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Time-dependent global attractor of nonlinear evolution

equation with nonlinear damping
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Abstract: In this paper, we consider long-time behavior of solutions for the nonlinear evolution equation

with nonlinear damping. With the theory of process on time-dependent spaces and some detailed esti-

mates, we prove the existence of the time-dependent attractor for the nonlinear evolution equation with

critical nonlinearity by using the contractive functions.
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1 Introduction

Let Q be an open bounded set of R* with smooth
boundary dQ. We consider the following equations
uy, —Autalx)gu,) —e() Au, + f(uw) =
hizx), x€Q, t>7,
(ulxso)u,(xst)) =(uo () su () s x€Q,
Ul =0, x€3Q (D
where u(x,2) is an unknown function, h(x) € L*(Q),
e = () is a decreasing bounded function along with
lime(z) =0 (2)
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and there exists a constant L > 0 such that
sup[[e() |+ [ [I<L (3)
The function a(x) satisfies
alx) € L™ =a) >0 €]

in ), where q, is a constant. The nonlinear damp-

, alx)

ing g € C'(R),g(0) = 0, here g is strictly in-
creasing, and satisfies
hmmfg (s) >0 (5

s | e
\g(.s)\\(/o(lJr\.s\”),1<p<5 (6)
The nonlinear term f € C*(R), f(0) =0, and sat-

isfies

[H % [ R Bk 42 (11561064, 11361053) 5 PUIb e K2R AT B 5L 4 (NWNU-LKQN-14-6)
F1991—), L, BRI, FEBIR ML 4EE) )1 R S8, E-mail: 1171638929@qq. com



918 Wl K FROERAFF ) % 54 %

(] <CA+ 5], Vs €R (D

liminf 22 =3, vs e R (8

e

where A, is the first eigenvalue of the strictly posi-
tive Dirichlet operator A = — A ,C, and C, are
positive constants.

Equation (1), which models the vibration of
a nonlinear elastic rod, is used to represent the
propagation problems of lengthways-wave in non-
linear elastics rods and ion-sonic of space trans-
formation"*'.

When ¢ is a positive constant independent of
time ¢ and the damping term is linear, the long-
time behavior of solutions to equation (1) has
been treated in many paperst®. When the damp-
ing term is nonlinear, there were also several
works devoted to this topic under the different
conditions and spaces such as Refs. [13-15,17].

In the case when ¢ is a positive decreasing
function which vanishing at infinity, the problem
(1) becomes more complex and interesting. One
of the reason is that the dynamical system associ-
ated with (1) is still understood under the non-
autonomous framework even though the forcing
term in the equation is not dependent on the time
t. In order to solve these problems, Conti, Pata
and Temam'” presented a notion of time-depend-
ent attractor based only on the minimality with
respect to the pullback attraction property, and
generalized the recent theory of attractors in time-
dependent spaces developed in Ref. [16]. Mean-
while, they exploited the new framework to study
the long-term behavior of the solutions to the fol-
lowing weak damped wave equation with time-de-
pendent speed of propagation

e(Du, —Au-tau, + f(u) =g(x) 9
and obtained the existence of the time-dependent
global attractor, which converges in a suitable sense
to the attractor of the parabolic equation au, — Au +
f(u) = g(x) (see Ref. [10]). Recently, in Ref.
[11], the authors continued to show the asymptotic
structure of time-dependent global attractor to the
following specific one-dimensional wave equation

eWu, —u,, T[1+ef @ Ju, +fGw =h (10)

To the best of our knowledge, the asymptotic be-
havior of the solution for the wave equation with
nonlinear damping g (u,) on the time-dependent
space was first paid attention to by Meng and
Zhong''?, and they structured a new technical
method to verify compactness of the process via
contractive functions and obtained the existence of
time-dependent global attractor to the corre-
sponding problem.

Motivated by Refs. [9~ 127, we study the
existence of time-dependent global attractor for
(1) by using the methods borrowed from Ref.
[12]. Tt is worth mentioning that we make use of
a weaker dissipative condition (8) in present pa-
per, because the conditions (13) and (14) the au-
thors exploited in Ref. [ 12] were derived by
liminf " (s) >— A, (see Ref. [18]).

