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Periodicity and almost periodicity for solutions of third-order
differential equations with piecewise constant argument
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Abstract: In this paper, we consider the following third-order differential equation with piecewise con-

stant argument:

2

give the form of the solution in term of the solution of the corresponding difference equation. Then we

27 —a* 2 () = bx(Z[iiD )

give some results on the periodicity and almost periodicity for the solutions of the equation.
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tractive topics in the qualitative theory of differ-

1 Introduction . . L
ential equations due to their significance and ap-

Differential equations with piecewise con-
stant arguments, introduced by Cooke, Wiener
and Shah!'"?!, have been studied intensively over
the past few decades. Periodicity and almost peri-

odicity of this kind of differential equations are at-
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plications in physicology, control theory and oth-
ers. Therefore many works appeared in this field
(see e. g. Refs. [3-10]).

In 1994, Papaschinopoulos and Schinas-'"

studied the existence, uniqueness and asymptotic
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stability of solutions for the equation

(v(0) +py<t—1>>/”:—qy(z[%]),

where [ » ] is the greatest integer function. In
2012, Zhuang''* presented some results on the
existence and uniqueness of almost periodic solu-
tions of the following Nth-order neutral differen-
tial equations;
(1) +pxrt — 1)) =que ([t])+ f(D).

In 2013, Zhuang and Wu'"* studied the almost
periodicity for the third-order neutral delay-differ-
ential equations of the form

(x(t) +px(t — 1)) =qe ([t ]+ f(D).

[14] con-

Recently, Bereketoglu, Lafci and Oztepe
sidered the oscillation, nonoscillation and perio-
dicity of a third-order equation

7)) —a’ 2 () =bxr ([t —1]).

Motivated by the above-mentioned results, in

this paper we consider the following system

[ —a? ' () = m(z[%])

1.’[(_ D =a.2'(=1) =aq,2(=1) =a
(D
witha,b € R such that
(a® +ab — absinha) (a® —ab +bsinha) #0 (2)

2 Preliminaries

Let Z, N and R denote the sets of all inte-
gers, positive integers and real numbers, respec-
tively, and forn €N and p €N, Z[n,n+p] =7 N
[n,n+ p]. We denote by BC (R,R) the Banach
space of all bounded continuous functions f: R—
R with supremum norm and by B (Z,R) the Ba-
nach space of all bounded sequences {c,}, € Z
with supremum norm. Now, we give some defini-
tions and lemmas, which can be found(or simply
deduced from the theory) in any book, say Ref.
[15], on almost periodic functions.

Definition 2. 1 A functionx :R—>R is said to
be a solution of problem (1) if it satisfies the fol-
lowing conditions:

(1) 2”7 exists on R with the possible exception
of the points (2n — 1) , where the one-sided 3rd

derivatives exist;

(i1) x satisfies (1) on each interval [2n — 1,
2n+1D,n € Z

Definition 2. 2 A subset S of R is called rela-
tively dense in R if there exists a positive number
L such that[asa +L] NS # @D foralla € R. A
function f € BC (R,R) is said to be almost peri-
odic if for everye > 0 the set

T(fse) ={z:| fGt+0) —f(D| <e for all tER}
is relatively dense in R. We denote the set of such
functions by AP(R).

Definition 2.3 A set P €Z is said to be rela-
tively dence in Z if there exists a positive integer p
suchthat Z[n,n +p] NP #Qforalln € Z. A
sequence x € B (Z,R) is said to be almost period-
ic if for everye > 0 the set

T(xse) ={r€Z:|x(n+1) —2(n) |

<e for all n€Z)
is relatively dense in Z. We denote the set of se-
quences by APS (R).

Lemma 2,4 x € APS (R) if and only if
there exists f € AP (R) such that f() = x(n)
forn € Z.

3 Main results

3.1 The form of the solution

Because of the piecewise constant argu-
ments, by the Picard theorem for the classical or-
dinary differential equations, we can get easily
the existence and uniqueness of the solution for
system (1). Now we induce the difference equa-
tion corresponding to (1).

