show
that EQO) = [A*,1],S, (1) = [A*,1] and ST (1) =
[A.1], VYA € A. Obviously , forallx € A,E(A)
is compact set. K (+,1) is continuous and F(«, «,
A) s value; K (e, o) is

continuous compact

<% 1,1. 1)*Hc")lder continuous. For all x,y €
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E(A),F(x,y, *) is %.1- Holder continuous.
For all x € E(A).A € A, F(x, +,A) is 2. 1-
Holder continuous. Here [, = %,lz =1,m= %»
n :%,al =q =0=y=1andB =1,a = 1. For
alld € Aandy € EQ\S{ (1)« taking © = €

S¢ (1), we have
inf,eryz0d(g.Ro) tinl,cpi,,nd(fR2) =
infee [ (1-0)s]d(g- R+
infe pos7d(fAR-) =
7

6

y*%‘ Zad? (x,y).
5 1
lia >2nl8 = 5 Hence all

assumptions of Theorem 5. 2 hold and thus it is

valid.

It holds thatg = a6 =

6 Holder continuity of solutions to
(DVMQEP2)

In this section, we discuss the Holder conti-
nuity of solutions to (DVMQEP2).

Proposition 6. 1  Assume that the solutions
for the problem(DVMQEP2) exist in a neighbor-
hoodN Q) X N(p) of the reference point (X,p) €
A X M. Assume further that the conditions in
Proposition 3. 1 hold, then for any (A.x) € NQ)
X N () +S¢(Ap) is compact subset in E(1).

Proof It suffices to show that S (A, p) is
closed in E(1). Since E()) is compact. Take any
sequence {x, ) €S5(A sp) with x,—x,. It follows
from x, € E (1) and the compactness of E(1).
Suppose that x, € S¢ (A, x). Then Jy, €
K (xy54) s such that F(x,30,p) N Q = . Since
K (+,)) is lower semicontinuous at x, for y, and
{x,)}, there exist y,—>y,. As x, €S4(A sp)» there
exist ¢, €F(x,,y,,x) NQ. From condition (b),
we have F(+, +,z) is upper semicontinuity with
compact values, there exists z, € F(xo,y0,p)
such that z,—>=z,. Noting the closeness of Q, we
have z, € Q. This leads to a contraction. Thus,
20 €SY(Asp) and S (A, is closed set.

Theorem 6.2 Assume that the solutions for

the (DVMQEP2) exist in a neighborhood N(2) X
N () of the reference point (A,p) € A X M and
the conditions of Proposition 6. 1 are satisfied.
Assume further that the conditions (1), (iii) , (iv)¢
and (v) in Theorem 5. 2 hold and the condition
(i) in Theorem 5. 2 is replaced by

(i) There are constants @ > 0,8 > 0 such
that V¥ (.)€ NQQ) X N(p), satisfying

ad®(zsy) < sup d(g. —Q) +

g€ F(y.v0

sup d(f, — Q).

FEFG.

Then the Holder continuous condition satisfies for
any (A ,p1) and (A, 520 in N X N(z)
H(Sj(/\l 9/11) 9S§(Ag a/,lg))<

(o) 4 e

2nly \F e
(Q_M?) d7 QA (3D

Proof The proof is similar as the Theorem
5. 2 with suitable modifications. For Case 1 of
Step 1 in the proof of Theorem 5. 2, we consider
that SY (A4 p0) TS (Arspeo) and S§ Ay s ps) ESE
Qysp1).

For any x (A1) €S9 (X)) \SY (A1 a2 ) 5 by
virtue of the assumption (ii%), there exists
such that

ad® (x5 p1) sx(hy s pn)) <

SUPge Feax, '/*1)“’“1-#2)%2)‘1(5;’ —Q)+

SUP f€ Fa( ey a3, .,11)./12>d(f, —. (32)
Since x(A15p1) € K(x QA1) 540,21 5p2) €
K(xQsp2) A1) K(ey o) s
€ K(xQispm)sdi)sa, €
K (x (A1 5p1) 541) such that (20) holds. Because x
Qispr) €55 s g )y x Ay pr2) € S5 (A0 s 2 s
we have

FlxyyaQsp) spn) C (— Q)

FlaysxQyape) sp) C (— Q).

From (32), we have

adﬁ(fl’(/l] Ly 25 ) yl'(A] aﬂz))<

Holder continu-

ous, there exist x;

SUPge Fathy ey a2 .,AZ>.#Z>d(g7F(.Tz yx (A,
p1) 5 21)) T SUP fe FGGy iy ey iy A F
(o2 Qyspz) sp)) SHF (A sp) s
Ty sp2) spee) s F(p s Ay s prn) )
HF(xQyspz) sx Ay sp) spez) s
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FlaysxQyspz) spa)).
Then the proof follows by similar argument in
Theorem 5. 2.

Now we give an example to show that Theo-
rem 6. 2 is applicable when the solution mapping
is set-valued.

