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Abstract: The existence of positive periodic solutions of the following second-order differential equa-
tionu” +a () u=f(tsu) +c(t) is considered via Schauder’s fixed point theorem, where « € L' (R/TZ;
R.), ceL'(R/TZ;R), fis a Carathéodory function. Our main results generalize some known results.
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1 Introduction In the case that a () =0 and f(t, u) = % )
In this paper, we are concerned with the ex- (1) reduces to the special equation
istence of positive periodic solutions of the sec- ’/:% +e(D) (2)

ond-order differential equation

L HaDu=Ftw) +e@) D which was initially studied by Lazer and Solimini ",

under the following assumption;

(CO) a€ L' (R/TZ;R), c€ L' (R/TZ;R),
f€Car(R/TZX(0,0),which means a |, 1):[0,
T]—=>R" ,and C|r.17:[ 0, T]>R" are L' fanctions
with period T,R), which means f|r,1:[0,T] X
(0,000—>R is a L'-Carathéodory function, and f is

singular at u =0.
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There they proved that for A =1 (called strong force
condition in a terminology first introduced by
Gordon “**1), a necessary and sufficient condition
for the existence of a positive periodic solution of

(2) is that the mean value of ¢ is negative,

g
c;—TLdﬁ&<O.

Moreover, if 0 <<A <1 (weak force condition),
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they found examples of functions ¢ with negative
mean values and such that periodic solutions do
not exist.

If compared with the literature available for

0107 and the refer-

strong singularities, see Refs.
ences therein, the study of the existence of peri-
odic solutions under the presence of a weak singu-
larity is much more recent and the number of ref-
erences is considerably smaller. The likely reason
may be that with a weak singularity, the energy
near the origin becomes finite, and this fact is not
helpful for obtaining a priori bound needed for a
classical application of the degree theory, and also
is not helpful for the fast rotation needed in recent
versions of the Poincaré-Birkhoff theorem. The
first existence result with weak force condition
appears in Ref. "', Since then, the equation (1)
with f has weak singularities has been studied by
several authors, we refer the reader to Refs, ['21%
and the references therein.

[3) showed how a weak sin-

Recently, Torres
gularity can play an important role if Schauder’s
fixed point theorem is chosen in the proof of the
existence of positive periodic solution for (1).
From now on, for a given function £€L*[0,T |,
we denote the essential supremum and infimum of
Eby & and &, , respectively. We write £>0 if £=
0 for a.e. t€[0,T] and it is positive in a set of
positive measure. Under the assumption

(HO) The linear equation «” +a (t)u =0 is
nonresonant and the corresponding Green’s func-
tion

G(t,s) =0, (t,5) €[0,T]*x[0,T],

Torres showed the following three results;

Theorem 1. 17 Tet (C0), (HO) hold

and define
T
o = JOG(Z,S)C(.s)ds (3)
Assume that

(H1) there exist b€ L' (0,T) with >0 and
b(t)

u/\

A>0 such that 0<{f(z,u) < , for all u>>0, a. e

te[0,T].
If y. >0, then there exists a positive T-periodic

solution of (1).
Theorem 1, 2!/
sume that
(H2) there exist two functions b,b € L' (0,
T) with b,6>>0 and a constant A € (0,1) such that

0<PD — p(p, ) <D
u u

Let (CO), (HO) hold. As-

’ uG(O,oo),

a.e. t€[0,T].
If y. =0, then (1) has a positive T-periodic solu-
tion.
Theorem 1, 3"
hold. Let

Let (C0), (HO) and (H2)

. T .
B« = min (JOG(t,s) b(s)ds) s

t€[0,T]

g = min (| Gobsd.

te[0.7T]
If v, <0 and

then (1) has a positive T-periodic solution.
From the proof of Theorem 1. 1~1. 3, it is
easy to see that (H1) and (H2), in which f is

bounded by functions of form u%, play a key role

in the using of Schauder’s fixed point theorem.
Obviously, (H1) and (H2) are too restric-

tive so that the above mentioned results are only

applicable to (1) with nonlinearity which is

bounded at origin and infinity by a function of the

[14]

form % Very recently, Ma et al. generalized

Theorems 1. 1~1. 3 under some conditions which

allow the nonlinearity f to be bounded by two dif-
ferent functions % and % with 0 <<a,B<<1. It is

easy to check that for fixed « € (0,1),
In(1+w) . ;. In(1+4+w _
min *O, hm - .

t u u—>+w

li

u—>0

0,

and there exists a constant C(g) such that

Cla) 1
u° <1n(1 +u)

Of course, a natural question is what would hap-
pen if (H1) and (H2) are replaced by the follow-
ing weaker conditions (Al) and (A2), respec-

yu€ (0,00,

tively:
(A1) there exist b€ L' (0, T) with 6>>0 and «
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>0 such that

b(t)
In(1 4u’)

d. €. tG[O,T];
(A2) there exist two functions b,b € L' (0,
T) with b,6>0, ¢ €(0,1), such that

b(1) b(1)
</t <0

O<f(l‘gbl)< ’ u€(0,00)9

0< , u€ (0,00,

ua
a.e. t€[0,T].
Let

T
B, — JOG(t,s)b(s)ds.

. T )
B(T). = JO G(t,s) b(s)ds.

In this paper, the following three theorems are
obtained.

Theorem 1.4 Let (CO), (HO) and (A1)
hold. If y. >0, then (1) has a positive T-period-
ic solution.

Theorem 1.5 Let (C0), (HO) and (A2)
hold. If y. =0, then (1) has a positive T-period-
ic solution,

Theorem 1.6 Let (CO), (HO) and (A2)
hold. Assume that there exists r, such that

=

ln(?’o +1) (To Y« )Nﬂ
BT e

4

and
b/

<
TS Gy —y e

(5

If y* <0, then (1) has a positive T-periodic solu-
tion.
Remark 1

rem 1. 1. Theorem 1.5 generalizes Theorem 1. 2.