Let x(2) be a solution of (1), and

() =c,, 2’ () =d, 2" (n) =e, . nEL.
Then (1) reduces to

() =X () =bcot €[2n—1.2n+1)n€Z.
Fort € [2n—1,2n+1),n € Z, it is well known
that the solution of the above equation is given as

x(t) =K, +L,cosh a(t —2n+1) +

M,sinha(z‘,—ZnJrl)—c%thn (3

with constants K, ,L,and M,. Letting t=2n—1 in

(3), we have

o =K, L, —%(271—1)%, 1)
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3
Taking t =2n —1 in the first and second deriva- From (4) and (5), we derive
tives of (3),respectively, we get K, —c ez,, Ly )(Zn Des, 6)
d271 1 b 76211*1
M, = * gc)”’L” a’ ) Substituting (5) and (6) in (3), we have
|
() = —1 Jrcoshzz(t*Zn +1)e2,,71 +smha(t;Zn +1)d2”71 e
b b .
+<—u;u—an+1>+a§nmao—an+1ﬁc% D
a a
and then
2 () :Smh“(f;Z"H)eZ“,l +eosha(t—2n+ Dy +<§cosha<f 20+ 1) —%)cz,,,
, (8
xﬂ(t)::Cosha(t‘*ZNA%l)e%fl‘%asinha(t‘*ZHAFI)dﬁﬁq‘%;:sinha(t‘*Zn*#l)c%
By the continuity of x(z) , settingt = 2n +11in (7) and (8), it follows that
o —cu +91nh2ad)” 1 Jr<CoshZa 1 )6271—1 L (/)sm?Za 2{3)%1 ’
a a a
dz,,+1 (COQth)dm 1 +smh2a €21+ ([)COaSZhZCL 7£)C271 ’ (9
a1 —a(sinh2a)ds,—; +(cosh2a) e, erstha Com
Meanwhile, settingt = 2nin (7) and (8), we get
(1 +% 765171/;}161 >CZ;1 —Cop—1 +Slnhad2n*1 + (m 7i )6211 19
a a a*
(ab2 bCZShCl )Cg,, +d},, (COSh(l)d)” 1 +Sll’1ha€2”71 ’ (10)
_ bsinha

Con Jr €21

=a(sinha)d,, ; +(cosha)e,, 1

Let v, =(c,.d,se,) and

1 sinha cosha 1
2 2

| sinh2a  coshZza 1 @ a a
a a’ at D = sinha
0 cosha L
A= sinh2a ,
0 coshZa a 0 asinha cosha
0 a(sinh2a) cosh2a Then (9) and (10) become
bsinh2a 20 0 0 Vo1 =A Vo, 1 TBVy, s Cvy, =D vy, .
3 2
a a Let w, =v,,—1, we obtain the difference equation
B — /)0057;12“ 7% 0 0l, corresponding to (1)
“ ) ¢ w, 1 =(A+BC 'D)w,,n€Z,
bsinh 2a 0 0 i (1)
a Wo:(aoaal,az)l
b bsinha The matrix C is invertible because of condi-
] +b osinha . . .
a’ a tion (2). Then it is easy to get the characteristic
C— ﬁ? B bcozha 1 0|, equation of (11);
a a
_ bsinha 0 1 e —a® —2 a®cosh2a +ab (1 —2cosh2a) ersmha
a

a® +ab—bsinha
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a® +2a’cosh2a +ab (1 —2cosh2a)+ bsinhaA B
a® +ab — bsinha
a® +ab + bsinha

a® +ab — bsinha
We notice that the eigenvalues A # 0 by (2).

Now we have the following theorem.

Theorem 3. 1 The form of the solution of
system (1) with condition (2) is as follows.

(D) = DOF+LE)w,

t€2n—1,2n+1) ,n€Z (12

where

L= (1

a

sinha(¢t —2n +1) —1 + cosha(t —2n + 1))
a b

2

L) —(—L2G—20+1) + Lsinhac — 20 +1),0,0) C'D
aZ a.)

|
and w,=(wy, Pw,, P*w,)Q, (X) is the solution of
(11). Here P=A+BC 'D and Q,(}) is a vector
determined by the eigenvalues A, ,A;,A; in the fol-
lowing 3 cases:

(1) if all the eigenvalues are simple,
1on Af) (A
Q.0=|1 2 3| |A (13)
I A A3 A3
(i) if 31 =A2 #A;, then
1L x A (A
Q,0=10 A 22 | s

