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Abstract: In this paper, we give some results on both asymptotical almost periodicity and global expo-

nential stability of the solutions of a class of fuzzy cellular neural networks with time-varying delays.

The concrete forms of the asymptotical almost solutions of this system are presented.
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1 Introduction

The traditional cellular neural networks
(CNNs) proposed by Chua and Yang'" have been
widely developed (see Refs. [1-3] and the refer-
Based on CNNs, Yang'"

duced the fuzzy cellular neural networks (FC-

ences therein). intro-
NNs), which added fuzzy logic to the structure of
traditional CNNs. The periodicity and almost pe-
riodicity of CNNs and FCNNs have been paid
great attention in the past decade due to their po-
tential application in classification, associative
memory parallel computation and other fields

(see, e. g. s Refs. [5-10] and the references there-
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in).
There are few works of the almost periodicity
for FCNNs with delays. Let us give a brief sum-

1721 studied the almost

mary in this line. Huang"
periodicity for FCNNs with time-varying delays
Xu and Chen!™

presented some results on the almost periodicity

and multi-proportional delays.

for FCNNs with time-varying delays in leakage
terms. Liang, Qian and Liu"'" studied pseudo al-
most periodic solutions for FCNNs with multi-
proportional delays. To the best of our knowl-
edge, there is no result on the asymptotical al-
most periodicity of the solutions for FCNNs with

time-varying delays.
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In this paper, we consider the asymptotical

almost periodicity and global exponential stability

of the following FCNNs systems with time-var-
ying delays:

T (D =—a;(Dx; (D) + D) by (O f; ;) + D) c,,-<z>d]<z>+K1al-j<z>gj<xj<z—f,-j<z>>>+
i=1 i=1 ~

{:'/]BU (t)gj (I]'([_T,'j (t))) +£\]HU (l)dj(f) +i/1GU (l)dj(f) +I,(t) ’

t=t,=0,1€]={1,2,,n}

where x;(¢) is the ith neuron’s state, a;(z) is the
ith neuron’s self-inhibition, &; () and ¢; (¢) are
feedback template and feedforward template,
d;(t) is the ith neuron’s input, Aand V are the
fuzzy AND and fuzzy OR operations, a; (z) and
B; (¢) are the elements of the fuzzy feedback MIN
template and fuzzy feedback MAX template, ; =
0 is transmission delay, f;(x) and g;(x) are acti-
vation functions, H; (¢) and G; (¢) are the ele-
ments of the fuzzy feedforward MIN template and
fuzzy feedforward MAX template and I;(z) is the
time-varying external input of the ith neuron. We
present some results on both global exponential
stability and asymptotical almost periodicity of
the solutions for (1) (Theorem 3. 2 and 3. 3) and
get the structure of the solutions for (1) (Corol-
lary 3. 4).

The initial conditions of system (1) are of
the form

(D) =@ (1)t €[ty —1isto i €] (2)
where 1-{:1;21_2)](1-5 . T5 :Stléllrgfi_,‘ (), ¢ (¢) is contin-

uous on [ Ly —1; 2o .
2 Preliminaries

The norms on R" is given by || x | =max|x; |
€]

forxa=(x1,x5,*»x,) €R". BC(R,R") denotes
the Banach space of bounded and continuous func-
tions from R to R* with supremum norm | f || =
supier I f(¢) . Even though the notation | * |
is used for norms in different spaces, no confu-
sion should arise,

Definition 2. 1''®/ A set SCR is said to be
relatively dense if there exists L>>0 such that [a,
a+L]1NS# for all « € R. A function u €
BC(R,R") is said to be almost periodic on R if for

(D

any € >0 , the set T(u,e) ={z: lu(t+o) —ul®) |
<e,t€R} is relatively dense. Denote by AP(R")
the space of almost periodic functions with supre-
mum norm.

Definition 2.2/ A set SCAP(R") is a u-
niformly almost periodic set if it is uniformly
bounded, and if given € >0, then T (S,¢e) =

stT(f’e) is relatively dense and includes an in-

terval about 0.

Definition 2. 3" Let ¢ be defined on R" =
[0, ) to R". Then the continuous funciton ¢
is asymptotically almost periodic (abbr. a. a. p. ) if
and only if there is an almost periodic funciton p
and a continuous fucntion ¢ defined on R™ with
lim.... [lg(¢) | =0 such that ¢ =p +¢ on R".
The function p is called the almost periodic part.

Lemma 2.4 (i) Any finite set of func-
tions in AP(R") is a uniformly almost periodic set.

