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driven by additive impulsive noise
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Abstract: Diffusion of a linear fractional harmonic oscillator driven by both thermal noise and additive

impulsive noise is investigated. By using the Laplace and double Laplace transform techniques and some

basic properties of impulsive differential equation, the mean, variance, correlation function and mean

square displacement (MSD) of the oscillator are expressed by generalized Mittag-Leffler functions with

three parameters. Furthermore, asymptotic diffusion of the oscillator is investigated in terms of the as-

ymptotic properties of generalized Mittag-Leffler function. It is shown that the additive impulsive noise

enhances the ballistic diffusion of the oscillator for short time-lag and adds a constant to the MSD for

long time-lag.
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1 Introduction

The technique of optical tweezers has found
wide application in the measurement of forces on

single molecules and materials in physical and bio-

JL1-5]

physical studies'™', where the mean square dis-
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placement (MSD) of the Brownian particle is one
of the most valuable quantities. In the small-dis-
placement regime, the particle-trap interaction is
approximately that of harmonic potential®®.
Therefore we can consider the Brownian particle

as a harmonic oscillator. In many of the measure-
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ments, the oscillator shows an anomalous diffu-
sive behavior, say, its MSD has the asymptotic
form t*,a # 1. Note that the diffusion is called
subdiffusive when ¢ <1 and superdiffusive when a
> 1.

Anomalous diffusion can be exactly deter-
mined if the dynamic of the oscillator can be for-
mulated in terms of linear generalized Langevin e-
quation (LGLE) or linear fractional Langevin e-
quation (LFLE)" !, which take both memory
effects of the viscoelastic media through a power-
law correlation function into account™. For ex-
ample, Vinales, Wang, and Desposito considered
the anomalous diffusion of harmonic oscillator in
Refs. [12, 137]; Wang and Masoliver considered
the Ornstein-Uhlenbeck noise in Ref. [14], Des-
posito and Vinales considered some abstract noi-
ses defined in the Laplace transform domain in
Ref. [15], Sandev and Tomovski considered the
generalized Mittag-Leffler noise in Ref. [16].

For a harmonic oscillator, the internal (ther-
mal) noise is generally considered to be a continu-
ous stochastic processes. However, the external
noise can be a discrete one, for instance, impul-
sive noise, chaotic noise, Langevin-like noise,
etc. Recently, we considered the anomalous dif-
fusion of the following linear fractional harmonic
oscillator with additive impulsive noiset'"

() + ¥$Dix (1) + Aax () = L(1), 0<q<1

(D
here y is the friction coefficient,
SDix (D)=
1 N IN—a ’
mjo(l‘ ) xHdt, 0 <o <1
x (1), a =1
(2)

is the Caputo fractional derivative, I'(x) is the

gamma function, §(¢) is the Dirac delta function,

and L(¢) = K > y;6(¢t — ju) is an additive impul-
j=0

sive noise with frequency 2 n/v, amplitude K and
weighted by a stochastic or deterministic sequence
{yi1iZ0s(y;> =0,{yy;> =2D5; » here §; is the

Kronecker delta function. If @ =1, the linear frac-

tional harmonic oscillator (1) recovers the classi-
cal one. In this paper, diffusion of the oscillator
is further considered in the presence of thermal
noise &(z), which is a zero-centered stationary
Gaussian process with correlation function

(EEU)H) =C 1t —t]) =

[t ] - :
Ty ———— 3
L G )
due to the fluctuation-dissipation relation"'®, here

T is the absolute temperature and &y is the Boltz-
mann constant. Specifically, given deterministic
initial values x | .=y = 20 »2 | 1= = v, » we consider
the following fractional harmonic oscillator
() + y§Dix () + qx(t) =

L) + &), 0<a<l 4)
here the impulsive noise L(z) is statistically inde-
pendent of £(¢). In order to analyze the effect of
L(#) on diffusion of the oscillator, the MSD

o) = lirfl«[x(t +o =2 (5)

is exactly expressed by Mittag-Leffler and gener-
alized Mittag-Leffler functions with two and three
parameters by using the Laplace and double La-

SUM

place transform techniques and some basic

properties on impulsive differential equa-
tion"* ", here | x(¢z +7) —x () | is the displace-
ment between two time points ¢ and ¢ + 7, here ¢
denotes the absolute time, ¢ is the time-lag, and
the pairs of double brackets are averages over the
internal and external noises respectively. Exact
expressions for the mean, variance and correlation
function of the oscillator are deduced. Then, as-
ymptotic diffusion of the oscillator for short and
long time-lags is analyzed underlying asymptotic
expression of the MSD in terms of asymptotic
properties of Mittag-Leffler and generalized Mit-
tag-Leffler functions.