Example 6. 3 LLet X =Y = R,A = M =
[0,1].0 =R.,

K(x.4) = |:)k +x :|
P(x,d) = [% } e(xsysd) =
(- - rha-»(§ )]
then
EQ) = [“1%2}

Consider that A = 0.5 and N(A) = A. Then
F(x,y,A) # F(y,x,A). Direct computation show
that

EM) = [A1],5 () = [A*.1]
and S (1) = [A,1], VA € A. Obviously , for all
€ A,E(A) is compact set. K(+,1) is continuous
and F(e

«,A) is continuous compact value;

K(ey o) is (% 1,1. 1)*Holder continuous. For

all z.y € E(A)F(x,y, ) 15— 1-Holder con-

tinuous. For all x € E(A),A € A,F(x,

1
2

‘9/1) 1s

2. 1-Holder continuous. Here l, = .0, = 1,m =

%,n :%9011 =@ =0=y=1landp=1.,a =1.
ForallA € Aand y €E(A)\SY (1) taking;:%e

S¢ (1), we have
inf,eryrnd(g-R) +inf erc,,0d(fR) =
infge[%(%,y),gjd(g,Rf)+inf/5[o_g]d(f,Rf):

1 _
g‘y_?‘ >ad'@(fr,y).

It holds that 3 =a16 = 1,a > 2nl} = % Hence all

assumptions of Theorem 6. 2 hold and thus it is
valid.

Remark 3 Although the structure between
Theorem 3. 2, 4. 2 and Theorem 5. 1, 6. 1 are

symmetric, the applications of Theorem 3.2, 4.2

and Theorem 5. 2, 6. 2 are independent each other
whenever the solution set of primal and dual

problems do not coincide.

7 Application

In this section, we apply mixed Minty-type
dual vector mixed quasi-equilibrium problems to
mixed Minty variational inequality (MMVI) (see
Remark 2).

Let X be a normed space, M,A be a nonemp-
ty subset of normed Y = R and C = R,. Let
K(x,2) = K(Q),K:A— 2" be a set-valued map-
ping with nonempty values. We use S (+, +) to
denote the solution set of MMVTI,

Corollary 7. 1
(MMVD) exist in neighborhood N(1) *X N(zu) of

the reference point (A,x) and the conditions of

Assume the solution for

Proposition 4. 1 are satisfied. Assume further
that the following conditions hold:

(1) There are constants « > 0 and 8 > 0 such
that V (A,p) € N XN, YV yEE(NQ)H\S?
Qsp)» Jx €SY(Ap) satislying

ad’ (2, y) <d([T(x.p) y—x]+

G (yap) — (o) R+
d([T(ysp)sx—y]+
G(xsp) — (v R ;5

(i) K (+, +) is .o Hélder in N(Q);

(i) VA € NQ) .Yz € KT (xs +)m,.
r~Holder continuous at /: and ¢(x, ) is n,.
1-Holder continuous in K (N Q) ) ;

(v) VA, € NQOXNQ@),.YVa e KQ),
T(e,u) is ny. 1-Héldercontinuous in K(NQ))
and ¢(e,p) is n,. 1-Holder
K(NQ));

(v)K(N@Q)) is bounded and Vax €
K(N@)).T(x.pu) <y >0 for somev > 0.

Then for any (A, .+ ) and (A5 »p5) in NQQ) X
NGO .

H (S A5 p) s ST Quapn)) <

continuous in

1
. + N T v
<M)@#1,Mr+

a

<Z(n1r+v+n2 )l

a

1
>ﬁ/11 */\(1/%.

Proof To apply Theorem 5. 1, we just need
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to verify the Holder continuity of F. From Re-

mark 2, we know F(x,y,pu) =[T(x) sy —a]+
G(yop) — ¢lx,p).

Firstly, YA€ NQ) . Va.y € KO Y pr s peo

€ N(u»
|F(asysm)— F(a,y.pm) | =

| [T (xop) sy — a1+ ¢y ) — ¢(xopm ) —

[T(xop) sy =2 ]=¢(yom) = ¢(xm) | <
[T (xop) = T(xaps) sy —x ]|+

[ (o) = @) [+ | plaam) = gl | <
T(xsyp) = T(xop)y —x+2myp — o’ <

Mmip — 'y —xt 2mapy —pa.
Notice the boundedness of K(N (1)),

\F(I,y,m )*F(Iayv/lz ) ‘ <
(myT +2my )y — 27 s

where r: = sup,.,excna>>ax — y<+ oo

Secondly, Yz € K(NQ)),VYy.y, €

K(NQ)).

| F(yisasp) = F(yssasp) | =

| [T (yisp)sx —yi J T p(asp) — (o sp) —
[T (yosp)sx —yo J=P(aap) + g (yzap) | <
[Ty s =y J= [T (ysp) s — v ]| +
‘gb(yls/z)*gl)(yg ’/12)‘<

[ LT s = 1= [T s =3 ]|+
[ LT o) s = 1= [T () s = 3] |+
My T Y2 Mmyr Ty X it

T(yZ’}l)yl — Yy Ty <
(mit+v+n)y —y.

Hence, the Holder constant of Theorem 5.1 are

fullfilled with Z,

= 0,q, is arbitrary,
l, = lyay = am = mt+2m,,

n=mt+v+n andd = 1.
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