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Stabilization of the weakly coupled Schrodinger system
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Abstract: This paper is devoted to analyzing the stabilization problems of the weakly coupled

Schrodinger system. For this purpose, we establish the interpolation inequality for coupled elliptic sys-

tem. Based on this, we obtain the resolvent estimate for the coupled Schréodinger system, thus obtaining

the corresponding stabilization results.
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1 Introduction

There exist some interesting results on the
stabilization problems of Schrédinger system! .
In Refs. [7, 9], the authors proved that a linear
Schrédinger equation with time independent coef-
ficients is exponentially stabilizable. In Refs. [5,
6], the authors obtained the polynomial decay of
coupled Schrédinger system with variable coeffi-
cients.

However, to the best of the author’s knowl-
edge, there is no reference addressing the asymp-
totic behavior of the coupled Schrédinger equa-
tions. In this paper, we will show the logarithmic
decay property for solutions of the weakly coupled

Schrédinger system with only one dissipation
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mechanism.
Let Q be a bounded domain of R" with C*
boundary. Set
Y=(y1s35ssyn) s Z=(y1,0,+,007 (1)
Let us consider the following weakly coupled

Schrodinger system:

1Y, tAY+AY+id(x)Z=0 in RXQ,
Y=0 on RXaJQ, (2)
Y(O> :Y() in Q

here d (+) denotes the damping function and A( « ) =

(" ( * )),x, denotes the coupling matrix satisfying
Mt e LT (Q) W =hY k=1, 2,0 (3

and whenk = j,

(e ) =
c; C*)

0 else

=i+l and j=1,2,.n—1,
! / )
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bounded Lebesgue measurable real valued func-

We always assume that ¢; ( * ) are
tions satisfying
JO<C () <c} in Q and 0<<d (x) <d, in Q,
10<c( <¢; () in w. and 0<d, <d(x) in wy
(5)
where W swq are any fixed non-empty open sub-
sets of Q, and ¢} ,c} »d, »d, are given constants. In
what follows, we will use
C=C(Qsw, swa) (j=1,2,

to denote a generic positive constant which may

977_1)

vary from line to line.
Put H = (L* (Q))".
operator B:D(B)C H — H, by
DBY= (Y€ H|BY ¢ HY |20 =0},
BY = iAY+iAY —d(x)Z (6)

It is easy to show that B generate a C, - semigroup

Define an unbounded

{e®},cxr on H. Therefore, system (2) is well-
posed in H. The energy of system (2) is defined

as follows:

E(t) = ij Y (toz) |2de =
2Ja

%ZJ |y (tox) |*dx, Wi >0 €
j=179

It is easy to check that
E(t,)—E() =

—FJ d(x) |y (o) |?dade,

1

Vi, >t =0 (8)
Our main results is stated as follows:
Theorem 1.1 Let ¢; ( « ) and d () satisfy
n—1
(5). Suppose that ( ﬂwL Y Nwy #. Then solu-
tion Y =e?Y? 6(,(RJr D(B))NC'(RT;H) of

system (2) satisfies

C
B 0 < 0
He Y H ”\711'1(2+t) HY HD(B) ’
VY 'eD(B),VYt>0 9

It is now clear that, once a suitable resolvent
estimate for the operator B is established, the ex-
isting result for C,- semigroup can be adopted to

L1281 Hence,

yield the desired energy decay rate
to prove Theorem 1.1, we only need to establish

the following resolvent estimate for the operator

B.

Theorem 1.2 Under the assumptions of Theo-

rem 1.1, there exists a constant C > 0 such that for

e C/Tmx
any A € C satisfying ReA € [— C ’0] , it holds
H (Al *B)71 H L = Cetv 1m
for [A] > 1.

The rest of this paper is organized as fol-
lows. In Section 2, we establish the interpolation
inequality for coupled elliptic system. In Section
3, we give the resolvent estimate for the coupled
Schrédinger system, thus obtaining the corre-

sponding stabilization results.
2 Interpolation inequality for cou-
pled elliptic system
We assume that w, is a subdomain of  such
that wyCwy N (:Diw‘} ). Recalling that there exists

A _ .
a function ¢ € C* (Q;R) such that™

A A A .
¢=>0,in Q, ¢$=0on Q. | V¢| >0 in Q\w,
(10)
A
With the aid of the function ¢ defined above, we

introduce a weight function as follows:

g=c', Z=Ago p=e g =¢(s,2) =

LJFIJ —st 1D
Hgb = ca>
here 1 <6 < 2 will be given later, X,; and s are pa-

I, in Ref. [ 3,

Theorem 3. 2], a short calculation can yield the

rameters, x € Q. Let (aj ), =
following knowing result.

