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Abstract: In this paper, some necessary conditions for a given global minimizer applied to mixed integer

nonlinear programming problem with bounded constraints which arises in continuous as well as discrete

optimization are developed. Also, some sufficient global optimality conditions for mixed integer nonlin-

ear programming problem with bounded constraints are established. The global optimality conditions

readily apply to problems whose objective functions are generally twice continuously differentiable. If

the objective functions are quadratic, then the global optimality conditions become verifiable. Some sim-

ple numerical examples can illustrate the significance of the optimality conditions.
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1 Introduction

Consider the following mixed integer nonlin-
ear programming problem with bounded con-
straints;.

min,cg f (2)

(MINP) sctoxi €lussv, |, i €M,

1 2, €{pjsp; t1segiysj €N,

where f(x):R"—R is twice continuously differen-

tiable on an open set containing the feasible set of

K EE: 2016-07-31
EE£TE: WIAHEFTELNHELS (4ZA0270)

the problem MINP, M,NC{1,2,-+,n},MNN=
G MUN={1,2,+sn}su;>v; €R and u; <v, for
any i € M, p,;.q; are integers, and p; <qg; for all j
€N.

Model MINP cover a broad range of optimi-
zation problems which arise in important applica-
tions of continuous as well as discrete optimiza-
tion. Problem MINP has widespread practical ap-

plications, such as manufacturing, management

science, operations research, engineering design,
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reliability networks, computational chemistry,

(5] The approa-

facility planning and scheduling
ches to solve problem MINP may be found in
Ref. [6]. However, it is very difficult to solve
problem MINP due to their nonlinear properties
and mixed variables in the objective function.
Furthermore, we even don’t know whether the
results we found are the global ones.

Recently, much attention has been focused
on globally characterizing optimal solutions for
various special cases of problem MINP. Beck et
al.'™ have established a necessary global optimal-
ity condition for nonconvex quadratic optimization
problems with binary constrains. Jeyakumar, Ru-
binov and Wu'® have obtained necessary global
optimality conditions, which are different from
the Lagrange multiplier conditions for special
classes of quadratic optimization problems. Jeya-
kumar et al. have obtained sufficient global opti-
mality conditions for a quadratic minimization
problem subject to box constraints or binary con-
straints in Ref. [8]. Li, Wu, and Quan"™ have
established some necessary and sufficient global
optimality conditions for quadratic integer pro-
gramming problems. Jeyakumar et al. " have es-
tablished some necessary and sufficient conditions
for a given feasible point to be a global minimizer
of some minimization problems with mixed varia-
bles. Wu et al.™ have established some global
optimality conditions and given global optimiza-
tion methods for quartic polynomial optimization
problems. Quan and Wu"'* have established some
necessary global optimality conditions and some
sufficient global optimality conditions for some
classes of polynomial integer programming prob-
lems. Jeyakumar er al. presented necessary glob-
al optimality conditions for polynomial problems
with box or bivalent constraints using separable
polynomial relaxations in Ref. [ 13]. Zhao and
Zhang™*' presented some global optimality suffi-
cient conditions by combining the lagrangian
function, L-subdifferential,.-regular cones.

In this paper, we establish some necessary

global optimality conditions for a given global

minimizer of mixed integer nonlinear program-
ming problems with bounded constraints. We al-
so derive some sufficient global optimality condi-
tions for mixed integer nonlinear programming
problems. Then necessary and sufficient global
optimality conditions for the mixed integer quad-
ratic programming problem are considered. Nu-
merical examples are also given to illustrate the

significance of our optimality conditions.

2 Necessary global optimality condi-
tions for MINP

In this section, we derive the necessary glob-
al optimality conditions for problem MINP at a
given global minimizer z. Firstly, we present
some notation that will be used throughout this
paper. The real line is denoted by R and the n -di-
mensional Euclidean space is denoted by R*. For
vectors x,y € R",x =y means that x, =y, for all £
=1,2,++,n. The notation A = Bmeans A —Bis a
positive semidefinite matrix and A << 0 means — A
= 0. For problem MINP, let
S:={x=(a) 25,2 |x: €[u;sv,],i EM;
2, €{piabiri st sj ENJY
S:={x=(xy 250" |z €[u; v, ], i €EM;
x; €Lp;q;].j ENJ.
Let 2 = (&, sx55 s2,) T €S for anyi € M,j € N,
k€ M U N, we define
-1, ifx,=u,,
=<1, ifx,=v;,
sign(7 f(2)) ;s if u; <a; <w;,
-1, if;j =pi»
Jl, if z;, =q;,

;=
Lign(vf(;))j if py <z, <q;

2, (7 f (),
by, =————,
! V; T Uu;
_ 2, (7 f()); (7 f(x);
/);. fmax{ ’ }9
J 1 q; —Pi

by = (b, sbyyseersbe DT
where
—1, (v f(x)), <0,
sign( f(x)), =<0,(v f(x)), =0,
11,(Vf(1?))k>0.