(ii) A continuous function f is a. a. p. if and
only if for every e >0, there exists T(e) =0 such

that {r: sup__ | f+o) —f(@) || <e} is rela-

=T, t+r=

tively dense in R,
Definition 2. 5"

(1) is global exponential stable if there exist two

A solution y(z7) of system

positive constants g and M such that

| y(&) —x() | <Me “.t=1t,
for any solution x(#) of system (1).

We will use the following assumptions;

(Hi) aisbyscysdisaysBistis Hy s Gy s I are
a.a.p, i,j€J;

(Hy) For j €], there exist nonnegative con-
stants L{,L% such that

| fiGo —fi (o) | <L{|u—vl|,

g, (w —g; (v | <Lf|lu—v| u,vER;

(H;) Foreachi€e] ,
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. 1 +T
M[a,v]:hrnf..mfj a,()ds>0

and there exist a bounded and continuous function
a;: R— (0, + ¢o) and a positive constant K;
such that

o st <K, e Jarwa for ] t.s€R and t —s=0;

(Hy,) There exists >0 such that r{g}di(t) <
—7<<0 for t>=t,, where

Ai() = —a; (1) +

DY by (DL +ay (0] +
j=1

18, (O DLset s 1) ie ],
Lemma 2. 6"

€R, k;:R—>R are continuous functions, then

FOr ly] E_], let I»,‘ ,1‘; 9p1:7' 9(1[]‘

| le)ﬁk](rﬂ *.z\li)iiki(l;) | <
7= 7=
2;:1 | i | 1oy () — & () |

and
‘ jl/lqijkj (l’j) _jl/lqijkj (1; ) ‘ <
Z;lzl gy [ 1oy (o)) —k; (D) |

Remark 1
the assumptions (H;) ~ (H;) and Lemma 2. 6

It is not hard for us to see that

guarantee the existence and uniqueness of solution
of system (1)-(2). Here we omit the details.
Similar result can be found in Ref, [13].

3 Main results

Assume that (H,) ~ (H,)
hold. Then the solution u(#) of system (1)-(2) is
bounded on [z, , +=2).

Proof Let K(t):rggrx lw(s) . Then Il u

() || <K (). Denote

Lemma 3.1

M;; = Hsz [ (|f;(u,(l‘o))‘ +L;f|u,(l‘o)|)+( [ Cij I+ H; I+ HGU (D) ”dj I+
C ai | + Hﬁz/ [ )(|g](uj(to))\ +Lj“u,(l‘o)‘)y

Memax( |+ 2050 M .

Without loss of generality, we assume that M >

0. Then we only need to prove
K(z><max{K<zo>,%4},z>zo (3)

where 5 is given in (H,). For ¢, =¢,, we first

prove that there exists §>>0 such that
K(t)<max{K(t1),%/[},te(tl,tl +8) 4

If K(¢;) =0, (4) holds since K(z) is continu-
ous and M/77>O. So we may assume that K(z;) >

{% (D) ‘},:f

1

0, and we have two cases.

Case 1. Assume that | u(z;) | <K (z).
Then [lu() | <K(z,) for t € (#;,2, +8) with
some 0>0. So K(t) =K (t;) fort € (t,,t, +8),
and (4) holds.

Case 2. Assume that [ u(z;) | =K(#). By
(H,), (H,) and Lemma 2. 6, for |u;(¢)| >0,i €
J,

= signCu; (1)) (—a; (1) w; (1) + D by f;Cu; (0)) + D> ¢ (1) d; (1) +
j=1 ji=1

Aay (1), Gy (1 = (00 + By (1) g, Gty (1~ (1)) +

AH (10 d; () + VG (1) (1) + 1)<
= =

—a; () [w; () [+ D) 1y ) | (L [y () =y Ceod | |5 Gy (2)) [+
j=1

DY g ) |+ 18 () D (LE Ly (6 —7 (1)) —u; (to) | + 1 g Cuy (2)) [+
j=1

DV ey GO L +1THy o) | +1G; () D 1 ds (o) | + 1T () | <
j=1
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—a, () L e |+ DY by o) L Ty () |+ Clag () |+ 18, () DLE [ (8 — 2, (1)) | ) +M<
j=1

At lluCe) | +M<<—y9K () +M.