Theorem 1. 4 generalizes Theo-

Theorem 1. 6 deals with a case which can not be

covered by Theorem 1. 3, see Example 1.

2 Main results

Proof of Theorem 1.4 We denote the set of
continuous T-periodic functions as Cy. Notice
that a T-periodic solution of (1) is just a fixed
point of the completely continuous map A:Cr—

C1 defined as
(Aw) (D) :J:Gu,s)(f(s,u(s)) Fe(s)ds =

j:Gu,s)f(s,u(s))ds Yy

where y(z) is defined as in (3). By Schauder’s
fixed point theorem, the proof is finished if we
convex set

prove that A maps the closed

defined as

K={u€Cr:r<u(t)<R, forall t€[0,T]}
into itself, where R>r>0 are positive constants
to be fixed properly.

For given u € K, by the nonnegative sign of
G and f, we have

(Auw) (1) =

T
J G(as) FCsau(s))ds +y(0) =
0

y() =y, =:r
For every u € K,

(A (D) :J.:‘G(t,s)f(s,u(s))ds o <

b(s)

LG“’“ In(L + )

ds +y* <
B
In(1 + %)
Therefore, A(K) C K if r =y and R =
B*
In(1 +y%) -
finished.

Proof of Theorem 1.5 We follow the same

+}’X :R

v *. Clearly, R>r>>0 so the proof is

strategy and notations as in the proof of Theorem
1. 4. Define a closed convex set

K={u€Cr:r<u(t) <R, for all t€[0,T]}.
By a direct application of Schauder’s fixed point
theorem, the proof is finished if we prove that A
maps the closed convex set K into itself, where R
and r are positive constants to be fixed properly
and they should satisfy R>r>0.

Then, for given u € K, by the nonnegative
sign of G and f, it follows that

T
(Au) (1) = JO G(t,5) f(syuls))ds +y() <

b(s)

T
Jo (I([sS) ln(u T 1)

ds +y* <

B
In(r+1)

On the other hand, for every u €K,

+vyr.

T
(A (D) = JOG(t,s)f(s,u(s))ds o) =

b(s)

u

;
fG(t,g ds +7, >
0
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T b(s) B,
JOC’(Z"‘) T ds = R 3 An example
Thus‘AuEK if 7,R are chosen so that Let us consider the following boundary
B. B~ 1 bl
= value problem
R =T WmGin 7R P :
. B u//+u217+] —e, 0<<1 (10)
Note that B. ,B* >0 and if we fix ﬁ =r, then n(u+1D
4 w(0) =u(l), ' (0) =u'(1) (1)
_ (B
R=( r ) (6) It is easy to check that the function m sat
the second 1nequa11ty holds if r verifies isfies (A2) with
B%
< R
(D 7 e a=ts bO=12, b=l
In(1+r) S
Since lim———5—" =0, inequality (7) holds if we This impies that
r—>0 Ta

choose r small enough. Therefore (6) is satisfied
and R>r>0.
Remark 2

rem 1.5 is also valid for the special case that ¢(2)

It is worth remarking that Theo-

=0, which implies that ¥y, =0.

Proof of Theorem 1. 6 Define a closed con-
vex set

K={u€eCr:r<u(t)<R, forall t€[0,T]}.
By a direct application of Schauder’s fixed point
theorem, the proof is finished if we prove that A
maps the closed convex set K into itself, where R
and r are positive constants to be fixed properly
and they should satisfy R >»r>0.

For given u € K,

(A (D) = J:G(z‘,s)f(s,u(s))ds () <

b(s) i . B*
DY S+

On the other hand, for every u € K,

J:Gu,s)

T
A = [ G flsauto)ds +7(0) =
B.
Ra
In this case, to prove that A(K) CK, it is suffi-
cient to find 0<<r <R such that

JG( Ls >”(‘)d fy, =By (s

B. B
=T 7<
R TET G R )
Now, let us take
I
r=re R (7’0*}’*)1/{1.

Then (5) yields » <<R. Moreover, (4) and (8)
imply that (9) is true. The proof is end.

1.2 1 1
o S D St

u€ (0,00,

Since the Green function of the linear problem
d Hu=0,0<r<1,
{u(O) =u(1),u'(0) =u"(1)
can be explicitly given by

PR S

G(Za.\) 2(170081).
{sin(ts)+sin(1t+s), O<<s<t<l1,
sin(s —¢) +sin(l —s+#), 0<r<{s<l,

it follows that

1
VO :JOGu,s)(—e)ds N
R 1 R
B :J G(tas) b(s)ds — 1. 2.
0

B() = J:G([,s)b(s‘)ds =1,

and subsequently

y.=—e B.=12, B =1
=0. 2 and let ¢ € (0,0. 1] be a con-
stant. Then the conditions (4) and (5) are satis-
fied. In fact,

Now take ¥,

In(1.2) __(0.2+0.1)> _0.09 _
1~ 1.2 1. 44
(0.2—(—))*
L2r

1.2? 1.2?
. —_ <'—
(0.2+0. 1)? 16\(0.2*(*5))2'

Therefore, we have from Theorem 1. 6 that (10),

0. 1823~
0.0625=

0.2<<

(11) has a positive 1-periodic solution for each e €
(0,0. 1.
However, it is easy to see that wecan not ap-

ply the results of Ref. [18] to guarantee the ex-
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(11

function of form

e of positive 1-periodic solutions of (10),

since can not be bounded by a

I S
InCe+1)

u(;’ where ¢ € (0,1) and C is a

constant.
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