For a given vector (a;sazs***sa,)’ s we define
n
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Q:diag(m ' 2 9"'»0(,;)9
(;, :min{o’a;} ’
Vi€M,aq, =a,,VjEN,

Q=diag(a saz " sa,).

Theorem 2. 1 ( Necessary global optimality
condition) For problem MINP, we assume that
there exists a diagonal matrix Q =diag(a; sass***»
a,) s such that v* f(x) —Q < 0 for eachx € S. If
x € Sis a global minimizer of problem MINP ,

then the condition

[NC] diag (b, ) <5Q

1
7
holds.

Proof Let h(x) :%ITQI (V@) Q)T

and ¢(x) = f(x) —h(x). Then we have that
Vip(x) =<' f(x) =V h(x) =
v f(x) —Q<0,Vxe€S.
Thus ¢(x) is concave on S and
Velx)=vf(x)—Vh(z)=0.
So we get that p(x) < ¢(2), Y € S and
flao)= flao)<h(x)—h(x)
holds for all x € S. That is to say,
f(x)— f()<h(x)—h(x),YVx €8S.
So, if x is a global minimizer of problem MINP,
thenh(z)—h(z)=0,Yx € S.

In the following, we prove

n

[ Con =20 4 (9SG~ |

k=1
>0, foranyx € S (D
if and only if, for any & = 1,2, ,n,

T G =)+ (V) (=) =0,
for any x €S (2)

In fact, if there exists al, € M and a v, € [u;sv, ]
such that

1 -, - _
o, (yz() Xy, ) (7 f () )zo (yzo —xy, ) <0,

we let i, =y, and x, =x, for all L€ M,1#1, X, =
;j for all j €N. Then z=(x,,25,**»2,)" €S and

we have
D3] Gon a0t H (V@) x|

1 - - -
?011(J (yz() Xy, )E+ (v f(x) )zo (y/[) Xy, ) <0,

which contradicts to (1). If there exists aj € N

and a y; €{p;,p; +1,--+,q;} such that
1 - B B
?0(]’“ (y/<1 7170 )h +(Vf(1) )fo (yj‘] 71/0 ) <O’

we let x, =z, for all L€ M,z; =y, and x; =x; for
all j EN,j#j,. Then x=(x,,25,***,2,)" €S and

we have that
2[%(1,\,(“ 2O+ (T L) —xk)]:

1 — - _
?ajo (yjo 71‘10 )Z + (Vf(.r) )j<) (yJ(J 7‘rf0 ) <O’

which contradicts to (1).

Now we verify that (2) is equivalent to the
condition diag (b;) <%@ We consider the fol-

lowing six cases:

Case 1. If x, =u,, then (2) is equivalent to

T (=) + (V@) 20,

for any x, € (u;sv, . If @, =0, then(2) is equiva-
lent to (Vf(x)),; =0; if a; <0, then (2) is e-
quivalent to

(v, —u)Da,

2

So if x; =u,, (2) is equivalent to

(Vf(x)),=—

(‘U[ 71/{/)0/1

2
If x,=v,, then (2) is

2, (V f(2)), <min{0, b

Case 2.

%az(fz ) (V7 f(x)), =<0,

for any z, €[ u,sv,). If @, =0, then (2) is equiva-
lent to (V f(x)), <0; if a, <0, then (2) is e-

(v, —ua,

5 . So if x, =

quivalent to (V f(x)), <

v,5 (2) is equivalent to

(‘U[ *u[)a[}

2
If u, <z, <<v,» when z, € (x,,v, ],

2, (V f(x)), <min{0,
Case 3.
% a, (x,—x,) +
(Vf(x)), =0, when x, €[u,,x,), then (2) is e-

then (2) is

equivalent to

quivalent to %a, (1 —2) + (7 f(2)), <0, S0 if

w, <x;<<v,, (2) is equivalent to (V f(x)), =0,
a,; =0, so (2) is also equivalent to