[ 's] oo

2 Preliminaries

In this section, we iterate some notations and
abstract results.

Without loss of generality, set H=L*(Q),
and equipped with the inner product (+, +) and
norm || « ||. For0 <s <2, we define the hierar-
chy of (compactly) nested Hilbert spaces

H* = D(A?) . (w,v), = (ATw,A%v),

lwll, = AZw|.
Then fort € Rand 0 << s < 2, we introduce the
time-dependent spaces

H,=H'XH" with {a.,b}} =

lall?+161%+e 1617,
Note that the spaces H, are all the same as linear
spaces, and the norm | z || ZHI and | < | )H are e-
quivalent for any fixed ¢,z € R.

For nonlinear function g (see Refs. [14,15]
), by condition (6) we have

g |5 = g |7+ |g|r<

Col + [s]) gl | <Cl+ Cigls)s (11
Furthermore, there holds

| g(s) | <C+Clg(s)sH)itt (12)

Set F(u) = J:f(s)ds. The following results

are immediately obtained.
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Lemma 2, 17

tain that for 0 <A < A,

From (8) it is easy to ob-

J Flwdr >—%Hu|\2—co\m (13)
Q

| foude ==L w1 —clal - an
Q

Lemma 2, 251214171

dition (6). Then for any § > 0 there exists a posi-

Let g(+) satisfies con-

tive constant C,, such that |u —wv|? < & +
Cs(gCw) — g(w))(u —wv) for all u,v € R.
Theorem 2. 32" LetU(+, +) be a process in
a family of Banach space {X, },ex. Then U(e, )
has a time-dependent global attractor U* =
{A; },ex satisfying {A, },er = Qm if

T=s

and only if

(1) U(+, «) has a pullback absorbing family B
={B: }iers

(ii) U(e, «) is pullback asymptotically com-
pact.

Theorem 2. 427 Let U(+, +) be a process
onand has a pullback absorbing family B =
{B, },ex. Moreover, assume that for any ¢ >0
there exist T(e) <t,¢r € C(By) such that

UG, Dax—UG, Dyl <etor(xsy),
Vax,yEBr,
for ant fixed ¢t € R. ThenU(+, «) is pullback as-
ymptotically compact, where C(B;) denotes the

set of all contractive function on By X By.

3  Existence of the time-dependent
global attractor

3.1 Well-posedness and Time-dependent absorb-
ing set

Global existence of solution u to (1) is classical,
by using the standard Galerkin approximation meth-
od™ 7181 | that is, if (2)~(8) hold, then the prob-
lem (1) has a weak solution « with

u€C(z,t].H), u, €C([z.t], H").
Uniqueness of solution will then follow by the
continuous dependence estimate (15) in Lemma
3.1. Therefore, we can define the solution
process with [r,¢],t = ¢ € R. U(,0): H.—H,
acting as U(z,7) 2 (o) = {u(t) ,u,(t) } ,where u is

the unique solution of (1) with initial time r and

initial condition ¥ = {u,,u; } € H,.

For brevity, we denote Cand C;,i=1,2,+ be a
family of positive constant, which will change in the
different line, even in the same line.

Lemma 3.1 Under the assumptions (2) ~
(8), for every pair of initial data z, (¢) =
{uh uty €H,,i=1,2,such that ||z, (o) | " <R,
i=1,2,the difference of the corresponding solu-
tions of (1) satisfies

U2 () — U0z () |y, <

TV s () mn (o) Vi (15)

for some C = C(R) = 0.

