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Global existence and boundedness of solutions of

a chemotaxis system with logistic source
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Abstract: The properties of solutions of a class of chemotaxis systems with logistic source are consid-

ered. By using prior estimates and decay properties of Neumann heat semi-group, it is proved that there

exists a unique global classical solution for the homogenous Neumann initial value problem in three-di-

mensional bounded domain with smooth boundary if the quadratic coefficients of the logistic source is

sufficiently large.
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1 Introduction

In past decades, the nonlinear parabolic sys-
tem have been widely studied™®. Particularly, in
1970, Keller and Segel proposed the following
chemotaxis Keller-Segel model [,

Ju, =V + (D, (u,v)Vu—yuVv)+

H(u,v),x€Q,t>0,

Iv, =D, (uv)Av+K(u,v), x€Q,t>0,

where u is the cell density, v is the density of the

s BH: 2018-03-21

chemoattrctant, H (u,v) and K (u,v) are model
source terms related to interactions, D, (u,v) and
D, (u,v) are the diffusivity of the cells and che-
When D, (u,v) =
D, (usv) =1 sy =1 and H (usv) =0, K (usv) = —
v+ u, the model recovers the classical minimal
model* ;

Ju, =Au—YV * (uVv),x€,t>0,

Iv, =Av—vtu,xr€Q,t>0.

moattactant, respectively.

The solution of the Neumann boundary value
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problem of this system in bounded domain QCRY
will blow up when N > 3 or N = 2 andJ Uy 18
Q

large!™. When N = 1, Osaki and Yagi'® estab-
lished the existence of global bounded classical
solutions for any sufficiently smooth initial value.

When N = 2, Nagai’” proved the solution is
bounded ifj uy < 47m.When N > 3, Winkler"
Q

obtained the same conclusion if

| Vo, |l LN <e.

H Uy ” L'T}‘*ﬁ(m ’

In view of various biological phenomena and
environment for cells, many variants of Keller-
Segel model have been developed and investigated
(see Refs. [ 6,11 ] and references therein). A-
mong them, some recent works qualitatively
study the effects of interplay between self-diffu-

[12.13]

sion and cross-diffusion , between self-diffu-

L4 or between nonlin-

sion and logistic damping
ear signal production and logistic growth!'*. In
order to address the dependence of dynamical be-
haviors of solutions on the interactions between
nonlinear cross-diffusion and logistic source, the
following model;
u,=Au—V * (uVo)+f(u),x€Q,t>0,

{z"v, =Av—vtu,xr€0,t>0
are exentisively considered. When N > 2, solu-
tions with the logistic term f(u) = 0 may blow up
in finite time"'*'", If¢ = 1,N = 2 and f(u) = yu
— pu’ s where g > 0 is arbitrarily small, all of so-
lutions are global and bounded™. In the case N
< 2, even for arbitrarily small » > 0 are sufficient
to rule out any explosion by guaranteeing global
existence of bounded classical solutions for all
reasonably smooth initial data"®. Whereas in the
case N = 3, the same conclusion holds provided
that ;. > 0 is suitably large’”’. Note that the addi-
tional logistic term destroys the energy structure
of corresponding free Keller-Segel system ob-
tained in the limit case y =z = 0 ") apparently.

Another common type is to consider r = 0
that reflects and takes to a limit the physically
reasonable model assumption that chemicals dif-

fuse much faster than cells move, we can accord-

ingly obtained initial-boundary value problem for
the parabolic-elliptic system. The solutions are
global and bounded whenever ;o > 0 satisfies p >
%, while for any 4 > 0 one can at least con-
struct globally existing weak solutions. The ex-
istence of weak solutions and a bounded absorbing
set in L™ (Q) are proved under more general con-
ditions. In Ref. [20], it is shown that in another
related model:

w,=Au—V * (uVv) Fdu—pu*,x€Q,t>0,

{OA‘U—IH(Z) +u, x€Q,t>0,

the blow-up may occur for space-dimension N > 5

3 1
andl<a<?+2]\77_2.