(‘U[ *u[)a[}

2

If x; =p;, then (2) is equivalent to

2, (7 f(x)), <min{0,

Case 4.
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1 _ _
5 (z; —x;) H (v f(x)); =0,
for any x; €{p, +1,p;, +2,--,q;}. If a; =0, then

a;

2
is equivalent to (Vf(x));, = —

(2) is equivalent to (V f(x)); = —L; if a; <0,

then (2)

Qo= pDas gy i
2 /

=p;» (2) is equivalent to

o (4= p)a,
(&, b,

If x; =q;, then (2) is equivalent to

2, (V f(2)); <min
Case 5,

%aj(x,. —x;) F (7 f(x)); <0,

for any x; €{p,,p, T1,--,q;, —1}.1f a; =0, then

(2) is equivalent to (v f(x)), <%; if o, <0,

then (2) is equivalent to (Vf(x)), <

w. So if x; =q;» (2) isequivalent to

a; (¢ —pa;

{2 , 5 b
Case 6. If x;€{p, +1,-

€ {x; +1,2.q;}» (2) is equivalent to

2, (V7 f(x)); <min

»q; —1}, when x,;

1 _ _
?a,(l’j —x;) T (Vf(x)); <0,
when z; € {p;, =+, z;; — 1}, then (2) is
equivalent to

1

a; (x; —x;) F (7 f(x)); =0,
So if x; €{p; +1,++.q, — 1}, (2) is equivalent to

a;

2

a;

< (V) <% @ =0, so (2) s

equivalent to

a; (9171{71)0’1
{2 T 7.

By the above discussion, we know that if x is
a global minimizer of problem MINP, then [ NC ]
holds at .

Remark 1

of problem MINP is generally twice continuously

2, (7 f(x)); <min

Note that the objective function

differentiable, while the objective functions of
programming problem in Refs. [ 7, 9, 15 ] are
quadratic, this result also extended the corre-
sponding one in Ref. [12] to generally mixed inte-
ger cases.

We now provide a simple example where the

necessary global optimality condition can be veri-

fied numerically.
Example 2.2 Consider the problem

min,eg? f(x): =

—x5 —4dx, + 2x, *ilf .

8+ dx 16
X1 6[7292]g
s. t.
xne{—2,—1,0,1,2},
here
v f(x)=
(—%x? +2x, +4xy, — 4,42, =22, +2)7,
, Z—Ex? 4
Vif(x) = 4 .
—2

By Example 2. 2, we know x =(2, —2)7 is a glob-
al minimizer, then v f(x) =(—10,14)" and b, =

5 7. _ 5 0
( 5 2) .Let Q (O 4). We have
, - *S*EVT% 4
Viflx) Q= 4 <0
4 —6

for all z; €[ —2,27. So condition diag (b; ) é%@

holds. Therefore, condition [ NC] holds at the
global minimizer z.
Now, we consider a special case of the prob-

lem MINP, mixed integer quadratic programming

problem:
min, e g» %ITAI +atzx +ec,
MIQD 3¢ ¢ 2 €TusioTiieM,
11‘.7‘ €{pjspit1lssgi ) j EN,

where A €S” and S” is the set of all symmetric n
X n matrices, M,NC{1,2,++,n) MAN=C , M
UN={1,2,.n},u,;,»v; €R and u; <v; for any
€M, p,;.q; are integers and p;, <q; for all j € N.

For given x = (x| s23 s+ s2,) " €S, for any i €M,

jEN, we let
-1, ifx,=u,,
=<1, if x;=v;,
sign(a +Ax) ;s if w, <, <v,,
=1, if x; =p;,

}-= 17 if;Tj:q]
sign(a +A;), 1) lf P, <-T_/ <QI ’

vV Tu;
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2 (atAx);, x;(at+Ax)
1 Toq P
d. =(d, +d, sod, )"
By Theorem 2. 1, we have the following result
which has been given in Ref. [15].
Corollary 2. 3 For problem MIQP, we as-
sume that there exists a diagonal matrix
Q=diag(a;ass-*
such that A —Q<C0 for each x €S. f x €S is a
global minimizer of problem MINP , then

L

b,} =max{

50(,,)7

the condition
[QNC] diag(d.) <%Q
holds.

An example is now provided to illustrate that
the global minimizer satisfies necessary optimality
condition [ QNC] of the problem MIQP.