This paper is organized as follows. In section
2, we deduce the exact expression of x(¢), corre-
lation function of the oscillator are also obtained.
In section 3, we deduce the MSD of the oscilla-
tor. Effect of the impulsive noise on the asymp-
totic diffusion of the oscillator for short and long

time-lags are considered in section 4. The summa-

ry is provided in section 5.
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2 Mean of the oscillator

In order to obtain the exact solution of equa-
tion (3) by using the Laplace transform tech-
nique, let us recall the notion of Laplace convolu-
tion of causal functions, i.e. , the convolution in-
tegral of any two casual functions f, (), f5 (1)
(say, f; () =0 fort <0,j =1,2), which reads in

our notations ast**

f1 (o) * f,() = J‘ file =) fr(Hdl =
S * f1().

The Laplace transform of a casual function

f(t), locally absolutely integrable in R, reads

f) =LLfw] = Ljef"’f(t)dt.

By using the sign " =" to denote the juxta-
position of f(z) with its Laplace transform f(s), a
Laplace transform pair reads f(z) = f(s). Then,
by the convolution theorem of the Laplace trans-
form, we have the pair

[i( % [0 = [1() [, ().

Now, making Laplace transform in (3) and
taking the initial values into account, we have

2(s) = 2,G(s) + v, H(s) +

H()[E() +L(s)] (6)

where H(1),1(t) — J H()de s and GG are de-

fined by their corresponding Laplace transforms:

- - 1
H(‘S)_.\‘erys“ +2A D
1o =1 (8)
.. 1
G(s) =T*AI(S) 9
With the help of the following
s o
['[s“ +as? +iJ] B
N (=@t PIENL o (— )
i=0
(10)
proposed by Haubold ! , we obtain
H(s) ~H@) =
[Z(*y)jt(zia”EéTgl+(2 a)j(ikta) (11)
i=0
I¢) ~I() =

EI V(=T VE o, (— ) (12)
j=0
G(s) +G() =

1= 2 (=Pt E o, (— )

=0
(13

here

r _ (), L
E; (1) = Z Flaj 0 1 (1

is the Mittag-Leffler function with three parame-
ters”", (r); is the Pochammer symbol defined by

LG+ .
(1), = fod =rr s D = D

By the initial-value and final-value theorems,
we have
H) = lirgsH(s) =0,H() = 1in(r)1sH(s) =0
15
I1(0) = li{gsi(s) =0,[(0) = lin(r)lsj(s) =1/A
(16>
G0 = li»r’r}‘s(}(s) =1,G(0) = li%rgl‘(}(s) =0
an
Set my <<t << (n+1)v, herenis a non-negative
integer. Since

H » L) = K> y,H —jv) (18)
=0

J
making Laplace inversion transform in (6),

we have

(1) = Lx()) + H@) = &) +

K> yHG — ) (19

ji=0

where

Lx(O» = 2,G() +v,H(t) =

2o[1 =22 D (=Pt I EL o (D] +
j=0

ot D (= Pt E oy (— A% (20)

=0

is the mean of x(#). Note that (x(¢))) is inde-

pendent of L ().

3 MSD of the oscillator

To obtain the exact expression of MSD, we
need to calculate the correlation function R, (¢,¢")
of the oscillator x(¢) by using the double Laplace

transform technique.
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From (6), we have

Ux(Hx(HY = 22G(HGG) +
CHGHG) + 200, [GG)H(G') +
H()GGH T+ HHHG ) EHES)) +

(H(HOLHHG L)) @D
Since
(E(HEG) :k,gTy% (22)
and
(HHL(HHGHLG)) =

2DK* 2 [H(s)exp(— jus) JLHG D exp(— jus™)]
i=o

(23)
after some algebra we can find that
H(s)H(sH(E(EE)) =
kBT[](.;‘) JrI(.\‘/) I +]/(s,) _
s s s+s
H()HG) =115 ] 24)

