2020 4 1 A
BT HE 1M

WOl K FRCE RFAF R

Journal of Sichuan University (Natural Science Edition)

Jan. 2020
Vol. 57 No. 1

doi: 10. 3969/j. issn. 0490-6756. 2020. 01. 002

B JHER KB T/ LENEH |

>, 2
TEE
PO BB« R 610064)

W OE. EOREYIUT TR B (— ) MR AR M & LTS e RAEF A& A
XM — £ BRI E AR T, L RK AR R T (AR EE—ARTEN),
{2 W @A g3 RAERGE, X5 A WMOCANLELTAETRR.

K. EAR GG BRKETE, BRI
FESES. 0186.12 X EAARINAD. A NERE. 0490-6756(2020)01-0007-04

Locally convex immersed surface with flat Euclidean boundary
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Abstract: In differential geometry, the geometric and topological behaviors of locally strongly (uniform-
ly) convex immersed surfaces (hypersurfaces) are very complicated, so are their Euclidean boundaries.
In this paper, we construct new locally strongly convex (but not globally convex) immersed surfaces

(hypersurfaces) with flat Euclidean boundary in R"™ (n=2,3), which are different from an existing con-

clusion.
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1 Introduction

Firstly, we recall some notions on an im-
mersed hypersurface in differential geometry. An
immersed hypersurface .# is defined as x: M —
R, where M is an n-dimensional differential
manifold.

(1) If for each p €M, there is a neighborhood
U, =M such that x (“l,) lies on one side of the
tangent hyperplane x at x(p), then we call x(M)
a locally convex hypersurface.

(i1) For a locally convex surface x(M), if =N
(U, ={x(p)} for each p € M, then we call
x(MD the locally strongly (strictly) convex hy-
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persurface.

If (M) is C*, the definition “locally strong-
ly convex” is equivalent to “locally uniformly con-
vex”. Generally, to prove that x (M) is locally
strongly (uniformly) convex hypersurface, we
only needs to prove that its second fundamental
form is positive definite.

(ii1) If for each p €M, (M) lies on one side
of its tangent hyperplane at x(p), then we call
x(M) a globally convex hypersurface, or (sim-
ply) a convex hypersurface.

(iv) For a locally convex immersed hypersurface

(M), we call a point P € R the Euclidean
boundary point of x (M), if P € x(MD\x (M),

TEEREN: T35, B, #0%, FEWAEN L. E-mail: baofuw@scu. edu. cn



8 v K FRCH KA F O

%57 %

where x(M) is the closure of (M) with respect
to its Euclidean topology. We will denote by d.4=
x(M)\x (M) the set of the Euclidean boundary
point of x(M).

An equivalent definition of the immersed lo-
cally convex hypersurface is stated in Ref. [1].

Definition 1.1 A locally convex surface ./ in
R""! is an immersion of ndimensional oriented
and connected manifold .V (possibly with bounda-
ry) in R"1,
such that for any p& N, there exists a neighbor-
hood w, .V such that

i.e. s a mapping T: N—. M CR"",

(1) T is a homeomorphism {rom w, to T(w,) ;

(i) T(w,) is a convex graph;

(iil) the convexity of T(w,) agrees with the
orientation,

A hypersurface is assumed to be locally uni-
formly convex, namely it has positive principal
curvatures'?/,

Generally the geometric property of a hypers-
uface boundary is closely related to the complete-
ness of the immersed hypersuface itself. So it is
interesting to study the boundary character of a
locally uniformly (strongly) convex immersed hy-
persurface. In Ref. [ 3], the author classifies the
Euclidean boundary points as two classes and
gives many hypersurfaces with the first class and
the second class Euclidean boundary point respec-
tively.

In this paper, we will prove that there exist
locally strongly convex immersed surfaces in R®
such that their boundaries lie in a plane but the
surfaces is not globally convex, which are differ-
ent from an existing conclusion. Moreover, we
give a method to construct similar hypersurfaces
in R',7. e. , we get the following theorem:

Theorem 1.2 There is a locally convex hy-
persurface ./ in R"™' ,n=>2 such that ./ is strictly
convex at some point p, and the boundary J.4 lies
on a hyperplane P but ./ is not convex (global-
ly).

For n=2, there is an Example 1. 3 construc-
ted by author and involved in Ref. [4], it is to-
tally different from Lemma 2. 1 of Refs. [5-6].

Example 1.3 Let M ={(u,t) | (ust) € (—

T T
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face in R® defined by

) XR}CR?, x:M—R® be an immersed sur-

-~ 2 2 .
r(u,t) =(e «cost cos u,e «sint cos u,sin u)

@))
where a >0 be a constant. The Euclidean bounda-

ry of x(M) is a line segment
dM={(0,0,sin u)€R3|u€[*§n,% .

The surface is convex at all the points correspond-

ing to t=0, i.e., at any points of the half circle

{(cos u,0,sin w) | —?“<u<§“} cx(M).

x(M) is obviously not globally convex (see Fig. 1
and Fig. 2).

Fig. 1 A sketch map of x(M) for a=2

Fig. 2 The cross-section drawn of x(M) for a =100, —57x<<

+<0, *7“<u<0

In the next section, we will construct a new
locally strongly (uniformly) convex surface in R®
(n=2) and some new examples for n >2 which
are satisfying Theorem 1. 2. Then we complete

the proof.