In short, the logistic source exerts a certain
growth-inhibiting influence which may keep the
solution bounded and rule out blow-up. Current-
ly . most scholars have studied K (u,v) = —v+uin
Keller-Segel model variants, and relatively few in
terms of K (u,v) =— wuv. Therefore, in this pa-
per, we assume that K (u,v) =— uv. Particulari-
ly, we consider the following parabolic-parabolic
chemotaxis-growth system with cross diffusion
and consumption terms:

u, =Au—V * (uVv) tru—puu®,

x€Q,t>0,

v, =Av—uv, x€Q,t>0, [@D)]

Vusn=Voven=0,r€dQ,t>0,

u(x,0) =u,(x),v(x,0) =v,(x) ,x€)
where QC R’ is a bounded domain with smooth
boundary, n denotes the outward normal vector
field on 9Q.r € R, p > 0,u and v represent the
density of cells and the concentration of chemical
substance. In order to specify the framework for
our analysis, let us assume throughout the paper
that the initial data satisfy

juo €EC’(Q),uy =0 and uy,=0in Q, 2

v, €W (Q) v, =0 and v, =0 in Q

The goal of this paper is to build the exist-
ence of global bounded classical solutions for suit-
ably large ;2 under the influence of logistic term in
three dimensional convex bounded domain. The

main theorem of this paper can be stated as fol-
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lows: M such that
Theorem 1.1 Suppose that (2) holds. Then J | Vol + v |l i'\l(“)J e M %)
Q " Q

whenever p >3 +2?3 vy Il i (q »System (1) pos-

sesses a unique global classical solution

(u,v) which is uniformly bounded in the
sense that
e st) o T loCes0) Twe <
Cflorallr € (0,00) (3)

with some positive constant C.

2 Global existence and some prelimi-

naries

We first state the local solvability of System
(1), which can by proved by a straightforward
adaptation of the corresponding procedure in
Lemma 3.1 of Ref. [6] to our current setting.
Suppose that (2) holds. Then
there exist T, € (0, ] and unique classical so-
lution (u,v) of System (1) in Q X (0, T.)
such that

u€C (QAXL0,Tw)) NCH (QAXL0,T o)) s

vEC" (QX[0,T0)) NCH (QX[0,T o)),
Moreover, we have u = 0 and v = 0 in Q X
[0, Th) s and if T, <<co,then

laCe ) 1=+

H U( ° Qt) H w2 ast —> Tmax~

Lemma 2.1

The following lemma is easily obtained but
will be frequently used in the sequel.
Lemma 2.2 If (2) holds, then the solution

of (1) satisfies
J u(l‘,l‘)dl‘émax{J uo,rf“ﬂ‘}:;m 4)
Q Q 7

forallz € (0,T,..) .

Proof The conclusion directly results from
an integration of the first equation in (1) over Q.

As the consequence of the maximum princi-
ple and the nonnegativity of the solution, we have
the following result,

Lemma 2,3 If (2) holds, then the solution
of (1) satisfies

[oCe ) o< v 7 (5
forall t€ (0, T ).

Lemma 2.4 There exists a positive constant

forallt € (0,T,.).

Proof Integration by parts and the Young
inequality results in
d

—J ‘V"U‘Z:ZJ VoeV(Av—uv)<
dtJa Q
74\Aﬂ“ﬂj\vﬂz+
Q Q
ZJ v(u —1)Av <
Q
*j ‘A“U‘Z*ZJ | Vol? +
Q Q
Jvz (u—1)" <
Q

*J | Av
Q

Hmuﬂmjf+2nmuﬁmju+
Q

Z*ZJ ‘V'v‘z +
Q

Q
H Vo H %ﬁ‘(m (D)
On the other hand,
oo |l %j“(n) ij u < 7y oo |l % m)J w —
Yz dtJa Yz Q
H (%) H %”(Q)J uz (8)
Q

To sum up (7), (8), we obtain that

i{[ ‘VU‘Z + I v, Hi“'m)J u}<
dt Q 23 Q

2.
7<J‘ ‘V?)‘ZJF v Il L (Q)J u)Jr
Q 7 Q

+1 )
(2 1o N3 + 7 \mwpmﬂu+
ll Q

H Vo H ?,'“(Q)-
Since Lemma 2.2 shows that J u(x,t)dr <
Q
maxU uo,r;\Q\ } forallz € (0,T,.). a com-
o p

parison argument leads to
P H Vo H i“(m
| Vol|? + ——L2| y <
Q IU Q

. vy I~
max{ | Voo |2 + =22 wy, v 122 +
[1 Q

, +1
2 lo | + 2

w101

3 Boundedness of u,v

l Vo [ ? SR}

This section contains the main step of our a-
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nalysis by establishing an estimate for a combina-
tionofJ uZ,J \VU\1andJu\V'z}\2.
Q Q Q