Letw € C°((—b,b) X Q;C),
and/ € C*((—0b,b) X Q;R) be given by (11).
Then there is a constant g, > 0 such that for all x

Lemma 2.1

= po» one can find two constants C = C(u) > 0
and 2, = A, () > 0 such that for all w €
H((—b,0)XQ) and w, + Aw = f (in
(—b,b)XQ, in the sense of distribution) with f
€ L*((—b,b)X ), and for all A = A,, it
holds that

2 4

-
A,uZJ /J Fo(|vw|? + |w,

2 2 2

A ple ‘w ydads <

of [t
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Based on Lemma 2. 1, in this section we shall

‘u\\.‘z Jr/lz/lz@z ‘w

prove interpolation inequality for the following
coupled elliptic system:
P, + AP+ AP +id(x)R° =G
inQ=(—2,2)xQ, 13
P=0onX = (—-2,2)X9JQ
here G = (g'.g%,+.gx)" € (L (Q)H", P =
(prspors=spy)” and R° = (p;,0,--,0)". In

what follows, we will use the notations Q,* =

(=2.2) %0 0" = (Nwy) Nay.

First, we have the following interpolation in-
equality for system (13).

Lemma 2.2 Under the assumptions in The-
orem 1. 1, there exists constants C > 0,¢g, > 0
such that for any 0 <<e < ¢,. every solution P of

system (13) satisfies

TPz c—1im cas> <
. .
Ces [ 1G I azgny + 1 pi L@, - y 1+
2
Ce < | P H'(—2.2;H) o) (14

The rest of this section is devoted to proving
Lemma 2. 2.

Proof of Lemma 2.2 The proof is based on
the global Carleman estimate presented in LLemma
2. 1. The main difficulty is to estimate the energy
of the coupled system P = (p,,ps.+spn) local-

ized in o’ byJ | p1|*dx. We divide the proof in-

to four steps.

Step 1. Note that there no boundary condi-
tions for P at s ==+ 2 in system (13). Therefore,
we introduce a cut-off function ¢ = ¢ (5) €
Co (—bsb) such that

0 <o@(s)<1l|s|<b,

{ p(s)=1 [|s|<b

where 1 << b, << b < 2 are given follows:

15

/):«/1 Jriln(Z +e*),
7

b, :\/1)2 L ter ) Va2 A6
i

Put

A A A A
P=¢oP=(pispss=spn) an

Then, noting that ¢ does not depend on z, by
(13), it follows

A A A
JP.\._\. + AP +AP +id(x)gpR" =
o P +2¢,P, +¢G inQ, (18)
A

P=0o0on2X

For system (18), by using Lemma 2. 1 (with w

AA A
replaced by pi s ps» =+, py respectively), we con-
clude that there is a gy > 0 such that for all p =
o » one can find two constants C = C(x) > 0 and

A() = /1() (ILL) > O SO that fOI' HHA 2%() ’ lt hOldS that

7 4

2 b 2 A 2 A
At LJQ@ o(| P|* 4+ | P,
A
Nyt | P|?)dxds <

b
Cll | 01 g +20P, +¢6 -
Q

—b
A
id (x)eR" — A P |*dads) +

b A A
CA#ZJ /J Fo(|~v P|*+|P|*+

A
Aptet | P|P)dads 19
Step 2. Let us estimate

b A A )
J J 0 Cla.p, |* + [V p, [*)dads
—b wg

and

b
J J 92\;§,.\2dxdsfor]‘ =2,3,-,N.