Proof Let 2 (7),2,(r) € H, such that
| z(o) |y <R.i=1,2, and denote by C a gener-
ic positive constant depending on R but independ-
ent of z,;(¢). We first observe that the energy esti-
mate in Lemma 3. 2 below ensures

U, D)2 (o) |y, <C (16)

We call {u;(t),d,u,(t)} =UC(t,7)=z () and
denote 2 () = {u(t),u, ()} =U(t,7) 2, (r) —U (¢,
)2, (7). Then the difference between the two so-
lutions satisfies

u, —Au +alx) (gluy,) —gluy)) —
e Auy T fCuy) —f(uy) =0, 2€Q,t>1,
(ulxso)su,(xs0)) =21 — 255
ul,q=0.
Multiplying the above equation by 2u, and integra-
ting over () we obtain

d - —
EH lh @ u I+

2j a() (gCur) — gCun)) wdr =
Q

- ZEf(ul) - f(uz) ’al:l-
Since g is strictly increasing, together with (4)

we have
zj a() (gCur) — gCun)) wde = 0.
Q

By exploiting conditions (7), (16) and Hélder
Young inequality and H'—L°(Q) ,it yields

— 20 fCu) *f(ug),@]<CJ A+ Ju |+
Q

lwe [ cucude <Cllu, IT+CIullt<

Corrr o .
L a7 e a1+
o (L +1 — e
Lhali] =Sty 2.
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Thus, thanks to ¢ (1) < 0, we end up with the

differential inequality

C(L+1D)
e(t)

then applying the Gronwall Lemma on [r,z],

d
a I =Co) |l ?11 < = H, »

we obtain

|2 1% < et | 2o 15,
where C > 0 is a constant depending on R.

Lemma 3.2 Under the assumptions (2) ~
(8), for any initial data 2(z) € B, (R) CH,_, there
exists R, > 0, such that the family B =
{B,(R,) },cx is a time-dependent absorbing for
the process U(t,7) corresponding to (1).

Proof Denote

E0) = 5 UGz I, +

J F(uwdx *J hudzx.
Q Q

Multiplying (1) by u, and integrating over Q,

we achieve

dp +J a()g(u)u dr —
dr Q
“T”Hu, 12 =0 an

According to the conditions of a (x), g (u,) and

e(t), we have

J a() gCupu,dr — D 1y, 12 = o0,
15 2

Integrating (17) over [r,z ], we get

E,(t) <E, (o, Yt =1 (18)
From (13) and Sobolevs embeddings we deduce
E, =88, i+ + 12+
() luli—c Ajuie-
=S g i 2
%(1—%) lulli=cColal ++1hls=

—(C, | al +%uhn2> (19)

By virtue of (8) and Sobolev’s embeddings there
exist positive constants C, >0,: =1, 2, 3, 4,
such that
Ci UGz h —C,<E, (1)<
C: UG,z 1, + C.
Thus, (17) and

together with (19), it

follows that

JIJ alx)gCu,) » u,dxr —

J Q

%J!m lu, () 2ds = E, () — E, (1) <

E, (o) + (C,

Q\+%Hh|\z> 20

On the other hand, combining with (12),
(19) and the Holder inequality, there holds

J a(x)gCu)udx
Q

<CJ a(r)‘u‘dIJr
Q
CJ a(;c')(g(u,)u,)#ﬁ\u\dx <
Q
CJ a(o) |uldz +qllull? +
Q

C, el f/;lJ a(x)gCu)u,dx @D
Q

where y > 0 is a small enough constant, which
will be determined later.
Multiplying (1) by u, +0u and integrating o-

ver (), we obtain

de o +1 =0 (22)
dz

where
Ea([) :Eo(t) +8[u1,u]+8&:(l)[Vu,,Vu:|,
m):% Dy 12 =0 llu, 12—

0e() I as 1740 |2 +6(fCu) vut) —
6(/1,u>+J a(x)gCu)) Cu, +ouwde —
Q

&' (D(Tu, »~u.
In the light of (3), (19), Holder and Young ine-

qualities, taking § small enough, we arrive at

E<t>>@ | u HZ+% la, 112+
1 1
?u—%) Ll =CColal 5 a1 -
) 5, 0
[2 |, |l +2A1 Huul}

Eem lu, 12 +8°L lu | %F

1 2
SST”HM 13210 lu, 7+
I
(1 N —28%L) lul?—
(C, Q\+7HhHZ)>

%( e 12+ luy 124 a2 —
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(Co\Q\ﬁL% A7) (23)