Let us first derive the following differential

inequality forJ u”.
)

Lemma 3.1

QJ u’ +J \vu\2<J u' | Vo 2+27J u -
di)a Q Q Q
Z#J u® 9
Q
forallt € (0,T).
Proof Testing the first equation in (1) a-

gainst u, we can obtain

iij u* :,J \vu\2+J uVue Vo+
2 dt)a Q Q

}"j uz */IJ u3
Q Q

for allt € (0,T,..)» which directly results in (9)

by using the Young inequality to yield
JuVrovéiJ | Vul® +
Q 2 Q

iJ W | Vol forallt € (0.To).
2Ja

Lemma 3.2

d

A volt 4] 19 1vol? ) <
tJa Q

7 vy |l % (Q)J u’ ‘VU‘Z +
Q

2
ZJ \V‘v\za‘aﬂ (10)
10 n

forallz € (0,T,.x).
Proof Using the facts

Voe Vav=+a| Vol = | Dol

and | Av| <3| D*v|, we can derive that

1df v
4 dtJa ‘VU‘

J | Vol*Voe V(Av—uv) =
Q

%JQ |Vol?A|Vol? —
J ‘V"U‘Z‘DZ"U‘ZJrJ wo | Vol Av+
0 0

Ju’uV"u- V| Volt <
Q

1
AL

L v vl =] 19ol® D)t +
2 Ja Q

2 d ‘V'U‘z _
dn

V3 o i | wl Vol D] +

v | ,;m)f uVwoeV | Vol (1D
Q

Then an application of Young's inequality to the

last two integralyields

V3 lw | | Vol? Dol +
lo | aVoe 7| Vol* <

[ 1vol? D70l +
Q

3 ; - ,
I H Vo [ i’”(mJ u’ ‘ VU‘ 4
Q

1( 2 |2
v Vel +

lon 1| @ |70,
[0}

Inserting this inequality into (11) and rearranging

it, we arrive at our conclusion.

Lemma 3.3
ij, 2
aQ Qu ‘V‘Z}‘ +

(wr1-Z i, H)J i | Vol <
3 a

s 11 21 °
3] [ Vul* +5| [V Vol +
Q 12 Ja
rju‘V‘z;‘2+j uM 12
Q 20 dn

forallr € (0,T,.).
Proof A direct calculation shows that

ij 2 _
Q& Qu ‘V?)‘

JQ | Vool* {Au—V « (uVo)+ru — )+

ZJ uVoveV (Av—uv) (13)
Q

We can thereupon derive from integrating by
parts and employing the identity

Vove VAv = %A | Vo|? — |D*v|?
that

d

—j u | Vol? :*J VueV |Vol|* +
dtJa Q

J uVosV | Vol +rj u | Vol|? —
Q Q
#J u’ ‘Vv‘er

Q

J ul | Vol? *ZJ u |D*v|? —
Q a
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ZJ ut | Vol? *ZJ wVus Vo =
Q Q

fzj VueV \vp\wj uVoseV |Vol|® +
Q Q

rj u| Vol —<#+2>J Wt | Vol? +

Q Q

J uai‘vv‘-—ZJu‘Dzv‘z—

20 an Q

ZJ uoNVuse+ Vo (14
Q

for allt € (0, T,.). Then one can estimate by the

Young inequality that
—2[ Vue v Vol <
o

if \vu\2+éj |V | Vol|?]? a5
2Ja 3J)a

JuV'U'V | Vol? <
Q

Ju \Vv\2+ij v | vel?| a6
o 4 Jq
and
*ZJ quu-VvéiJ | Vul? +

a 2J)a

2 2 2 2

L o N ] wt | V0l an

3 Q

forallt € (0,T,.). In view of (15)~(17),the i-
dentity (14) readily implies (12).