—b 0

) A AA A
Recalling that P = (py.pysspn)’s R* =
(Pl ,0,++,0) and G = (g] 7g2 ,'“,gN) ’ by (3),
(4), system (18) can be rewritten as
A A A A
dp1 T AP, T (x)p, Tid(x)p, =
b1 T2¢.9.p1 Tog' in Q,
A A A A
dop; tAp; T ()p; 1t (x)pjn =
@i T2¢.9.p; Tog in Q.
j=2,.N—1,
A A A
Iy TApN ton— (X)py—1 Z@pn T
2¢0.9.pn Tog" in Q (20)
We choose cut-off functiony € C~ (Q:[0,17]) satis-

fying
() =1, VYV € w>
0 <qg(o)<1l, Vxr €w", @D
p(x)=0, Yxr € Q\o’
Multiplying the second equation of (20) by 6277’”2

T .
D2 » it is to see that
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A A
77]"1’1)2 Ldspe AP ]=

2 1/:9T') A _n2_m, J A 2 __
(97]“sz»73‘7)~ 07]“‘(.\»132‘
((9? ") sz7 Pz

A 2
v ope |t =

2 A A 2
ZD? " pds, pad, — O

Sy,

Integratmg (22) on (—b,b) X Q and noting that

;9 b (22)

po(b) = p; (—=b6)=0in Q, by (11) and (20), we
see that for big enough A,

b
| [ o9 clv pul

C b
AZJ J Hz‘go P2 +2¢0d.py + g’ —

‘9» P/\z ‘2 Ydxds <

A A
a(x)pr —c, (x)ps ‘deds +

;iJ‘ J@ \Vp |?dads +

b A
CIAZZZJ J 62 7]1:121 1 ‘PZ ‘2d17d5
—bJ Q

Step 3. Let us estimate

b ) B
J‘*/}Jﬂe 77 )

It is easy to see that

(23)

2 _m

A A A
N P dupr HAP )=
N N S
9°p"e "pi[dap. t AP, ]t

A A
Loty (P b~ P b ]~
' ) AA
@y, pad pr LD pap ]

, ) A A
[0 7" ). b1l P2t

n , » . A A -
2 [0 77”’2 (pza,j b1 _Plaij Pz)]‘,j -
ji=1

- , . N A
Z (9_ 7]”12 )"'J pza‘r'] 2 +
j=1

Z [(07 my—1 ) pz p] ]Ij .

]

2[(0’7;”»*1) plj P,

On the other hand, multiplying the first equation

24)

of (20) by ¢*y":!

pg , we have

A
()0 g o | P =

) R A A
—0%n": ' pe[dipr TAp ] F

A A
(9277’”27]P2 Loep1 T2¢,9,p JVng] —id (x)p, ]
(25)
Now, integrating (25) on ( —b,b) X Q, noting

that p, () = p, (—b) =0 =1.2) in Q. by (5).
(11), (20>, (24), we find that for big enough A,

)

-
CIeCMU,,J (g |* + | g*|*)dads +

b
J—AL | p1 |? d1d5:|

czmj J@Z(\p1\2+
(—b, I’())U(/7u=/’) Q

[0 [P+ o2 |* + [9p2 [P dads +
b A
C]AMZJ J @277”12 5(‘9\P1 ‘2 +
—bJ Q
A
|7 p1|P)dads +

C
A

(9277’”271 ‘p/\z ‘deds <

A
J J 4 ””“H/»\’Hpa\ﬂdxds

(26)
Also, similar to (23), multiplying the first equa-
N
tion of (20) by 6°p" py. integrating it on
(—b,b)XQ, using integration by parts and no-
A A
ting that p, (b) = p, (—b) = 0in Q, by a simple
calculation we conclude that for big enough A,
b A A ,
J ,J Gy o pi [P+ | pi|P)dads <
wla
G [ 2 1
N, ng ‘QD&\-PI +2¢.d.p1 + g —

id(r)p/\l - (Jz‘)pA | ?dxds +
C,
Al

b
C] e(‘l J,,J ‘p] ‘ d.rd\

where m; .1, sk, €N and m; =5,7=1,2. They can

A
J jm\a oo |2+ |7 o |?ydads +

27)

be selected according to necessity.