Thanks to (5) and (6), there exist§ >0 and C; >
0 such that

J a()gCu) »ude =28 u, |2 —Cy | Ql.
Q

Moreover,

—0' (D [Vu, ,~vul]=
—%‘s/(t)‘ D e 12 —82L llu |2

Hence, combining with (14), (21) provided pand

0 mall enough, we conclude
I() 2(‘6270‘ —0e(@)) llu, IT—=0lu, I°+

A

5‘Hqu*5?HuH2*6Co‘Q‘*
A 2 i 2 2 _
a[ﬁ bl g ]+za L, |

C,lal —s[cj () [ulde +qlulli+
Q
¢, lulf| aloglu)ude |-
Q
H\gm\ lu, 1% +8°L HMH%F
5( ” 2 2 2 _
Sl 1* 46 Ty 13+ Tu D

C,E, (T)J a(x)g(u)u,dx —
Q

Clal+ 1hlH —oc, |al—
(Clal;=)? 2o
Now, integrating (22) from r to ¢ yields

E,(0 = E(o) — [ 1(ds
Then by (20), (23), and (24), we get

%( la, 17 e T, 1T+ Tull) —M,<

fJ" [%( Lo 112 + e lu, 12+

o ll3) — M, ]ds 25
where

M, =C,(|Q] + I h 1% +6C, Q] +

. A < 1 2
(Clla HI,’“)ZvMQZ((Jo‘Q‘ +7 A%+

CE, (D (E, () +C, | Q| +% I hlI?)+CE, (o).

M,

4 .
Therefore, for any R, = , there exists at, =

z such that
” uz([()) H 2 +€(t<>) H uz(t()> H ]Z +

luCee) | T<R,.
Set B,={(upsu,) €H,: lu, I*+e(o) lu, T+
u, I?<<R,}. so we have B. is a bounded time
dependent absorbing set. Define

B, :,L»JTU(Z’T)B"

Then B, is/also a bounded time-dependent absorb-
ing set.
3.2 A priori estimate

The main purpose of this part is to establish
(35)~(37), which will be used to obtain the as-
ymptotic compactness of the process.

Let (u; (1) Uy (¢)) be the corresponding so-
lution of (1) with initial datum (uf () ,vi () €
{B,}.cr. For convenience, as in Ref. [12], we in-
troduce notations

g =glu;, (), f; ()= f(u;(1)),i=1,2
and

w = u; (1) —u, ().

Then w(¢) satisfies
w, —Aw + alx) (g, (1) —g, (1)) —
eWAw, T /1) —f,() =0, >T,
wlx, T) = ui(T) —ui (D) w,(x,T) =
vy (T) —vi (T,
w|,g = 0 (26)
Denote

E. ()=
1 2 9
?[ [w, 17+ [wli+el@® lw, IT].

Taking the inner product (26) with w, in L*(Q),

we find
%Eu(z)ﬂa(x)(g](z)fg2<f>>,w[]—
M) ) _
2 er Hl+[f17f27u’f]70 ©27)

Integrating (27) over [s,t |, we have
E.(t) —E () +

Jf [aCa)(gi (&) — g, () w, (&) Jde —

SO @ 1 7de +
['Lr = o108 =0 (28)

Thanks toe’(z) < 0, from (28) we have

J'_[am(gl (&) — g0 () vuw, (&) Jde <
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E.(s) —J‘\[f] — frrw (O ]de.

From (3) and Lemma 2. 2, we get that, for any ¢
> 0 there exists C; > 0 such that
e(®|w, |"<L|w,|*<
0L +LC;(g,(&) —g1(&))w,(8).
Then

j';(s) lw, I2de<oL|QlG—T +

GL. oy - C‘*I‘f Cf— frow (®]ds (29

[2x) ? T
Multiplying (26) by w and integrating over ) X
[T.t] we obtain

Jz | w0 | ?ds +{w,,w) +e(){— Aw, ,w) =
T
<w,([),w( ) +<e1 )Vw,(]),Vw(]» +

J[ | w, I *ds Jrﬁ e () {— Aw, () ,w(s))ds +
. i
Jle(s) [ 2w, II'ids *JI Cfy — foow(s))ds —

, .