1 A A A%
(111) lf Al :Az :Ag . then
I a A

0,(V=10 A 2i nAl
0 A 4AT n*

Proof It is obvious that (12) holds from (6)
and (11). So we need only to prove that the solu-

tion w, of (11) have the required form.
(1) If all the eigenvalues are simple, the so-
lution of (11) can be given as
w, =Xk, A5k, A%k, 1

where k; = (ki kyjksi)"s j = 1, 2, 3. Then
we have
(Wo s Pwo s PPwy) = (wy s wy s wy) =
L oa Af
(kiskosks) |10 22 A3
1 A A
which implies that
Loy oAb
(ki ks oks) =(wy ., Pwo . PPwy) |1 A2 A3
L2 A3

and
L ox Af) (A
w, =(wo ., Pwo,PPwy) |1 A, A3 A5 .
1A A A3
That is (13) holds.
(D) If A, =X, #As s the solution of (11) can be
expressed by
w, =Mk, tnXik, +Xsk; ,
where k; = (kyj ks sksi) "5 7 =1,2,3. Then (ii)
can be proved by the same arguments of (i).
(iit) If A, =4, =23, the solution of (11) can
be written as
w, =k, +n ATk, " Alks
where k; = (kyj ko k3.7 =1,2,3. Then, simi-
larly to (i), we can prove (iii).
Lemma 3. 2
From (11), one have
{dzul =T Conts Tr12C41 Tr3C0 1

€201 =121 Copts T122Co, 11 1723001

(15)

Here the constants r;,i =1,2,5=1,2,3 only de-
pend on a,b.
Proof According to (11), we have
Cont1
Conts =(1,0,00 (A+BC'D) |dyps |.
€ont1
This together with (11) forms a system of 4 e-
quations with 4 variables ¢y,—1 s doy—1 s Cout1 s dont1 .
Then, by a fundamental calculation, we can get
(15) with
riu = —a/(2sinh2a) ,
ri; =a(—2 a* —2 a*cosh2a +bsinha —

bsinh2a +bsinh3a —2abcosh2a)
(2sinh2a( —a® —ab +bsinha)) ,
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ris =a(a® +2 a®cosh2a —ab +bsinh2a —

bsinh3a +bsinh4a —2abcosh2a)
(2sinh2a( —a® —ab+bsinha)) ,

ra = a’/(4 sinh’a)
ros =a’ ( —2 a®cosh2a +2ab —bsinha —

bsinh2a +bsinh3a —2abcosh2a)
(4 sinh?a(a® +ab—bsinha)) ,

ros =a’ (—a® +2 a®cosh2a +ab +2bsinha —

bsinh2a —bsinh3a +bsinhda —2abcosh2a)
(4 sinh®*a(a® +ab—bsinha)).

3.2 Periodicity and almost periodicity

We first consider the periodicity of the solu-
tion of problem (1).

Theorem 3.3 Let k€N, x(¢) be the solution
of (1) and {w, },.ez
the solution of (11). Then the following state-

. T
- {62;171 sdo 1 €201 }nez be

ments are true,

(1) x(2) is 2k-periodic if and only if {w, },cz
is k-periodic;

(i1) x(t) is 2k-periodic if and only if
{Con—1 }nez 1s k-periodic.

Proof (DIf (¢ +2k) =x(2) fort € R, itis
easy to get from the definition of the solution
{w, }nez of (12) that {w, },cy is k-periodic. Con-
versely, by Theorem 3. 1, it is easy to see that
I,(t) and I, (t) are 2-periodic. Suppose that
{w, }nez 1s k-periodic. Then it follows from (12)
that x(#) is 2k-periodic.

(i) If x(¢) is 2k-periodic, by (i), we can see
that {cy,—1 }.c Z is k-periodic. Conversely, sup-
{Con—1 }nez 18 Then

{ds—1 }uez and {es,— },ez are k-periodic by (15).

pose that k-periodic.
Thus {w, } .z is k-periodic. So x (1) is 2k-periodic
by ().

For the almost periodicity of the solution of
problem (1), we have the following result.

Theorem 3.4 lLet k2 € N, x(#) be the solu-
tion of (1) and {w, },cz = {con1sdon1s€m1 ) ez
be the solution of (11). Then the following state-
ments hold:

(D) x € APCR) if {w,},e2€ VAPS(R);

(i) x € AP (R) if and only if {co1 }recz €
APS(R).

Proof (i) Assume that {w,},.,€APS(R).
By Theorem 3. 1, it is easy to see that I, (z) and

l,(t) are periodic. Thus 1,1, € APS(R), and
then we get x € AP (R) from (12).

(i) If x € AP (R), it is easy to see that x(2¢
— 1) is also almost periodic in z. Then {cs,—1 } ez
= {x@Zn—D},ez € APS (R).
{Con1tnez € APS (R), we have {ds—1}.cz-
{em—1 ez EAPS(R) by (15), and then {w, },cz
€APS(R). By (), we have st €AP(R).

Conversely, if
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