Example 2.4 Consider the problem.

min,egt f(x): = %T{ + 23 *%Tﬁ + 22120 —
xix3 T 22,75+ 2y —5ay T x5,

X1 s X3 6[052] .

s. t.
x, €{0,1,2},
3 2 —1
here A=| 2 2 2 |,a=(1,—5,1)". By Ex-

-1 2 —1
ample 2. 4, we know x = (0,2,0)" is a global
minimizer, then
atAz=(5,—1,5"
and

d:=(—2.5,-0.5,—2.5)7.

6 0 O
Let Q = |0 6 0|, we have A — Q =
0 0 2
—3 2 —1
2 —4 2 | < 0. Condition [QNC] diag
—1 2 —3

(dy;) %Q holds at the global minimizer x.

3 Sufficient global optimality condi-
tions for MINP

In this section we present sufficient global
optimality conditions for problem MINP.
Theorem 3. 1 ( Sufficient global optimality

condition) For problem MINP , we assume that
there exists a diagonal matrix Q=diag(a; sass***»
a,) €S", such that

JV () —Q=0, Yz €S,

1
2

holds, then z is a global minimizer of problem

MINP .

(Sc -
Idlag(l) ) <-Q

Proof Let h(x) =%ITQI (v f(@) —Qu)'x

and ¢(x) = f(x) —h(x). Then we have that
Vip(x) = f(x) =V h(x) =
Vif(x) —Q=0,Vx€S.
Thus ¢(x) is convex on S and
Ve(x) =< f(x)—Vh(z)=0.
So we get that o(x) 2@(;) ,Vx €S and
f(x) = f(x)=h(x) —h(x)
holds for allx €S. That is to say
fx) = f(x)=h(x) —h(x),YVx€S.
Soif h(x) —h(x)=0,Y x €S, then x is a global
minimizer of problem MINP,
Similar to the proof of Theorem 2. 1, we
can prove

h(x) —h(z)=
2 [%ak(l‘k 7;k)2 + (vf(;))k(lﬁ 7;k)]

k=1

=0,

for any x € S is equivalent to the condition diag

Q. By the above discussion, we know

(b <%

that if condition [ SC] holds at x, then z is a
global minimizer of problem MINP.

Remark 2
gramming problem in Refs. [7~ 9, 14, 15 ] are

The objective functions of pro-

quadratic, what discussed in Ref. [ 127] is some
classes of polynomial integer programming prob-
lem, while the objective function of problem
MINP is generally twice continuously differentia-
ble, so this result extended the corresponding
ones in Refs. [7~9,12,14,15].

The following example shows that the point
which satisfies our sufficient global optimality
condition is a global one.

Example 3.2 Consider the problem

min,eg? f(2): = 2% + dayx, —af —4da, +
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ZIZ_EJ']Iy
X 6[7292]9
s. t.
rne{—2,—1,0,1,2},
here
V()=
( —%113 +2x, +dxy, =442, =22, +2)7,
) 2*11% 4
Vif(x) = 4 )
4 —2

Let x=(2, —2)". Then v f(x)=(—10,14)"

(o _ Ty _ (> 0
and b, ( 9 2 )'. Let Q ( 0 77).
We have
_ 7*é1f 4
vVif(x) Q= 4 =0
4 5

for all z; €[ —2,2]. And the condition diag(b;)
<%C~2 holds. So condition [ SC] holds at =, hence

z=(2, —2)T is a global minimizer of Example
3. 2.

By Theorem 3. 1, we have the following re-
sult which has been given in Ref. [15].

Corollary 3.3 For problem MIQP, we as-
sume that there exists a diagonal matrix

Q=diag(a;sazs***sa,) €S"
such that

JA*Q)O, Vxe€S,
(QSO) Idi

ag(d;)<%Q

holds, then z is a global minimizer of problem
MIQP.

An example is now provided to illustrate that
conditions [ QSC] can be used to identify a global
minimizer of the problem MIQP.

Eexample 3.4 Consider the problem

3 1

minep? f(2): = =2 + 25 —=2i + 22,2, —

2 2
x5 T 22,725 + 20 — 5, T x5,

X1 s X3 6[052]9

s. t.
x, €{0,1,2},
3 2 —1
here A=| 2 2 2 |,a=(,—5,D". Letx
-1 2 —1

=(00,2,00" and a +Axr =(5, —1.5)" and
d; :( 72. 59 70. 57 72. 5)T.

Let
-5 0 0
Q=10 —1 0
0 0 )
We have
8§ 2 -1
A—Q=|2 3 2 |=0
-1 2 4

Then condition [ QNC] diag (d;) <%Q holds at
z. So x is a global minimizer of Example 3. 4.
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