J;<a<1->(gl ) we(s))ds (30)
Therefore, plus (29) and (30) yields
ZJ/Ew(.ods <2(L+D]alG¢—1 +
:

26, L+ D p oy

Qo Qo
forwords + (w, (T) ,w(T)) +
e(THXvVw (1), Vw(T)) —({w,,w) —
eW(Vw,, Vw) +

2C;(L +1)J"

T

fr —

J;e/(€)<th yVw(é))de —
J;<a(1)(g1 ) w(E))de —

J[T<(f1 ) () de (31)

On the other hand, integrating (28) over
[T.t] we have

(t — DE.(D +J J[<a(x)(g‘1(§) 6 (8,

*t
T

w, ) déds 7%J[ Jle,(g) [ w, || 1deds =
TJ s
—J;J'«fl(s) (8w, (&) deds +
J[Ew(s)ds (32)
)

Since

J a() (g, (&) — g, (e w, (& da —
Q

%5(5) lw, I3 >0,

then together with (31),(32), we conclude
(t—DE, () <
C,(L +1)

Qo

S(L+D Q| G—T) + E.(T +

%<w1(T),w(T)> +

%e(TMVwI(T) () —%m, Jw) —

%e(tNVw, W)

ljze/(sﬂVw,(s)  Tw(s))ds —
2)r

GLLIDL (0 — £ w0, (s~
Qo T

1J;<a(1)(g1(s) e () sw())ds —

pof— o]

J' Cfr — foao())ds —
j' f<f1 —fy w0, () ) dads (33)
TJ s

Next, we will deal with jJ (g,(8) —
TJ Q

g2 (&))wdxdé. Multiplying (1) by u; and integra-

ting over ) we achieve
1d ‘ ‘
?&< Faey 12+ o I1F Fel lla;, 11—

0
2
<f‘(u1[ ) ’u’z > :</’L9u11 > 1)
which combining with (17) ~(19) and the exist-

I u; 3 +<a(x)g(u,-( ) U )+

ence of time-dependent absorbing set, we get
J Calx)gCu; ) ou; yds <
T t t
E,(T) —E,(t) <Cy,

where the constant C; depends on T. Then, it

follows that

HJ a(2) gCu, Yz, s)dads| <
TJ Q

([ atorct + gt -

TJ Q

u; )d;('d.\‘)#(ﬁj a(x) [wlx,s) | dzds)7 <
TJ Q

el el =1+ [ atog,) -
Q
u; dxds]ﬁ(J J a(x) [wla,s) | deds)71 <
Q

t
T

[ColQl lal -G —T) +
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<cgc,,‘>#il]<ﬁj a() |w(as) |7 deds) i
TJ Q

(34)
Now, collecting (33) and (34) we get
(G—DE.()<s(L+D|Q|G—T)+
Cy(L+1)

Qo

E.(T) +%E(T)<Vw,('f) ,

(D) *%<w/(T),w(T)> -

Lenivw, vw +£J |,
2 2J)r

C, (L +1)

Qo

| vw]|ds — J<f’l<s>—
Q

£2(s) vaw,) ds —%j (s —

f2(s)sw(s)dds — J;JIU‘"] —
forw, (&))deds +

L

A(JIJ a(x) |wlx,s) ”'ldyrds)pil )
rJa

where

A=
[,

Q) lall = G—=T)HrF +(C,CH7]
5 )

Set
@'r (Cuo (T s 05 (T)) s (ug (T) 405 (T)) ) =

1

- TJ':‘J_\<f1 — frow (&))déds —

1 I ' ,
m<u}‘ Sw) 201 — T)E(If)<vuf Sy +

ds —

#J | v, || v
20t —T)J1 !