In view of Lemma 3. 1~3. 3, we can easily see
the following result.

Lemma 3. 4

i{ﬁlj u2+J ‘VU‘4+JM‘VU‘2}+

dt Q Q Q

J \vu\2+ij \V\VU\WH;#J ut +
Q 12Jq Q

(/1*3*23*3 Il v, Hf(m)J uZ‘V"U‘2<
Q
8rJ u’ JrrJ u | Vol? +
Q Q
. 2
of ol LLTel L]
20 an

forallt € (0, Thu).

2
um (18)
n

20

Next we will show that if 4 is suitably large,
then all integrals on the right side in (18) can ad-
equately be estimated in terms of the respective
dissipated quantities on the left, in consequence
implying the L? estimate of « and the boundedness
estimate for | Vo|.

Lemma 3.5 Suppose that

p =3 +2§ B
Then there exists positive constant C such that

| wen=c (19)
and

JQ | Vo) |t =C (20

forallt € (0,T,.).

Proof Let
y(t):Z‘lJ u2+J ‘V’U‘1+JM‘V’U‘Z.
Q Q Q

Sincc#23+2§

I vy 12 » Lemma 3. 4
implies that
y/(t)er(l‘)JrJ | Vul? +
Q

1 2|2 J P <
IZJQ‘V | Vol + 8 S

(8r+4)J u? +(r+1>J ul|Vol? +
Q Q

J ‘V"U‘*‘nLZJ ‘Vv‘zia‘vv‘“ﬁL

Q 20 an

j uw 21
a0 O

Using the Young inequality, we can assert that
for any & > 0, there exists some C, > 0 such that
the first three terms on the right hand side fulfil-

ling

(8r+4)J u? +(r+1)J ul Vol? +
Q Q

. .
[ 1volt < {8+ CTD [ et
Q Q

2f Vol <
Q

S#J u3+8j | Vo|® +C (22)

Q Q

for allz € (0,T,..). Recalling the boundedness of

J | Vo|? asserted in Lemma 2. 4, we can apply
Q

the Gagliardo-Nirenberg inequality to estimate

j Vo5 = | |Volt % <
a L3

«
2
C IV |Vol* 132w | [ Vol? 15, +
8

Co Il [Vol* | <

3
JRNE))

cJ 1V | Vol? |2 + G
9]

forallt € (0,T,..) and some positive constants
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C,,C,. Taking § =

in (22),we arrive at

1

<8r+4)J. u? +(r+1)J. u | Vol? +
Q Q

2

j \vwgsﬂj uuij 1V | Vol?| +
Q I5) 24 )a

1
C, +ﬂ (23)

The boundary trace embedding””W%’z () is con-
tinuously embedded into L* (dQ), which guaran-
tees the existence of C, > 0 such that

o llizcon <ca lellwrzo
for all g € W2 (Q).

On the other hand, since W'"?(Q) is com-

pactly embedded into W72(Q) and WT2(Q) is
continuously embedded into L', then the Ehrling
lemma entails that for any e > 0 we can pick

C; (¢) > 0 such that

2 2
Jouf <C Tl <
2Q

f 1velr rc@of] gl )

for all g € W"?(Q). This estimate and the one-si-

ded pointwise inequality"**
J ’ ; :
M < C, ‘ \V&? \ 2

dn

for allx € 9Q and¢ € (0,T,..) with some C; >0
enables us to estimate the two rightmost sum-

mands in (21) as

zj | ol 2LVl +J W 21Vl
20 dn

0 n
. LG,
3G | | Volt+=0 W <
a0 4: a0

i 2 |2
24Jﬂ\v |Vol?|? +

3C; ()G, (JQ vaz +JQ | Vul? +
C (e)C, 2
S0 [ 1) =

i 2|2 J 2
24Jn\v [ Vol [+ ] [Vl +C

(24)
forallt € (0,T,..)s where C; = 3C; (e)CsM* +

C; (e)Cym®
4

ma 2. 4, respectively. Substituting (23),(24) into

with M,m as in Lemma 2. 2 and Lem-

(21) ,we conclude that

V() +y()<Csforallt € (0,Tm)

withCy = C, +C; + i, which immediately leads

to
y<t>z4J u’ +J | Vol +J u | Vol? <G
Q Q Q

for all t € (0,T,..) with some positive constant

C, from the comparison argument.