It follows that
R, (t,t) =2:G(OGU) +o HWHG ) +
2o [GWHG ) +HWGU )]+
kyTLIC) +1G") —1C|t—1"]) —
HWHG) =AW IE )]+

2DK* > H(t — ) H( — ) (25)

Thus we have

(2P (O» = La@N® + ks TL21() —
H* (1) —AI*(0] +2DK* > H*(t — j»)

(26)
from (16), which means that
2 () =k T[2I(t) — H*(t) —2AI* (D) ] +
2DK* > H* (1 — ju) @n

j=0

From (25), (26), we have
ot =[x+ —x (@) ]) =
Lxo AG(t,7) v AH(t, ) ]+
kyTL2IC ) — AH? (t,0) —2AT (1,0 ]+

2DK* > AH (¢t — jvs1) (28)

ji=0

where
NG, ) = GG+ 1) — G,
AH(t,7) = H( +7) —HW,
Al(t,o) =1t +7) — I(0).

In order to get the exact expression of MSD,

we sett = nv,7 > 0. By lettingt = <o in (28) and
taking (15)~ (17) into account, we have

p(z‘) = 1imp(t,r) =

2kyTI () +2DK* > AH Gy »1) (29)

j=0

which indicates that
p() o< K7,
Note that (29) recovers the corresponding result

of Vinales and Desposito™™!* when K = 0.

4 Asymptotic diffusion of the oscilla-

tor

Now we consider asymptotic diffusion of the
oscillator underlying the asymptotic expressions
of I(¢) and H(2).

When s - 0, we have
s e

—[=- 1] (30)

I1(s) ~
() ys©+ A w s st ow

from (7), herew = A/y. Applying the inverse La-
place transform technique to (30) and using the
following formula for Mittag-Leffler function

with two parameterst'"

p—1 + a — s
LIPE, ;(Lot*) ] Fa 3D
we have
mm%m—Ea(—wﬂf)] (32)

here E,(2) =E,, (2) is the Mittag-Leffler func-

tion. Then, by the following asymptotic property

of Mittag-Leffler function"*

—k

o — Z
E) == 20 5 —ja)’

j=1
an /2 <argz <2mw —aw/2, | z|—> o
(33)
it follows that
I ~ L - Dladsinma. (34)
w Tw
Consequently, we have
Ho =y et Dsinra oy o
dr Tw
(35)

On the other hand, by the definitions of
I(t),H(t), we also have

d—a
__n +—> 0 (36)

1(1) ~ G

ﬁ
2
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3—a
H(t)z%l(t)%t— " a0 (37

ré —a

To investigate asymptotic behaviors of the

oscillator for short and long time-lags, we substi-

tute (34)~(37) into (29) and discuss the follow-
ing two limit cases.

Case 1. ¢ — oo, Since H(=>) =0,H(0) =0,

we have
2DK* > NH(jv.7) ~2DK* > H*Gv) = 7,
j=0 j=0

(38)
It follows that
() ~ 2k, T[ - *L“Qnmf“] g (39
w Tw
which is a power-law decay to

2k T

w

ploo) ~ T2 4, (40)

for long time-lag. Note that the first term of the
right side of (40) describes a diffusion of power-
law resulting from the internal noise £(¢) as well
as the second term describes the effect of impul-
sive noise L (7).

Case 2. z > 0. We have

AHGyv,o) = HGy +70) —HGY) =

H Gwz,j =0,1,2,...

from the mean value theorem. It follows that

2DK? > AH' Gv»1) ~
j=0

Z[2DK* > H G ] = gt 41
=0
2Ty .
[O(T)%(k]gT+772)f _mf4
(kBTjL??z)TZaT"O (42)

which indicates an enhanced ballistic diffusion re-
sulting from the cooperation of internal and exter-

nal impulsive noises for short time-lag.

5 Summary

In this paper, by deriving the asymptotic ex-
pression of the MSD for short and long time-lags,
anomalous diffusion of the linear fractional har-
monic oscillator driven by additive impulsive noise
is investigated. It is shown that the oscillator un-
dergoes a enhanced ballistic diffusion for short

time-lag and a lifted subdiffusion for long time-

lag, which means that the additive impulsive
noise can be used to amplify the experimental re-

sults of optical tweezers experiments.
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