Ca o o
ao(t*T) <f](\) f2(5)vuq>d3

1 o
WJT<J(1(-‘) S2(s)sw) +

A "t ‘ PLI
ﬁ(JTJQa(‘T) ‘W(fvb) ‘/ded«s>

(35)
and

Cy=0(L+D]Q|G¢—T)+

LD E +%<w,(’l‘) (T +
QAo
%s(TﬂVw,(T),Vw(TW (36)

Then we deduce

Cu
< —
E.()=—%F+

o (Cus (D) svi (T)) 5 (ui (1) 505 (1)) (37)
3.3 Asymptotically compact

Theorem 3.3 Under the assumption (2) ~
(8), for any fixed + € R bounded sequence
{x,},-1 ©X, and any {7,},-1 CR"", with7,—> —
©o as n—> oo, sequence {U(t,7,)x, },~1 has a con-
vergent sequence.

Proof For anye > 0, and fixed 7 let T <1,
and ¢t — T so large enough, such that

~

M €
T g2

Hence, thanks to Theorem 2.4, we only need to
verify that o7 € C(B,) for each fixed T.

Let (u,»u, ) be the solution corresponding
to the initial data (uj.vi) € By for the problem
(1), From (18), lu, I° + lau ¥ +e(& llu, I}
is bounded, where the bound depends on the T,
furthermore, [l u, |% is bounded. Moreover, by
(2), (3) forfixed T, £ € [ T,t],e(&) is bounded,
hence | u, |l # is bounded.

According to the Alaoglu Theorem, without
loss of generality (at most by passing to subse-
quence) , we assume that

(1) u,—u* —weakly in L™ (T,t; H (Q));

(i) w, —~u,” —weakly in L™ (T,t; Hy (Q) )

(i) w,—u in L*"' (T,t5L77 (Q))

(v) u, (T) > u(T) and u, (t) = u (1)

in L' (Q).
Here we take advantage of the compact embed-
dings H) (Q)—L""" (Q) (p<<5). Now, we will
deal with each term in (35) one by one.

Firstly, from Lemma 3.2, (i), (ii) and (iv)

we get

hrn hm (u,, (1) —

w, (1)) (u, (1) —

n—>=c0 Mo

u,, (1) =0 (38)

lim hm e(t)(Vu” (1) —

N0 M= ©

Vu,, () (u, —Yu,)dx =0 (39)

11m hmJ J L(7u, (1) —
TJ Q

n—>=co m>

Vu, () (Vu, — YVu,)dxds =0 40)

hrn hmJ J (flu,)—

flun)) (u,(s) —u,(s))dxds =0 41D
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Similar to the proof of the Theoren 5. 4 in Ref.
[12], we have

lim lim [ | (feu—
nmoo moo) TJ 0

S, (u, ) —u, (s))dads =0
At the

(42)

same time, for each fixed ¢,

U JQ (w,, (&) —u, (&) (plu, (&) —¢(u, (£))drds

is bounded , then by the Lebesgue dominated

convergence theorem there holds
tim lim [ [ ¢, -
nrco maood T sJ a
w,, (&) (pu, (&) — ¢lu, (&)))dxdéds =

JI (1im limJ[J (u, (&)~ u, (&) (plu, (&) —
. Ja

N )

o(u, (&))dxdé)ds =0 43)
Finally, by (iii), we derive
L A [ N
tim lim ;2 Lo
w, (s) |7 da)rids = 0 44>

Thus, from (38)~(44) we get that ¢ €C(B,),
so the proof is completed.

3.4 Existence of the time-dependent global at-

tractor

Theorem 3.4 Under the conditions (2)~(8)
the process U (t,7): H.— H, generated by prob-
lem (1) has a invariant time-dependent global at-
tractor U ={A, }.cx.

Proof By means of Lemma 3. 2, Theorem 3. 3
and 2. 3, we know that there exists a unique time-de-
pendent global attractor U = {A, },cr » Furthermore,
due to the strong continuity of the process stated in

Lemma 3.1, we can obtain that U is invariant.
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