With the boundedness ofJ u’ andJ | Vol
a a
at hand, we can derive the L™ estimate of u by u-

sing the variation-of-constants formula now.

Lemma3.6 1, =3 + %3 I o |2 then
there exists C > 0 such that

lwCest) || 17 <C (25)
forallt € (0, Thax)

Proof @ We first use the variation-of-con-

stants formula to represent u(+,t) for each t €

(05 Thux ) as

M(‘,t) — e(rftU)Au(.’t()>7J e(tf.x)dv .

)

(uCoys)Voule,s))ds +
JT e VA Gru(eys) —pu’ (ous))ds  (26)

0

= (t—1)..
from the maximum principle that
e 2% (e stg) | 1= <

Ieo Il = o @27

ift € (0,1]and if £ > 1 then the L” — L estimate

where ¢, Then one can easily infer

for the Neumann heat semigroup yields C, > 0
such that

G028y Coutg) e <

Cl (t7t0)7% H uC* st0) H L@ T
C, e e sty ) [ L7 <C,m (28

e

2

Noticing r& — p&” < Z— for all ¢ € R, we can esti-
/l

mate

Jz e(ﬁx)&(ru(.,s)—/luz(-,s))ds <

)

t 2 2
j e ge = = (29
ty 4/’( 4/’(
2
where C; = .
Ap
Finally, we will estimate the second integral
on the right hand of (26). Fix an arbitrary p €

(3,4). The known smoothing properties of the
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Neumann heat semigroup (Ref. [10], Lemma 1.
3) provides C; > 0 fulfilling

H J CVNT e (ue ) Vol ds | =

0 «

clj (=) T JuCers)Vo(ons) | reads

(30)
The Holder inequality implies that

luVolirg<luliag | Vol o<
Sp—4 i—p
4p

tp
(N7 I 7 I

I Vol L' s

which yields positive constant C; fulfilling

I e 29 s e ToGnds | =
L

to €]
! 13 it
C [ o5 w1, T Gy

‘o

according to (4),(20) and (30).

Denote U(T) : =sup,e co.r> luC s st) | 1=
for any T € (0,T,.x). Noticing thatt —¢, <1, e-
quality (31) shows that

I J eV e (ueys)Voule,s))ds H,” <

0 «»
S5p—4 1 1 3
C.U7 (T)J 6 7 hds (32)
0

In view of (26)~(30),(32),we can obtain C; >0
such that

U(T)<C, +C,UT (T)
forall T € (0,T,..) s which directly yields

U(T) <max{1.,(2C;)77}
forall T € (0,T,.). This is our desired conclu-
sion.

Since the boundedness of |l u || ;=g has been
verified, we can deduce the boundedness of Vv as
follows.

If the initial data condition (2)

holds and if ;=322 |l v, 7o+ then there ex-

Lemma 3.7

ists a positive constant C such that the solution of

(1) satisfies

[ VoCe )| o <C (33)
forallt € (0,T,..)
Proof @ We use the standard estimate for

Neumann heat semigroup to conclude that
| VoCest) Il 1o <
| Ve2v(e,0) |l L T

t
J [ Ve %% (eys)v(ess) |17 <

0

Cl TLJ‘I Cz (1 + (Z *.\‘)7% )ei/\l(tiﬂ .
0

laCessdvCoss) Il 1= s
where A, denotes the first nonzero eigenvalue of
—A in Q under the homogeneous Neumann
boundary conditions. Since [[u( ¢ ,2) | = <C
and (5) is valid, we can obtain our result immedi-
ately.

Proof of Theorem 1.1 In combination with
Lemma 2. 3, Lemma 3. 6, and Lemma 3. 7,we can
draw our conclusion.

Remark The result of Theorem 1.1 can be
extended to any ¢ = 2, that is to say, if the first
equaion is

u, =Au—V » (uVo) tru—pu(a=2),
then we still have Theorem 1. 1. The proof for
that is just a trival modification of the present one

by making use of Young's inequality.
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