2 New examples

Let MCR? be an open set and x; M—R® be an
immersed surface in R® defined by
7(uyt) =(f(w g(t)cost,
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fQwg@)sin t,h(w)) (2)
where f(u),g(t),h(u) are smooth functions to
be determined later. By direct calculations we have

r.=(f'gcos t, fgsint,h'),

7, = f(g’cos t —gsint, g’ sin t+gcost,0).
A normal vector of x: M—R? is

7. Xr,=(—h"f(g'sin t +gcost),

h (g cost—gsint), ffg?).

Denote

7 X = IR (g g + f g T

| fIA,

where A:=[h"?(g"? +g%) Jr][/28'4]%-

Next, we have

Fow =(f'gcost, f'gsint, "),

7o = f (g’ cost —gsint, g"sin t +g cost,0),

7= f(g"cost —2g” sint — gcost, g’ sint +

2g’ cos t —gsint,0).

Then we get the second fundamental form of x:
M—R?, which can be expressed as
I1=L,,d«*+2L, dudt+L,d ¢,
where
L., =AW f =n'f",L, =
AR (—gg’+2 g +g») L, =0 (3

Define the function g(#) as following.

1, ift<—§7t,
— l zfﬁ 1 T T
g =1+ =Tt = <<
1, ifz>g

where 6>0 is a constant to be determined later. A

direct calculation shows that g(z) is C*. For

— T <X, we have

2 2
—gg//+2 g/z +g?=g>+2 g/z —
§ Ziﬁ 3 M Ziﬁ 2 >
3
AT )
4
Takingb>3 T, we get —gg’ +2 g% +g" >0

8
holds for any z € ( —o0, +00).
Let f(uw) =u.h(uw) =e“,u>>0in (2). We get
L,=A""'g%e" >0 (6)
L,=A'ue(—gg"+2 g% +g°)>0 D)

let M={(u,t) | (ust) €0, +o0) XR}CR?, x.:M—
R? be defined by

7Cust) =C(ug(t)cos tyug(t)sin t,e") (8)
for the surface x(M)CR®,

* By (6), (7), it is locally strongly convex.

¢ When «—0,(0,0,1) is the unique Euclid-
ean boundary point of the surface (see Fig. 3), so

the boundary of x(M) lies in a plane.

Fig. 3 The unique Euclidean boundary point of the surface
e The surface has many self-intersecting
points at = i?n.
e The surface is convex at all the points cor-

responding tO*?T[ <t <?Tr, but the surface is not

globally convex.

Therefore, This example satisfies Theorem 1. 2.
It is easy to construct the high dimensional

hypersufaces satisfying Theorem 1. 2. Here we

give a method as follows ( here we only consider
n=3).

Let M={(u,t,0) | (ust,v) € (— ) XRX

o
2’2

(*%,ﬂ)}CR3 , the immersion x: M—R! is de-

2
fined by
7(ustsv) =(po) f(u) g(t)cost
p(v) fw) g()sint,h(w) ,k(v)) €D

as before, where

2

f(u)=cosu,h(u)=sinu,g(t) =e¢ «,
and p(v),k(v) will be determined later. We have
ro=(pf geostspfgsint,h',0),

r,=pf(g cost —gsint, g sint +g cost,0,0),
ro=(p fgcost,p fgsint,0.k").
The normal vector of x:M—R" is
roNT Ny =C—Fh"pf(g sint+gcost) .
E'h'pf (g cost —gsint) & p* ff g%,
PP fPGRD.
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=r N7 ATy,
[l =1 IR (g g +
R2p? f12 4+ p"? 2R )gq%:=

Denote n

[ fPIA.
where
A=K (g + g+ " R g T
We have
Fow =(pf gcosts pfgsinth”,0),
ro = pf(g cost-2g" sint-g cost, g’ sint +
Zg/cost*gsint 0,0),
ro=Cp fgcost,p’ fgsint,0,k"),
7w =pf (g cost —gsint, g’ sint +gcost,0,0)
Am, p' ' (geost, gsint,0,0) ,
7o =P f (g cost —gsint, g’ sint +gcost,0,0).
Then we get the coefficients of the second funda-
mental forms of x:M—R* as follows

7 e

L, = \A\ =A""Rpg* (W =R fH 0
n
L, ="t A pfh (—gg +2 g% +g%)
n
an
Lw:r‘A‘ —A 1fgh(/€”P/ /p//) (12)
n
L. :rT;\ S AT RN (13)
n
L,=L,=0 (14)
/2
For f(u)=cosu,h(u)=sinu,g(t) =e «, by tak-
ing p(v)=cosv,k(v)=sinv, we get
L.>0,L,>0,L,>0 (15)

L.L,—L;, =
A % g'cos’u cos’v(1—sin*u sin®v) >0 (16)
where

22 2
—gd 2gt tg e T £ 4az

L )>o,

a=constant>0 and u,v € ( — ). By (15),

T T
2°2
(16), we know that the following matrix is posi-

tive definite:

Luu O Luv
0 L, O an
L., O L,

This means that the immersion x:M—R" is local-
ly strongly convex. The boundary dx(M) is

T T }

272
lies in a plane. One may easily check that the hy-

dx (M) ={(0,0,sinu,sinv) ER* |u,v €[ —

persuface defined by the above formula (9) satis-
fies Theorem 1. 2.

Similarly, based on the above new example,
one may get

7(ustsv) = (ucosvg (1) cost s

(18)

ucosvg (t)sint, e, sinv)

where g(¢) is defined by (4), u>0,v€(*%v

Iy, Tt is also a locally strongly convex immersed

2
hypersurfaces in R' with flat Euclidean boundary

and satisfies Theorem 1. 2.
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