Thus <0.i€]. if K()=M/p.
1

d
&‘M,(t)‘}

So K(t) =K(t,),t € (t;,t; +8) for some §>0,
and (4) holds. If K(t1)<M/77, K@) <M/~/; for ¢
€ (t; 4¢; +0) with some §>0 since K(¢) is contin-
uous, and then (4) holds.

Let y=sup{t=t,: K()<max{K(t,) . M/y}}.
If y € R, we have K (y) <max{K (1), M/5}.
Meanwhile, by (4), there exists § >0 such that
K@ <=max{K(y) .M/} for t € (y,y +&). There-
fore, K(t)<<max{K (z,),M/5} for r € [vs7+8),
which contradicts the definition of y. Thus y=+
oo, and (3) is true.

Theorem 3.2  Assume that (H;) ~ (H,)
hold. Then the solution u(z) of system (1)-(2) is
a.a.p. .

Proof By LLemma 3.1, u(z) is bounded on
[#ys T2°). Denote

U —
J

£,

gj(t) ajejs

max
el—lull, +lwll, ]
0 0

= max
B el ol
and

o—max | o;

p=max I os Il s
where p=csa,5,H,G, 7,

¢=max | ¢ |

§ ey C] ’
where {=d,L#, f*,g",

P:{ai’bii s Cyj 96{_,' s Qjj 9ﬁ;j 7H1j/ 9sz 711' :iaj 6]}
and

[ ule) |l

lw I,= sup

(€117 o0
For £ =¢&% +& € P with &’ the almost periodic
part and lim [ & (¢) | =0. Denote

P ={g" g=g" +¢ €P).

P ={g&.6=&"+& €P}
and
o= lu ll, *tn(f*+2g" +c+3d+H+G) +1

)
By Lemma 2. 4, P* is uniformly almost periodic
fore>0,i.j €] and w € TP, Fe) NR". De-
note
v(t) =u(t +w) —ult) (1) =
rrgtx{eg“ o) Il }ye=10.

Let y>>t,, such that
& (t+w) —&Q) | <i§s LEEP 1>y

Then
|6t +w) —E) | <| & (1 +w) —E2 (D) | +

&G tw) —& (| <ge.6€P=y  (6)

For t; =y, we claim that there exists § >0
such that

JO<max{(t)).ee?r ), 1€t +6) (D

If ¢(z;) =0, (7) holds since ¢(z) is continu-
ous and e e?1 >0. So we may assume that o) >
0, and we have the following 2 cases.

Case 1. Assume that e?1 | v(z,) || <¢(1)).
Then e?' || v(t) | <¢(t) for t € (41,11 +0) with
some ¢ >0 since e?’ || v(z) | is continuous, and
(7) holds.

Case 2. e*" || v(#;) || =¢(2;). Then by
(H.), Lemma 2. 6, (5) and (6), for| v, ()| >0,
eJ,

0 (1) = —a; (t +w)u; (t +w) +a; (Du; (1) + 2 Ly (2 +w) f; Cu; (t+w)) —by (1) f; (u; (1) ]+
i1

2 I:(,',:,' (t +"L€,‘)d]' (f +'LU) G (f)d_/ (l‘):|+
j=1

Ay (e Fw)g; (o (Hw) = Aay (g, Gy (g (D) +
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V8, (g, Gy (rw =, tw))) = U8, (D Cuy (=, (D) +
AH (etwdd; (etw) = AN (0d; (0 + VG (tHw)d; () —
= i= =

Ai’/lG,j (Od, (D +1,(t ) — (<

v

—a;,(Dv (@) +a; (t+w) —a; () | Tu I, + 2 Clby (tw) —by (O | f*+ by () | L 0, (0) | ]+
j=1

DV es Gtw) —e; (D |d+|d; (1 +w) —d; (D) | ¢ ]+

i=1

D[ ay Fw) —az (O | +18; (¢t +w) =B () D g +ay (0 + 85 () DLE |0, (1 —; (D) | ]+

j=1

2 L H; G Fw) —Hy (0| +1Gy (¢t +Hw) =Gy (0 Hd +

\chf(t+w) —d; () [ (H+G) ]+, (t +w) — 1, (1)<

—a; (D (D) + Zl [16; O TLf v, (0 | +Clay (O] 18 (O D LS [0t =2 () | ]+
[ la Iy +rCf+2 g +e+3 ZZ+H+G)+1]§’(ZT .