Similarly, we can give the estimations of

b . A . A )
J J ¢ Cla, p;|*+ |~ p|?)dads

—b

and

b
J J ﬁz‘igj‘zdxdsforj = 3,--,N.
b @y

Step 4, Combmmg (15, (19, 23), (26),

A
(27) and noting that P = ¢P , we have

A#J J@Zgo(\vP\er |P,|* +
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Nlgh | P deds < R =eMZ0 = (r,10,000,0)7 (33)
b " b
Gt ([ | 161 dads+ | [ 1p|7duds| Therefore
e e P, + AP +id (x)R’ + AP =
2 2 ) = .
Ci (A)Jwb,—b@)uma.mjng ( ‘ P ‘ - —ie/*F in Q, (34)
| P, |*)dxds (28) P =0o0onZ
for big enough A. Next, recalling (11) and (16) Step 2. By (33), we have the following esti-
for the definitions of p and b,b; , it is easy to check mates:
that { I Y’ [ H(])(Q) <

|s] <1,

§0(-§9 * )224’@“9
{ (29)
by <|s| <b

50(59 °) <1 +e”,
Finally, denote ¢, =2 +e*. Fixing the parameter »
in (19), and using (29), one {inds that

s [ [ wpl 4 P+ [Pl deds =
1J Q

C;,e(ﬂ{Ju J ‘G‘deds +J_ J y \pl ‘deds}Jr
—2Ja —2J o

Cs (A)ezxu(fnj ( ‘P‘Z +

| P, |*)dads (30)
From (30), one concludes that there exists an ¢,
> 0 such that the desired inequality (14) holds for
e € (0,e; ]. This completes the proof of Lemma
2.2. C,,C;,C; in this section are positive con-
stants which are only related to x4, C, (1) ,C, (1),

Cs (A) are polynomials about A.

3 Proof of the main result

In this part, we shall give the proof of loga-
rithmic decay results. As we mentioned before,
we only need to establish the following resolvent
estimate for the elliptic system. Thus, we only to

prove the existence and the estimate of the norm
767(.\/ Ima

of (B—X)"', Rer € |: C ,OJ stated in

Theorem 1. 2.
We divide the proof into two steps.
Step 1. Let FEH .Y’ =(y!,3% .. 3)" €D
(B). It is easy to see that the following equation
(B—-2AD)Y* =F 3D
is equivalent to
iIAY" —d(x)Z" +1AY® —AY’ = Fin Q,
Y’ =0 ondQ (32)
where Z° = (31,0,++,0)T. Put

P=e/"Y = (prapeseapa)’s

Ce(fa/ Ima

Pl zc—1amtca s

[Pl et zml o <

Ce/ Tl |y | was o1 iz <

Ce™ Ty 112, (35)
Now, applying Lemma 2. 2 into system (34), and
combining (35), (19), we have

Y"1 it o <CeTHT L F | 2o +

Iy iz, ] (36)
By multiplying the first equation of (34) by 2 y|
and integrating it on ), it follows that
J { Ay —idy! —id (x)yt — 2 Jide =

ol o (x2)y)

—ZiAJ ‘y?‘ZdI+ZJ |7y |Pde —
0 a

ZiJ d(x) ‘y? ‘de *ZJ ()Y Wdr
Q Q

37

Likewise, we obtain that
JQ (— Ay, —idy] — ¢ (0)yja —
¢ (@)y5n)e 2 yyda =
fZiAJ |v) | *da +2J |7y [Fda —
a a
ZJ-QQ (x)yfn y)de — ZJ-QCJH (x)yia yde,
j=2,+,N—1 (38)

J (— A — A% —ex (3% )+ 20 de =
Q
—mJ \y?\v\zderZJ |7 [P —
Q Q

ZJ CN 1(1'))/?\' 1 Kdl (39)
Q

Taking the imaginary part in the both sides of
(37)~(39), we obtain

Jd<1~>\y?\2dx:
(9}

SR IY | e — ch FY'dr  (40)
o)
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Since w* Cwys d(x)>=d, > 0on wy, therefore

dof 13t 17de < [ReA| 1Y 15 o+

%)

J |F|]Y°|dx 41
Q

Combining (36) and (41), we arrive at
Y| H) Q> <

CeYTHT T Fll2cqy +|Rex| 1Y i ca>

(42)
When
Ce®/ T T | Re | <%,
we find that
Y° | H (o <CeV ™I I F | LY 43)

By (43), we know that B —AI is injective. There-
fore B — Al is bi-injective from D (B) to H. Thus

we can find a sufficiently large constant C > 0 sat-

isfying
| B=AI | &g, <CeY/THT,
e CVTImaT
Rexe[—?,o], IA] >1.

This completes the proof of Theorem 1. 2.
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