—a; (Do, (D4 D) [y (OILL o) | +ay (O | +18; () DLE |0, (t—7; () |]+<§s.
ji=1

Noticing that

[0 (2 —7; (D)) | <t —1; D))t @O0 <g(p)et |70 1=y,
by (H,) we have

sign (v ()0 (D=

v (D]+ D) [
j=1

D ])I.j 0 ‘Ljf+( @ (t)‘ + Bij (l‘)‘ )Lfeﬁ I I ]¢([)e ?t+<7215:

—a; () v () | + QD +a,-(z)>¢(z>e*?f+éle.

Then, for the index such that e?% [ v (¢,) | =¢(2,),

{%(eﬂ L0, (D) | >} — et 0,1 | +et sign(o, (1)), (1)<

a1

(~2’1 —a; () +A,(t) +a (1) )¢<z1> +etide< —ZgG) +eti e
\

exists 60 such that ¢(z) <max{¢(y,) e e?'} for

t€ (y15y1 +68). Therefore, ¢ (1) <e et for r €
[7157 +68)s which contradicts the definition of

Thus %@%wu(z)\)} “0.ie] i gl =

ee?. So (1) =¢(1)) for t € (¢;., +8&) with
some 6 >0 by the definition of ¢(z), and then (7)
holds.

Otherwise, if ¢(¢,) <e efr, ¢(1) <ee?" for ¢
€ (¢ .41 T6) with some 6>0 since ¢(¢) is contin-
uous, and then (7) holds.

Next we prove that

p(1) <eet',t=y €))

¥1. Thus y, = +oo, (8) is true.
Now, it follows from (8) that
[ u(t+w) —ul) | = o) <
e Ty <e e et =c,t>y.
This implies that
A={w: sup [ultt+w) —u(@®) | <2}>D

=y ttw=y

Let yy =sup{t =ty: ¢ (1) <e e?'). If v, €R, we
have ¢ (y1) <e e, Meanwhile, by (7), there

which means that A is relatively dense in R" since
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T<P“/’ ,iﬁe) is relatively dense in R™. Then u is

a.a.p. by Lemma 2.4 (iD).

Theorem 3.3  Assume that (H;) ~ (H,)
hold. Then any solution of system (1) is global
exponential stable.

Proof Let u(#),x(¢) are two solutions of
(D), w®) =ult) —x(t) st €[ty + o). It suffices
to prove that there exist two positive constants p
and M such that

[w(@ | <Me *,t=t, €©))

Let 0(t) =max{e”* | w(s) || }. If §(z) =0 for

st

t€to. to°), (9 holds. If 0(z) =0, then §(s) =

(e lwwh |

a1

0 for s€[to,t]. If () >0, then 4(s) >0 for s=>t.
So to prove (9), we only need to consider ¢t €[ ¢, ,
o) such that §(¢) >0. Without loss of generali-
ty, we may assume that 0(z) >0,1 €[ t,, o).
Let ¢, =t, with 0(¢,) >0. We claim that, for
some ¢ >0,
0() =0Ct) st € (115t +0) (10)
If e [[w(z) || <6(z), then e |w(p) | <
0Ct,) for t € (¢, ,t; +8) with some §>0 since e?'/?
[ w(z) |l is continuous, and (10) holds. If e?1/?

| w(z) | =0Ct), for |w: ;)| >0,i€ ], then

:éle’frl"/z lw; (1) | +er2sign (o, (1)) { —a, (0w, (1) +

E by O LS5 Cuy (1)) — f (e (1)) ] +v7\1(21j ) Lg (i (4 =7 (1)) —gj (e (4 — 7 (1)) ]+
i=1 7=

j{:l/‘ﬁlj ([1 )[gj(uj(fl T (tl))) & (Ij([l Ty ([1)))] } <

e?/?{— (a, (1)) _77/2) | w; (1)) |+2 |bi/1j(tl)|LJ[‘wj<tl>‘ +
=1

D0 lay ) [+ By e DLE | (6 — (1)) | )<
=1

{—(a,-<t1>—~2’1)+2[\b,7<m\L»f‘+<\a,:,-<z1>\+
=1

—421@@1 ) <0,

This simply implies (10) holds for some §>0. It
follows from (10) that 0(¢) <<0(s,) for t =1,.
Then [|w () || <0(z)e " for all t =¢,. This
follows that (9) holds with M=0(z,) ,p.=7/2.

By Theorem 3. 2 and 3. 3, we have the fol-
lowing corollary immediately.

Corollary 3.4  Assume that (H,) ~ (H,)
hold. Then any solution of (1) is a.a.p., and
there exists a function p € AP(R") such that any
solution of system (1) has the form p +q with
,liflq(t) =0.
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